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Lecture 16

Now remember that before we got (x| b|a>:% %(x‘kx} and | told you we could associate (x'|a) with y(x") ?
Lets look at thisabit more - remember  X|x)=x'|x"y and (x'[x") = §(x'-x"). We can write

@)= [dx'|{ x') (x'|a) and together with the normalization condition [dx' | ( X' | @) | =1 we can think of

P.(X)dX'=] ¢ X'{ @) | %dx' asbei ng a probability of being between x' and x'+dx so if [i/,(X) |? isthought of asa
probability (thisiswhat Bohr said) then ¢, (x') = (X'|a)

So now lets consider

Blay=[dx' ( B{ X"y (X'|a) =[dX" g (XWqa(X"). Now the RHS of thisthing can be thought of as the overlap in space
of the two wave functions - Notice though that the LHS has no X', i.e. it has no space coordinate. We say that it is
independent of representation and that it is the probability amplitude that state |« ) isto befound in state |8 )
INDEPENDENT OF REPRESENATION. Once we write ¢, (x') = (xX'|a) we have chosen the x representation.

So what about operators?. We got ahint from above looking at the x representation of p. Let look at (8| A| a)

(BIA]a)=[dx [dx" (BIX') (x| A| x"}x"Ja)=[dx' [dx" " (X)X | A] X"Wro(x") sOwhat we need is(x'| A| x") [note
that if we wrote this thing in matrix notation - it would be infinite dimensional!]

Now suppose A= X° then (x"IAlx")=(x"]| RZ | X") = X"26(X"-X")=x25(x'-X") SO

(B 2| a)=[dx' [dx" BIX (x'| 2| XWX ar)= [dX [dX" rg* (X)X 2O(X-X"Wro (X") = [AX" thg* (X)X 20 (X")
and similarly (51 X" | @)= [dx' 5" (X)X "o (X)

Now we can always expand f(x) in a power seriesso f(x) = >, a, X"

So (B f(X) | @)=[dx yg"(x) f(X)a(X)

Now letsrevisit the momentum operator in the position representation (or position basis)
WA d o em—h d onom_ A d e
X play=1—=(Xla) sothen  (X| PIX")=5 —=(XX")= 5 —=6(X"-X")
(B1 Dla)=[dx [dx" BIx) ('] PIX"HI)= [ ax" " (x) 2 0K Wia (X) = A 5" () 2 ()

and we see that in the position representation, the P operator just takes the derivative of the wave function in the position
representation v, (x")

we canalso get (x| P l@)=(2)" (=) (xle) 50 (B1 B )= [k ws ) (2)" (=) WaX)

OK. A natural question to ask is whether we can use some other basisto do all this - how about the momentum basis?
=4 piY =pi'lp" wherel have explicitly given theindex i=1,2,3 which stands for X,y and z. | will drop this for now.
So we have |5|p') =p'|p"» and (p'|p") =é(p-p") . Wewill expand as usua

@)= [dp'{ p') (p'la) and together with the normalization condition [dp'| ( p'{ @) |?=1
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soweget ¢.(p') = (p'la) whichisnow the wave function for |@) in momentum representation.

|s there away to change basis from position to momentum? Remember to change basis between we need |b;)=U|a;). By
construction we got (lecture 13) 3’ [by) (ax | which if you write this matrix in either basisi.e. (a; 1 laj)=(a;j [b;). So we
will need to find (X'|p). So let |a)=|p"y and we get
xIplp)=tLixlpy = pxIp)=L(xlp)  whichisjustadiff egn for (x|p’)

ip'x
Xp"Y = Ne(T) where N isjust a normalization. We can rewrite this more suggestively as

YpX') = Ne( 7 ) which says that the wave function for a momentum eigenstate in the position representationisjust a
bunch of sines and cosines - i.e. its a plane wave. Let's now find the normalization

this requires one of the ways to write down the delta function which is 276(x-x")= f_ ‘Z’Oeik(xfx') dk (See Liboff Appendix C)

ip (X=X ,
SEC-XT)=(x X" = [dp'(X'] p') (p'IX") =N2fdp'd =N 2nh6(¢x") SO N = 7= andfinally

ipx —ip'x
wip) = A d ) ad (i) = A dTH)
So lets now use this to switch between position and momentum basis
i

' X
i) = [dp' (X1 P () = Yolx) = 7 [op'd T o) andithe reverse

(p'la) = fdx' (p'| X') X'y = ¢(p) = \/2% fdx'e( f )%(X') soitsjust afourier transform.
So lets do an example. Things are waves, so how can we think about a particle? Its awave packet. Think about a musical
note. Music (sound) comesto you in waves. But suppose someone plays aquick middle C on aflute - which gives a pretty
pure tone with very few overtones. (Stacatto for the music folks)
Letstake alook at the function

ikx_i_] A _L] _ 2
(X' |a) = o (X") = 11 e[ 2:d2 :% (—:J"Xe[ 2:d2] Y ou can seethat thisisjust a plane wave modulated by e[ 2:d2

x4 Vd 74 Nd
which is a gaussian. The wave number isk. How does the wave look? Lets pick k=2 and d=20. The width of the gaussian

envelopeis 20, the wavelength isA=2x/k = .
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1 x2

psi[x ,d , k ]: *Exp[I*k*x— P
*

]

1
Pi7 x Sqrt[d]

Plot[Re[psi[x, 20., 2.]], {x, -100, 100}, PlotRange - {-.2, .2}]
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- Graphics-

So you can see that the wavelength and envelope is as you would have expected.

First lets write this in the momentum representation

X 2
(p'la) = ¢o(p) = [AX'(P'IX) (X'|a) = —= - fdx =5 'kx 2] which after some work will be
4

2
—(p-tk)2d? hk>2d2
<p'|a>=/ e[ 212

We can figure out some stuff about this | ust for fun. How about the expectation value of x?

Xy=[laIxyx' (X' |y dx' = fe[ x'dx'=0 makes sense

\/;ldfe(dz] ‘2dx—7
D ”

>:
(A X)) = (X%~ (X
R . ik X ] ikx X2 ]
Py=[lar Ix'y P(x'|a) dx' = ﬁfe[ 22 ?% e[ 2d2 | gx'

(X?

dxe( |k———hk

>

You can aso do thisin the p representation, but lets to the p?
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N R —(p—hk)? d2
<l°2>=f<oz||o'>F>2<|o'|oz>dp'=#fe[‘*ﬁ2 ]p-de- =227+h2kzso

£\2 A2 A2 42
(APF) =P —(Py=57

Now looking at Heisenberg

(ARPHAPP=E 2 =2 s((aR))(AP)=L soitisastateof minimum uncertainty.

Now letslook at the wave function of this thing in momentum representation.! will look at kprime since | dont want to
have 7 floating around to mess the plots up.

Sqgrt[d - (kprime - k)2 d?
phi[kprime , d , k ] := # *Exp[ ¢ ) ]
Pi% 2

Plot[Re[phi [kprime, 20., 2.]], {kprime, 1.5, 2.5}, PlotRange -» {0., 4.}]

- Graphics-

Remember the x axisis now p (actually kprime). Its a nice distribution around k=2 (which is what we expected since that
iswhat | chose) Itswidth is 1/d

Now letsseeif we let d get larger.
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Plot[Re[psi[x, 40., 2.]1, {x, =100, 100}, PlotRange -» {-.2, .2}]
Plot[Re[phi[kprime, 40., 2.11, {kprime, 1.0, 3.0}, PlotRange - {0., 6.}]
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- Graphics-

- Graphics-
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Plot[Re[psi[x, 80., 2.11, {x, =100, 100}, PlotRange -» {-.2, .2}]
Plot[Re[phi[kprime, 80., 2.11, {kprime, 1.5, 2.5}, PlotRange - {0., 8.}]
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We see that the position distribution gets wider, and the momentum distribution gets narrower. This is what we expect
from heisenberg.
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Plot[Re[psi[x, 1000., 2.1], {x, —100, 100}, PlotRange » {-.2, .2}]
Plot[Re[phi[kprime, 1000., 2.]], {kprime, 1.0, 3.0}, PlotRange - {0., 25.}]
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Eventually the position distribution gets very wide and the momentum distribution becomes almost a delta function.

Now letstry going the other way and make d small
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Plot[Re[psi[x, 10., 2.]1, {x, =100, 100}, PlotRange -» {-.3, .3}]
Plot[Re[phi[kprime, 10., 2.11, {kprime, 1.0, 3.0}, PlotRange - {0., 4.}]
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- Graphics-

- Graphics-
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Plot[Re[psi[x, 2., 2.]1, {x, —100, 100}, PlotRange - {—.5, .5}]

Plot[Re[phi[kprime, 2., 2.]], {kprime, 1.0, 3.0}, PlotRange - {0., 4.}]
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Plot[Re[psi[x, .01, 2.]1, {x, —10, 10}, PlotRange - {-10, 10.}]
Plot[Re[phi[kprime, .01, 2.]1, {kprime, 1.0, 3.0}, PlotRange - {0., .5}]
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Eventually the position distribution becomes localized at one value, but it covers all momenta. So what we have madeisa
very localized wave packet - almost at a single point. But the momentum is totally unconstrained.

So you can never beat the Heisenberg Uncertainty principle. If you make gainsin one, you loose in the other.



