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Lecture 15
Continuous spectra

Before we get to position an momentum, we will need to deal with continuous spectra, where the eigenvalues are not 
discreet but continuous. Before we had A

`
 †ai\ = ai†ai\, where the ai were discreet. Now lets do the continuous case. Now 

there is no index but we will assume the eigenvalue will serve as the continuous variable. For now we will use the variable 
x and the operator X

`
 so

X
` †x'\=x'†x'\

We also have    Xx ' †x ''\ = d(x'-x'')     remember before we had Xai †a j\ = dij      d(x'-x'')  is the dirac delta function we saw 
before ‡ „ x'†  x' \  X  x' § = 1

`
similar to ‚

i

 °ai \  Yai § = 1
`

†a\ = ‡ „ x'†  x' \  Xx' †a\ similar to  †  a \ = ‚
i

 †ai \  Xai †a\
Normalization :‡ „ x'»  X  x'†  a \  |2 = 1 similar to ‚

i

 |  X  ai †  a \  |2 = 1

Xb †a\ = ‡ „ x'X  b †  x' \  Xx' †a\ similar to X  b †  a \ = ‚
i

 Yb °ai \  Xai †a\Yx'' » X
` » x'] = x' dHx ' - x ''L similar to Yaj » A

` » ai] = a ' dij

The position operator and eigenkets

The position operator and eigenkets

We want to define X
`
 so

 X
` †x'\=x'†x'\   



 where x' is a position in space.  What does this mean? If we take some ket †a\ then the probability of finding the particle 
at point x' is » Xx ' †a\ »2 dx. This makes some sense since the probability for finding it somewhere between -¶ and ¶ must 
be 1. i,e, Ÿ „ x' » Xx' †a\ »2 = 1 and this is just the normalization requirement from above. Now for those who are used to 
dealing with wavefuntions, what is typically called ya(x)=Xx'†a\. This is nice because †a\ is the ket. But in the position 
representation (or position basis - like the Sz basis L we can just write it Xx'†a\
 We are going to assume that the eigenkets of position are complete. Since they are eigenkets of the observable X

`
 they are 

orthogonal, i.e.  Xx ' †x ''\ = d(x'-x'')  This is a little weird but if you think about it a bit Xx'†x''\ is like asking if something is 
both at x' and at x''. Its true only if the two points are the same. 

 This notion can be expanded pretty easily to three dimensions, and we will just use x' (boldface) to represent (x',y',z') i.e.

 † x' \ª†x',y',z,\  and we have X
` † x' \=x'† x' \  Y` † x ' \=y'† x ' \   Z` † x ' \=z'† x' \

 We assume (unlike spin!) that we can measure all three components of the position vector simultaneously, i..e. we have @X` i,X
`

j]=0 where the components X
`

i  are just X
`
, Y

`
,  Z

`
     e.g.  @X` ,Y

`
]=0 etc

Translation

Now I am going to do a little magic. Actually I am going to show you the fundamental relationship between momentum 
and the fact that space is homogeneous - i.e. that the rules of life do not change even if you move from California to 
Texas. [Actually they do, but doesn't that seem wrong? Physics is much more fair]

Just before we get into this, lets write out the taylor expansion for a function. To find the value of a function at a point x+h 
where h is a small number and f(x) is known you can use the following 

f Hx + hL = f HxL + h dÅÅÅÅÅÅÅ
dx

 f HxL + h2
ÅÅÅÅÅÅÅ
2!

 d2
ÅÅÅÅÅÅÅÅÅÅ
dx2  f HxL....

Lets define a new operator - the translation operator 
”÷÷÷̀
(dx) such that”÷÷÷̀ HdxL|x\=|x+dx\     This DEFINES 

”÷÷÷̀
. This of course makes sense. It just moves the ket along by a distance dx.

”÷÷÷̀
(dx) is 

an infinitesimal translation which moves the ket along by a distance dx.

Now clearly |x\ is not an eigenket of
”÷÷÷̀
. We can use the taylor theorem to write Xx'-dx'|a\=Xx'|a\-dx' dÅÅÅÅÅÅÅÅ

dx'
Xx'| a\   where we 

have taken Xx'|a\ as the function we expand. Note that Xx'|a\ is a function (or in some cases a number - it is NOT a ket 
anymore)”÷÷÷̀

|a\= ”÷÷÷
 Ÿ dx ' … x ']Xx ' »a\=‡ dx ' 

”÷÷÷̀
 |  x ' \Xx ' »a\=Ÿ dx ' » x ' + dx '\Xx ' »a\=Ÿ dx ' » x '\Xx ' - dx ' »a\ =

      =Ÿ dx ' » x '\(Xx'|a\-dx' dÄÄÄÄÄÄÄÄÄ
dx'

Xx'|a\)=Ÿ dx ' » x '\Xx'|a\-Ÿ dx ' » x '\dx' dÄÄÄÄÄÄÄÄÄ
dx'

Xx'|a\      where I have used the bold symbol dÄÄÄÄÄÄÄÄÄ
dx'

 in 
place of õ”÷÷  but you can also think of this in 1-D if you just forget the bolds

Now lets rewrite 
”÷÷÷̀
(dx') as 

”÷÷÷̀
(dx') =1

`
-idx'·K

`
 where K is some operator related to 

”÷÷÷̀
 . This sort of makes sense since  |x\  

and |x+dx\   can't be too different than one another. ”÷÷÷̀
|a\=(1

`
-idx'K

`
)Ÿ dx' » x '\Xx ' »a\=  Ÿ dx' » x '\Xx ' »a\-(idxK

`
)Ÿ dx' » x '\Xx ' »a\

Now comparing the two expressions for 
”÷÷÷̀
|a\ we get

(idxK
`

)Ÿ dx' » x '\Xx ' »a\=Ÿ dx ' » x '\dx' dÄÄÄÄÄÄÄÄÄ
dx'

Xx'|a\  ï  K
` » a] = Ÿ dx ' » x '\ 1ÅÅÅÅ

i
dÄÄÄÄÄÄÄÄÄ

dx'
Xx'|a\  ï Xx''§ K` » a] = Ÿ dx ' Xx '' » x '\ 1ÅÅÅÅ

i
dÄÄÄÄÄÄÄÄÄ

dx'
Xx'|a\  ï Xx''§ K` » a] = Ÿ dx '  dHx ' - x ''L 1ÅÅÅÅ

i
dÄÄÄÄÄÄÄÄÄ

dx'
Xx'|a\

ï Xx'§ K` » a] = 1ÅÅÅÅ
i

dÄÄÄÄÄÄÄÄÄ
dx'

Xx'|a\
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      So we get that Xx'§ K` » a]= 1ÅÅÅÅ
i

dÄÄÄÄÄÄÄÄÄ
dx'

Xx'|a\  Now does this look familiar? See eqn 3.5. Remember when we first started the 

class that we had P
`
z ÑÅÅÅÅ

i
∂ÄÄÄÄÄÄÄÄ

∂x
  We can associate K

`
 with PÄÄÄÄÄ

Ñ

`
 and Xx'†a\ with y(x').  We will continue to write Xx'†a\, but we 

will replace  K
`

 with pÄÄÄÄÄ
Ñ

`
so we get Xx'§ p̀ » a\= ÑÅÅÅÅ

i
dÄÄÄÄÄÄÄÄÄ

dx'
Xx'|a\

Now I had better be careful and tell you the p̀ here  is in the position representation  because the left hand side is Xx'§ p̀ » a\ 
. So the funny definition of momentum(in the position representation), naturally pops out of our understanding of the 
homogeneity of space and the translation operator. We will start to see what this definition of the momentum operator 
does. 

     Now I would like to show you the comuntator relationship between position and momentum, and of course from there 
we can get the standard Heisenberg uncertainty principle. For now I will do it in 1-D.

     [X
`
,K

`
]=i       (The 3-D version of this is AX

`
i, K

`
jE = idij whose proof is a little more confusing, because I have to use 

indices to consider the components separately)

     Proof: note:  X
` ”÷÷÷̀

(dx')†x'\=X
` †x'+dx'\=(x'+dx')†x'+dx'\    and 

”÷÷÷̀
(dx')X

` †x'\=x'
”÷÷÷̀
(dx')†x'\=x'†x'+dx'\

     so [ X
`

,
”÷÷÷̀
(dx')]†x'\=dx'†x'+dx'\ ºdx'†x'\  So now plugging in  

”÷÷÷̀
(dx') = 1

`
- idx' K

`
x  we now drop the ket and write just 

for the operators

    dx'= [ X
`
,

”÷÷÷̀
(dx')]=[ X

`
,1
`

- idx' K
`

x]=-idx'[ X
`
,K

`
x]    so [ X

`
,K

`
x]=i   and plugging in for P

`
x we get    [ X

`
,P

`
x]=iÑ

    Now we can repeat the proof for the y and x components.

    Now I need to do it for two components which are not the same i.e. I want to show e.g. [ X
`
,K

`
y]=0

    Proof: note:  X
` ”÷÷÷̀

(dy')†x',y'\=X
` †x',y'+dy'\=x'†x',y'+dy'\    and 

”÷÷÷̀
(dy')X

` †x',y'\=x'
”÷÷÷̀
(dy')†x',y'\=x'†x',y'+dy'\

     so [ X
`

,
”÷÷÷̀
(dy')]†x',y'\=dx'†x'+dx'\ =0  so 0= [ X

`
,

”÷÷÷̀
(dy')]=[ X

`
,1
`

- idy' K
`

y]=-idy'[ X
`
,K

`
y]=0

       so for  P
`

y we get    [ X
`
,P

`
y]=0

So summing up we get AX` i, P
`

jE = idijÑ  - The commuation relationship between position and momentum

Now lets start with the generalized Heisenberg principle from last time  DA
`

 D B
`

¥ 1ÅÅÅÅ
2

… XC` \|  where   [A
`
, B

`
]=C

`
 

1ÅÅÅÅ
2

… XC` \ … = 1ÅÅÅÅ
2

… AX` i, P
`

jE … = 1ÅÅÅÅ
2

… idij Ñ … = ÑÅÅÅÅ
2

dij     and finally plugging it in with A
`

= X
`

i and B
`
=P

`
j

DX
`

i D P
`

j ¥ ÑÅÅÅÅ
2

dij     That's it. The Heiseberg Uncertainty principle - note that it is in operator form.

Now  
”÷÷÷̀
(dx) was a infinitesimal translation. Lets now move it along by by a finite amount. How do we do this? We have 

to do the infinitesimal translation many times. I will now go ahead and write 
”÷÷÷̀
(dx) =1

`
-idx· P

`

ÄÄÄÄÄ
Ñ

  and for 1-D  
”÷÷÷̀
(dx) 

=1
`
-idx P

`
xÅÅÅÅÅÅÅÅ
Ñ

So to translate a finite amount Dx

 
”÷÷÷̀
(Dx)    =N Ø ¶

limit
 J1` - i P

`
xÅÅÅÅÅÅÅÅ
Ñ

 DxÅÅÅÅÅÅÅÅ
N

NN
   where DxÅÅÅÅÅÅÅÅ

N
=dx   But if you look it up in some math tables
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 H1 - xLn = 1 - nx + nHn-1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2!

 x2 ...   so I1 - xÅÅÅÅÅÅ
N

MN = 1 - x + HN-1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2! N

 x2 ...~1 - x + 1ÅÅÅÅÅÅ
2!

 x2 = ex

 
”÷÷÷̀
(Dx)    = e-i P

`
xÅÅÅÅÅÅÅÅÅÅÅÑ  Dx   Where we define the exponential of an operator in terms of the expansion  ex = 1 + x + x2

ÅÅÅÅÅÅÅ
2!

+ ...

 

 Next we will require that translations in x, y, and z directions all commute with each other. This of course makes sense on 
a flat world, but not on a curved one. [think about a world globe - the world is 25000 miles around - pretend its 24000 
miles. Start on the equator. Go 6000 miles in the x direction  then 6000 miles  in the y direction -if you define x and y like 
I do  you should be at the north pole. Then start at the same place but reverse the order. Go 6000 miles y direction and 
then 6000 miles in the x direction. you will be back at the equator - welcome to curved space and general relativity - No 
one has figured out how to do Quantum General Relativity - so lets go back to a flat world]

Translations in the x,y, and z all commute with one another. This will meam that e.g.

[ 
”÷÷÷̀
(Dx)  , 

”÷÷÷̀
(Dy)  ]= [(  1

`
- i P

`
xÅÅÅÅÅÅÅÅ
Ñ

 DxÅÅÅÅÅÅÅÅ
N

....),(1
`

- i P
`

yÅÅÅÅÅÅÅÅ
Ñ

 DyÅÅÅÅÅÅÅÅ
N

....)]=0 Work this out and you will get

[P
`

x , P
`

yD = 0

So lets summarize all the commutation relationships@X` i,X
`

j]=0     [P
`

i , P
`

jD = 0   AX
`

i, P
`

jE = idijÑ 

Finally lets now think about eigenkets of P
`

i  which we will call †pi '\  so that 

P
`

i†pi '\ =pi'†pi '\   and i=1,2,3 or x,y,z

What does translation do to this? Lets try it 

 (dx)†px '\ =J1` - i P
`
xÅÅÅÅÅÅÅÅ
Ñ

 dxN†px '\= I1 - i 
px'

ÅÅÅÅÅÅÅÅÅÅ
Ñ

 dxM†px '\  so †px '\  is an eigenket of  (dx) with an eigenvalue  I1 - i 
px'

ÅÅÅÅÅÅÅÅÅÅ
Ñ

 dxM so 
the eigenvalue is not real. This means that   is unitary but not Hermitain (since Hermitian operators have real 

eigenvalues) Also one can see that [ 
”÷÷÷̀
(dx),P

`
x]=[ J1` - i P

`
xÅÅÅÅÅÅÅÅ
Ñ

 dxN,P` x]=0 that is momentum commutes with translation. 
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