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Lecture 15

Continuous spectra

Before we get to position an momentum, we will need to deal with continuous spectra, where the eigenvalues are not
discreet but continuous. Before we had A |a;) = aj|a;), where the a; were discreet. Now lets do the continuous case. Now

thereis no index but we will assume the eigenvalue will serve as the continuous variable. For now we will use the variable
x and the operator X so

XIX)=XX")

Weadsohave (x'[x")=d(x-x") remember beforewe had (g |a;) =6;  o(x'-x") isthedirac deltafunction we saw
before

fdx‘{ X' (x'} =1 similartoZ|a><a b =1

|a>=fdx'1 X'y X'le)  similarto | @) =Z &) (@ la)

Normalization:

fdx‘\ (x'la) |?=1 similartoz | (ala)|’=1

<ma>=fdx'<ﬁ| X'y ) similato (Bl a) =Y (Bla) @l

(x"IX|x)=x"86(x'—x") similarto(a; | A | &) = a'q;

The position operator and eigenkets

Theposition operator and eigenkets

We want to define X so

XX )=X1X")
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where x' isaposition in space. What does this mean? If we take some ket |a) then the probability of finding the particle
at point X' is | (x'|e) |? dx. This makes some sense since the probability for finding it somewhere between -co and co must
bel.ie fclx' | (x"|a) |? = 1 and thisis just the normalization requirement from above. Now for those who are used to
dealing with wavefuntions, what is typically called ¢, (X)=(X'|a). Thisis nice because |@) is the ket. But in the position
representation (or position basis - like the S, basis) we can just write it (xX'|a)

We are going to assume that the eigenkets of position are complete. Since they are eigenkets of the observable X they are
orthogonal, i.e. (X'[|x") = d(X'-x") Thisisalittleweird but if you think about it a bit (x'|x") islike asking if somethingis
both at x" and at x". Itstrue only if the two points are the same.

This notion can be expanded pretty easily to three dimensions, and we will just use x' (boldface) to represent (x',y',z") i.e.
| X")=Ixy',z) andwehave X| X' )=x| X'} Y| X' )=y'| x' ) Z| x')=Z|x")

We assume (unlike spin!) that we can measure all three components of the position vector smultaneoudly, i..e. we have
[Xi,X ]=0 where the components X; arejust X,Y, Z eg. [X,Y]=0etc

Trandation

Now | am going to do alittle magic. Actualy | am going to show you the fundamental relationship between momentum
and the fact that space is homogeneous - i.e. that the rules of life do not change even if you move from Californiato
Texas. [Actualy they do, but doesn't that seem wrong? Physics is much more fair]

Just before we get into this, lets write out the taylor expansion for afunction. To find the value of afunction at a point x+h
where hisasmall number and f(x) is known you can use the following

_ d h2  d?
f(x+h)= f(x)+h& f(x)+ T f(x)....

L ets define a new operator - the translation operator 7~ (6x) such that

T (X)P)=p+ox) This DEFINEST". This of course makes sense. It just moves the ket along by a distance 6x.7°(5x) is
an infinitesimal translation which moves the ket along by a distance 6x.

Now clearly |x) is not an eigenket of 7. We can use the taylor theorem to write (x‘—éx'|a>=(x‘|a/>-5x‘%(x'| a) wherewe
have taken (X'|a) as the function we expand. Note that (x'|a) isafunction (or in some cases a number - it isNOT aket
anymore)

’%‘la)=¢fdx' ESES |a>=fdx‘ ‘%l X)X )= [dX'| X"+ 60X )X @)= [dX'| X" }(X' = 6X" |a) =
= [dx" | X)X |a-0x == (xa))=[dx" | x')(x'|a)- [dx" | x')6x' == (x']a)  where| have used the bold symbol — in
place of ¥V but you can aso think of thisin 1-D if you just forget the bolds

Now letsrewrite 7 (6x') as 7 (6x') =1-i6x' K where K is some operator related to 7 . This sort of makes sense since [x)
and [x+6x) can't be too different than one ancther.

fﬁa):(i-iax'K)fdx' |X)(x @)= [dx" [ X)X [@)-(16xK) [dx" | x') (X" )

Now comparing the two expressions for % |y we get

(i6xK) [dx" | x')(x' |oz):fdx‘|x'>6x‘-‘%<x‘|a) = Kla)= [dx'|x) %%(x'p) =
XK @)= [dx' (x| x") %%(x'w = (x| K |a) = [dx" §(x'-x") %%(x'kx)
= X|K|a)=

L= (X
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So we get that (x| K | a)le % (X'|ley Now doesthislook familiar? See egn 3.5. Remember when we first started the
class that we had P » ?% We can associate K with % and (x'|a) with y(x"). Wewill continue to write (X'|a), but we

will replace K with ;p so we get
X pla)= ——<X|CY>

Now | had better be careful and tell you the p here isin the position representation because the left hand sideis (x| p| @)
. So the funny definition of momentum(in the position representation), naturally pops out of our understanding of the
homogeneity of space and the translation operator. We will start to see what this definition of the momentum operator
does.

Now | would like to show you the comuntator relationship between position and momentum, and of course from there
we can get the standard Heisenberg uncertainty principle. For now | will doitin 1-D.

[X,K]=i  (The3-D versionof thisis|X;, K;| = i&; whose proof is alittle more confusing, because | have to use
indices to consider the components separately)

Proof: note: X7~ (dx) X=X [x"+dx"y=(x"+dx")[x"+dx") and 7 (dx'))?lx‘)zx'% (dx)[x"y=x"|x"+dX")

so| X7 ()] Ixy=dx'|x"+dx"y ~dx'|x") So now plugging in T (dx') =1-idx'Ky we now drop the ket and write just
for the operators

dx'=[ )A(,‘%(dx‘)]:[ XA —idx'RyJ=-idx] X,K,] so[ X,Ry]=i and pluggingin for Py weget [ X,Py]=i%
Now we can repeat the proof for they and x components.
Now | need to do it for two components which are not the samei.e. | want to show e.g. | )Z,Ry]:o
Proof: note: X7~ (dy)Ix y)=X Xy +dyy=x'|x",y'+dy"y and 7 (dy'))?lx',y')zx'% (dy)IX,y")y=x|X"y"+dy")
so[ X,7°(dy)]IX.y)=dxx+dx’) =0 s00= [ X7 (dy)]=[ X 1 - iy’ Ry]=-idy’ X ,R,]=0
sofor Pyweget [ X,Py]=0

So summing up we get [Xi, p i | =idjj7 - The commuation relationship between position and momentum

Now lets start with the generalized Heisenberg principle from last time AAAB > £ |<C>| where [A, B]=C
21© =2 |[Xi Bj||= % |isyh|=25; andfinaly pluggingitinwith A= X; and B=P,

~ A

AX;AP;j z%&ij That's it. The Heiseberg Uncertainty principle - note that it isin operator form.

Now 7'(6x) was ainfinitesimal tranglation. Lets now move it along by by af|n|te amount. How dowedo thIS'7 We have
to do theinfinitesimal translation many times. | will now go ahead and Wr|te7'(6x) =1- |6x — andfor 1-D T(éx)

_ p

—1—|6x7X

So to trandate a finite amount Ax

A limit N A N
T (AX) =N - oo (1—i % %) where &% —6x But if you look it up in some math tables
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n_ n(nl)z _ N-D 2 a1 2
L-x"=1-nx+ X .. 01 ) =1-x+ S X~ l-x+ o X = €

2 P
'7' (Ax) =e¢” T 2% Where we define the exponential of an operator in terms of the expansion € =1+ x+ ;—? + ...

Next we will require that trandlationsin x, y, and z directions all commute with each other. This of course makes sense on
aflat world, but not on a curved one. [think about aworld globe - the world is 25000 miles around - pretend its 24000
miles. Start on the equator. Go 6000 milesin the x direction then 6000 miles inthey direction -if you define x and y like
| do you should be at the north pole. Then start at the same place but reverse the order. Go 6000 milesy direction and
then 6000 milesin the x direction. you will be back at the equator - welcome to curved space and general relativity - No
one has figured out how to do Quantum General Relativity - so lets go back to aflat world]

Trandationsin the x,y, and z all commute with one another. Thiswill meam that e.g.

[T(Ax) ‘T(Ay) I=0(1-i PX ANX (- F;y &Y ..)]=0 Work this out and you will get

[PX5 Pyl =0

So |lets summarize all the commutation relationships

[)Zi,)’{j]=0 [ﬁ’i, ﬁ’j|=0 I)A(i,ﬁ’J'l:iéijfl

Finally lets now think about eigenkets of I5i which wewill call |p;") sothat

Pilp =p'Ip") andi=1,23 or xy,z

What does translation do to this? Letstry it

T(6%)| px") ( ioibx 5x) p)=(1-i % 6X)|px'y S0 |px') isan eigenket of 7(5x) with an eigenvalue (1-i DT’I‘ 6X) 0
the eigenvalueis not real. Thismeansthat 7~ is unitary but not Hermitain (since Hermitian operators have rea

eigenvalues) Also one can seethat [ 7 (6x),l5x]=[ ( —i 6x) P4]=0 that is momentum commutes with trandlation.



