
Quantum Mechanics
Part 2

Ch 40 The Schoedinger Eqn.

Making sense of 



The Schoedinger Equation
There are physics laws which are encoded 
in equations e.g. F=ma; Einitial=Efinal etc
Is there a rule for ψ ?????
Schoedinger ~ 1924

Why do we believe it
Because it works! 
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What is the program?
Justifying it 

This isn’t the real reason we believe it
real reason is because of experiment

Making models of real life and solving 
Periodic Table of the elements
Molecular binding (chemistry)
tunneling (decay)
transistors
Zero point energy of the vacuum!
…



Note: I cheated a
bit, since K is really
K(x)

this represents matter waves
hmm

potential energy

A “ justification” of the Schroedinger eqn



This is the 1-D eqn. We should really use 
a 3-D version (in this class we will stick to 1-D)
what we need to do is to find appropriate 
U(x) which describe real situations and 
then solve for ψ(x)
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Boundary Conditions
We have to require some things 
about ψ(x) since P(x)= ψ2

ψ(x) must be continuous
ψ(x) →0 as x→∞ and x→-∞
ψ(x)=0 in areas it should not be
ψ(x) must be normalized (i.e. its total 
probability = 1   or 100%)



PROBLEM-SOLVING STRATEGY Quantum-mechanics problems

MODEL Determine a potential-energy function that describes the 
particle’s interactions. Make simplifying assumptions.

VISUALIZE The potential-energy curve is the pictorial representation.
Draw the potential-energy curve.
Identify known information.
Establish the boundary conditions that the wave function must 
satisfy.

SOLVE The Schrödinger equation is the mathematical representation.
Utilize the boundary conditions.
Normalize the wave functions.
Draw graphs of ψ(x) and |ψ(x)|2.

Determine the allowed energy levels.
Calculate probabilities, wavelengths, or other specific quantities.

ASSESS Check that your result has the correct units, is reasonable, 
and answers the question.



What kinds of problems do we want to solve?

Atom (to get the Bohr 
model)

U(X)=-e2/r (Black line)
in 3D

Too hard –make it 1-D
too hard (approx with the 
red line)
Still to hard – approx as a 
1D box with infinitely high 
walls.

Maybe not such a good 
approx, but perhaps we will 
see some basic things like 
energy only having some 
specific values i.e. energy 
quantization



Particle in a box – a toy model
1-D
draw potential

U(x)=0 0<x<L
U(x)= ∞ x=0; x=L

ψ(x)=0 if x≤0 or x ≥L
Solutions to

sin, cos
choose sin since sin(0)=0
try Asin(kx)

U(x)

x

∞ ∞

L
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infinitely strong
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Particle in a box

U(x)

x

∞ ∞

L

n is called a 
quantum number

Walls infinitely strong



Normalize and finish



So what does 
it mean?

There is NO E=0 state!
a zero-point energy
Consistent with heisenberg
momentum>0



A nice way to picture it

Sometime we draw 
a picture like this 
for clarity. 

We don’t really 
mean that the wave 
function starts 
higher up. 



Thought questions
For the n=2 state the particle is most likely to be found

in the middle
about ¼ of the way from either end
at one of the ends
the same everywhere



an example Prob of finding a 
particle between L/4 
to 3L/4 if it is in the 
ground state of a 
particle in a 1-D box

start with normalized 
wave function!



So have we learned anything?
we modeled an coulomb 
potential as an infinite well
we used 1-D instead of 3-D

BUT
☺we got quantized energies
☺quantized radii

The shapes of the wave 
functions don’t tell us much 
about real life

Maybe if we go to a 3-D 
model with a real 1/r coulomb 
potential we might get 
something that makes sense



Do it
chapter 41

Get the right energies!
E=-13.6ev/n2

Get orbital shapes
Chemistry!

each n, has many orbital shapes
depending on the angular momentum



it Gets pretty complicated



The correspondence principle
If you put a ball in a box and let it rattle around, 
the probability of finding it anywhere in the box is 
pretty much the same
How does this square with QM??
Answer: For large quantum number n the 
probabilities approach the classical value
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Now for something more realistic
Finite potential wells

Better approx to 
Coulomb potential 
Pretty good model for an 
electron in 
semiconductor

transistors, your cell 
phone etc

Two potential finite 
potential wells can be 
like a H2 atom
We can learn a lot from 
these…



A finite potential well
U=0 0<x<L
U=U0 x<0 or x>L
Particle with energy E

E can be
>U0  Free particle

energy enough to 
puncture walls

<U0 Particle “trapped 
in well”

X<0 and X>L is the 
“classically forbidden 
region”

Walls are not infinitely strong

particle 
energy E



wave function Inside the box

Walls are not infinitely strong

particle 
energy E



Walls are not infinitely strong

particle 
energy E

wave function OUTSIDE the box



More boundary conditions

Walls are not infinitely strong

particle 
energy E

We don’t 
want this 
solution

eκx

classically 
forbidden 
region

Inside solution

Inside and Outside
solutions matched
at boundaries

e-κx

good Outside
solution



What is this Outside the box stuff?
If we put a particle in a 
box (say a match box) it 
doesn’t get out.
QM tells us that there is a 
small probability that the 
particle is OUTSIDE THE 
BOX! (the classically 
forbidden region)
Penetration depth=1/κ

related to probablility for 
particle to “tunnel” outside 
box

particle 
energy E

classically 
forbidden 
region

Walls are not infinitely strong
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How big is the effect?

find how far a cube of 
ice with mass 10g sits 
outside the glass
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h0=10 cm h=9cm

U0=mgh0
E=mgh
U0 -E=mg(h0-h)

=.01 (9.8 )(.1-.09)
=.00098J

U0 E

The well
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penetration depth = 1/κ=2x10-32 m
your ice stays in your glass (we will 
calculate a probability later)

the effect is big on atomic scales



What do the wave function look like?
electron in a 1eV potential well

Energies are shifted relative to inifinite well
wave function penetrates into classically “forbidden region”



So to summarize
QM has told us that particles penetrate 
into classically forbidden regions

Tunneling
decay

Crazy – your car has a small probability of 
being OUTSIDE your garage



Covalent bonds
Model of H atom

particle in a box  
E=-13.6 ev (n=1 state)
top of the box be at zero 
width of the box is ~ 2aB~0.1 nm

2 H atoms for a bond
Separation =.12 nm
match solutions at 
boundary

e-κx
outside

solution

Match
solutions

sin(kx)
inside

solution



Now solve for the new energies

E=-17.5 eV
E=-9 eV

n=1 n=2

prob density prob density



Total energy – the covalent bond
If the total energy is negative, then the 
particles are bound. 

pp repulsive energy =

n=1  E=12 eV-17.5eV = -5.5eV 
covalent bond!!

n=2  E=12 eV – 9 eV=+3eV
doesn’t bind
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The Quantum Simple Harmonic Oscillator 
and molecular vibrations

1-D particle in a box E~n2 i.e. not evenly spaced. 
A better model for a molecule and vibrations. 

A spring
U(x)=½kx2

Classical solution
vibrates between turning points
frequency

Solving the Sch eqn we get 

k
m

ω =



Wave functions
Here is what the wave 
functions look like
Note at high n (n=11) 
the probability starts 
looking classical

particle spends most of 
time near turning points
Notice the energy states 
are evenly spaced

Again, lowest energy>0!
E0=½ħω

n=11

b
mω

=



Sping constant of a bond?
absorption spectrum of 
Acetone
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What is the spring 
constant of the carbon-
oxygen double bond?

λ=5.8µm line is absorbed 
1→2 transition



Tunneling
Classical Physics

Quantum Physics



Knight’s toy model

so AR=ALe-w/η

w=width of barrier
remember η=1/κ

Ptunnel=|AR|2/|AL|2=e-2w/η



Nuclear Decay and Spontaneous Fission
Problem

similar nuclei have radically 
different lifetimes
U238     4.5B years
U234       244 K years
different by 20,000

Answer: Decay is from 
tunneling, exceedingly sensitive 
to width of barrier

P~e-1=0.4
P~e-11 = 1.7x10-5

different by 20,000
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Scanning Tunneling Microscope

Ptunnel=e-2w/η

tunneling probability is 
very sensitive to w



STM images (100 nm × 100 nm) collected from Au 
nanoclusters on a TiO2(110) substrate.  They were grown by 
depositing 1 ML of Au and annealing to 600°C.

STM of Gold Nanoclusters in Ultra-High 
Vacuum



STM of Iron foil in a Uranyl Nitrate 
Solution

The surface of an 
iron foil was 
monitored with in situ
STM in a solution 
containing uranyl
nitrate.  The 500x500 
nm images show the 
rough surface, 
characteristic of a 
native iron oxide, 
becoming smoother 
as the reaction 
proceeds.  



DNA

Wolfgang Schonert
GSI 



Resonant Tunneling diode
High speed gate 500 GHz??
When tunneling occurs energy must be conserved

Energy of incoming electron must equal energy of well for 
tunneling to occur

Gate closed
Voltage across
circuit =0

Gate open:
Voltage across circuit 
such that electrons 
match quantum well
allowed energy 



If voltage is too high
gate closes


