
Quantum Mechanics
Part 2

Ch 40 The Schoedinger Eqn.

Making sense of 



The Schoedinger Equation
� There are physics laws which are encoded 

in equations e.g. F=ma; Einitial=Efinal etc
� Is there a rule for ψ ?????
� Schoedinger ~ 1924

� Why do we believe it
�Because it works! 
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What is the program?
� Justifying it 
�This isn’t the real reason we believe it
� real reason is because of experiment

� Making models of real life and solving 
�Periodic Table of the elements
�Molecular binding (chemistry)
� tunneling (decay)
� transistors
�Zero point energy of the vacuum!
�…



Note: I cheated a
bit, since K is really
K(x)

this represents matter waves
hmm

potential energy

A “ justification” of the Schroedinger eqn



� This is the 1-D eqn. We should really use 
a 3-D version (in this class we will stick to 1-D)

� what we need to do is to find appropriate 
U(x) which describe real situations and 
then solve for ψ(x)
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Boundary Conditions
�We have to require some things 

about ψ(x) since P(x)= ψ2

�ψ(x) must be continuous
�ψ(x) →0 as x→∞ and x→-∞
�ψ(x)=0 in areas it should not be
�ψ(x) must be normalized (i.e. its total 

probability = 1   or 100%)



PROBLEM-SOLVING STRATEGY Quantum-mechanics problems

MODEL Determine a potential-energy function that describes the 
particle’s interactions. Make simplifying assumptions.

VISUALIZE The potential-energy curve is the pictorial representation.
� Draw the potential-energy curve.
� Identify known information.
� Establish the boundary conditions that the wave function must 

satisfy.

SOLVE The Schrödinger equation is the mathematical representation.
� Utilize the boundary conditions.
� Normalize the wave functions.
� Draw graphs of ψ(x) and |ψ(x)|2.

� Determine the allowed energy levels.
� Calculate probabilities, wavelengths, or other specific quantities.

ASSESS Check that your result has the correct units, is reasonable, 
and answers the question.



What kinds of problems do we want to solve?

� Atom (to get the Bohr 
model)
� U(X)=-e2/r (Black line)

� in 3D
� Too hard –make it 1-D
� too hard (approx with the 

red line)
� Still to hard – approx as a 

1D box with infinitely high 
walls.
� Maybe not such a good 

approx, but perhaps we will 
see some basic things like 
energy only having some 
specific values i.e. energy 
quantization



Particle in a box – a toy model
� 1-D
� draw potential
�U(x)=0 0<x<L
�U(x)= ∞ x=0; x=L

� ψ(x)=0 if x≤0 or x ≥L
�Solutions to

� sin, cos
� choose sin since sin(0)=0
� try Asin(kx)

U(x)
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infinitely strong
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Particle in a box

U(x)

x

∞ ∞

L

n is called a 
quantum number

Walls infinitely strong



Normalize and finish



So what does 
it mean?

There is NO E=0 state!
a zero-point energy
Consistent with heisenberg
momentum>0



A nice way to picture it

� Sometime we draw 
a picture like this 
for clarity. 
�We don’t really 

mean that the wave 
function starts 
higher up. 



Thought questions
� For the n=2 state the particle is most likely to be found

� in the middle
� about ¼ of the way from either end
� at one of the ends
� the same everywhere



an example � Prob of finding a 
particle between L/4 
to 3L/4 if it is in the 
ground state of a 
particle in a 1-D box
� start with normalized 

wave function!



So have we learned anything?
� we modeled an coulomb 

potential as an infinite well
� we used 1-D instead of 3-D

� BUT
☺we got quantized energies
☺quantized radii
/The shapes of the wave 

functions don’t tell us much 
about real life

� Maybe if we go to a 3-D 
model with a real 1/r coulomb 
potential we might get 
something that makes sense



Do it
chapter 41

� Get the right energies!
�E=-13.6ev/n2

� Get orbital shapes
�Chemistry!

each n, has many orbital shapes
depending on the angular momentum



it Gets pretty complicated



The correspondence principle
� If you put a ball in a box and let it rattle around, 

the probability of finding it anywhere in the box is 
pretty much the same

� How does this square with QM??
� Answer: For large quantum number n the 

probabilities approach the classical value
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Now for something more realistic
� Finite potential wells

� Better approx to 
Coulomb potential 

� Pretty good model for an 
electron in 
semiconductor
� transistors, your cell 

phone etc
� Two potential finite 

potential wells can be 
like a H2 atom

�We can learn a lot from 
these…



A finite potential well
� U=0 0<x<L
� U=U0 x<0 or x>L
� Particle with energy E
�E can be

� >U0  Free particle
� energy enough to 

puncture walls

� <U0 Particle “trapped 
in well”
� X<0 and X>L is the 

“classically forbidden 
region”

Walls are not infinitely strong

particle 
energy E



wave function Inside the box

Walls are not infinitely strong

particle 
energy E



Walls are not infinitely strong

particle 
energy E

wave function OUTSIDE the box



More boundary conditions

Walls are not infinitely strong

particle 
energy E

We don’t 
want this 
solution

eκx

classically 
forbidden 
region

Inside solution

Inside and Outside
solutions matched
at boundaries

e-κx

good Outside
solution



What is this Outside the box stuff?
� If we put a particle in a 

box (say a match box) it 
doesn’t get out.

� QM tells us that there is a 
small probability that the 
particle is OUTSIDE THE 
BOX! (the classically 
forbidden region)

� Penetration depth=1/κ
� related to probablility for 

particle to “tunnel” outside 
box

particle 
energy E

classically 
forbidden 
region

Walls are not infinitely strong

( ) ( ) /

( )

' '

x
R

x L x L

x Ge
G e G e

κ

κ η

ψ −

− − − −

= =

=

0
2

2 ( )m U Eκ −=

0
2

( )

2 ( )

x
R x Ge

m U E

κψ

κ

−=

−=



How big is the effect?

� find how far a cube of 
ice with mass 10g sits 
outside the glass
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h0=10 cm h=9cm

U0=mgh0
E=mgh
U0 -E=mg(h0-h)

=.01 (9.8 )(.1-.09)
=.00098J

U0 E

The well
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penetration depth = 1/κ=2x10-32 m
your ice stays in your glass (we will 
calculate a probability later)

the effect is big on atomic scales



What do the wave function look like?
� electron in a 1eV potential well

� Energies are shifted relative to inifinite well
� wave function penetrates into classically “forbidden region”



So to summarize
� QM has told us that particles penetrate 

into classically forbidden regions
�Tunneling
�decay

� Crazy – your car has a small probability of 
being OUTSIDE your garage



Covalent bonds
� Model of H atom

� particle in a box  
� E=-13.6 ev (n=1 state)
� top of the box be at zero 
� width of the box is ~ 2aB~0.1 nm

� 2 H atoms for a bond
� Separation =.12 nm
�match solutions at 

boundary

e-κx
outside

solution

Match
solutions

sin(kx)
inside

solution



Now solve for the new energies

E=-17.5 eV
E=-9 eV

n=1 n=2

prob density prob density



Total energy – the covalent bond
� If the total energy is negative, then the 

particles are bound. 
�pp repulsive energy =

�n=1  E=12 eV-17.5eV = -5.5eV 
� covalent bond!!

�n=2  E=12 eV – 9 eV=+3eV
� doesn’t bind
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The Quantum Simple Harmonic Oscillator 
and molecular vibrations
� 1-D particle in a box E~n2 i.e. not evenly spaced. 
� A better model for a molecule and vibrations. 

� A spring
� U(x)=½kx2

� Classical solution
� vibrates between turning points
� frequency

� Solving the Sch eqn we get 

k
m

ω =



Wave functions
� Here is what the wave 

functions look like
� Note at high n (n=11) 

the probability starts 
looking classical
� particle spends most of 

time near turning points
� Notice the energy states 

are evenly spaced

� Again, lowest energy>0!
� E0=½ħω

n=11

b
mω

=



Sping constant of a bond?
absorption spectrum of 
Acetone
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� What is the spring 
constant of the carbon-
oxygen double bond?
� λ=5.8µm line is absorbed 

1→2 transition



Tunneling
Classical Physics

Quantum Physics



Knight’s toy model

so AR=ALe-w/η

w=width of barrier
remember η=1/κ

Ptunnel=|AR|2/|AL|2=e-2w/η



Nuclear Decay and Spontaneous Fission
� Problem

� similar nuclei have radically 
different lifetimes

� U238     4.5B years
� U234       244 K years
� different by 20,000

� Answer: Decay is from 
tunneling, exceedingly sensitive 
to width of barrier
� P~e-1=0.4
� P~e-11 = 1.7x10-5

� different by 20,000
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Scanning Tunneling Microscope

Ptunnel=e-2w/η

tunneling probability is 
very sensitive to w



STM images (100 nm × 100 nm) collected from Au 
nanoclusters on a TiO2(110) substrate.  They were grown by 
depositing 1 ML of Au and annealing to 600°C.

STM of Gold Nanoclusters in Ultra-High 
Vacuum



STM of Iron foil in a Uranyl Nitrate 
Solution

The surface of an 
iron foil was 
monitored with in situ
STM in a solution 
containing uranyl
nitrate.  The 500x500 
nm images show the 
rough surface, 
characteristic of a 
native iron oxide, 
becoming smoother 
as the reaction 
proceeds.  
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Wolfgang Schonert
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Resonant Tunneling diode
� High speed gate 500 GHz??
� When tunneling occurs energy must be conserved

� Energy of incoming electron must equal energy of well for 
tunneling to occur

Gate closed
Voltage across
circuit =0

Gate open:
Voltage across circuit 
such that electrons 
match quantum well
allowed energy 



If voltage is too high
gate closes


