Quantum Mechanics

Part 2

Ch 40 The Schoedinger Eqn.

Making sense of !ﬂ



S
The Schoedinger Equation

m There are physics laws which are encoded
in equations e.g. F=ma; E._.._=E: ., etc

m Schoedinger ~ 1924 '/
() -2 E-U 00 q

dx’

m \Why do we believe it
Because it works!



S
What is the program?

m Justifying it
This isn’t the real reason we believe it
real reason is because of experiment

m Making models of real life and solving
Periodic Table of the elements
Molecular binding (chemistry)
tunneling (decay)

transistors
Zero point energy of the vacuum!



“ justification” of the Schroed

A wave can be written as a sm so we will guess

Ur(x) = g sin| :{E | qis represents matter waves @

Lets take the second dervative <
& _ 2 2y diw _ _p2my2 o oo 2dx)
= g coS| | = =15 | Wy st . |= Ur(x)
¥ _:.?‘-..l'. h r r h r r

Note: | cheated a
bit, since K is really

L= 2 = _E_ (from deBroglie) K(x)
¥ 2mE
i = 211 ) = k mE J(x)= - 12 Ku(x)

Now setting H(:{FE-E@% |
potential energy

d 5'5 = - i':“ [E-U(x)]u(x) the Schroeding eqn




d’w(X) __2m
dx’ h

[E-UX)]w(X)

m This is the 1-D egn. We should really use
a 3-D version (in this class we will stick to 1-D)

m what we need to do is to find appropriate
U(x) which describe real situations and
then solve for (x)



Bou

ndary Conditions

m \We have to require some things
about y(x) since P(x)= y?

U
U
U
U

J(X) must be continuous
J(X) >0 as Xx— and Xx—-oo
J(X)=0 in areas it should not be

J(X) must be normalized (i.e. its total

probability =1 or 100%)



PROBLEM-SOLVING STRATEGY Quantum-mechanics problems

MODEL Determine a potential-energy function that describes the
particle’s interactions. Make simplifying assumptions.

VISUALIZE The potential-energy curve is the pictorial representation.
Draw the potential-energy curve.
|dentify known information.

Establish the boundary conditions that the wave function must
satisfy.

SOLVE The Schrodinger equation is the mathematical representation.
Utilize the boundary conditions.
Normalize the wave functions.
Draw graphs of y(x) and |y(x)|*
Determine the allowed energy levels.
Calculate probabilities, wavelengths, or other specific quantities.

ASSESS Check that your result has the correct units, is reasonable,
and answers the question.
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What kinds of problems do we want to solve?

-10¢
-1z |

-14 |

| | | |
a1 (=)} - -2

—————— n Atom (to get the Bohr

L~ model)

U(X)=-e?/r (Black line)
m in 3D

Too hard —make it 1-D

too hard (approx with the
red line)

Still to hard — approx as a
1D box with infinitely high
walls.

= Maybe not such a good
approx, but perhaps we will
see some basic things like
energy only having some

may specific values i.e. energy
guantization



Particle in a box — a toy model

d’ p(x) _ 2

m1-D —

m draw potential
U(x)=0 O<x<L
U(X)= « x=0; x=L

m[E U (0w (%)

Walls infinitely strong

N @l )

Perfectly rigid ends

The potential energy becomes
infinitely large at this point.

o0 ., 00

| l.lJ(X)=O if X<O Or X >L U(X)“ Y
Total energy
SO|UtIOnS tO d W(X) C of particle
=—Cp/(x) :
m Sin, COS dx’
m choose sin since sin(0)=0  Forbidden Zofidcen
region K region
m try Asin(kx)
/o i\
Outside U = 0 inside Outside
the box the box. the box



If we assume Yr(x)=0 at x=0 and x=L

and only consider the Sch egn between 0 and L

we can set U(x)=0

-
dw _ _2:‘:_1:E U(x)

dnd #d
Ur(x)=Asm(kx)
UL )=Asm(kL)=0 from BC

KlL=nm lk=nal n=12_..

nis called a
quantum number

“¥ = —I* Asin(lx)

do <

—k* Asin(lo)= 225 Asin(kx)

#

=

Particle in a box

L

h 4

Walls infinitely strong

mMV

Perfectly rigid ends

The potential energy becomes
infinitely large at this point.

e's] ., 00

U(.X) A B
Total energy
of particle
E
Forbidden Forbidden
region K region

! ¥

/0 /LN
Outside U = 0 inside Outside
the box the box. the box



JE
Normalize and finish

U(x)=Asin( ==} 0<x<L and 0 otherwise. Now normalize

1= [y dx = 4% [ sin’ dx=4°
[rvddx= 4 fFsiv (22 dx= 42 L s 22
|
A* L [Tsin? (y) d(y) = ﬁiE:A?é A= ,fi
g ar 2 2 L

Finally our sohrtion 1s
=

|
Ul X)= ,'I = sin{ 2} 0=x<L and 0 otherwise.

e

L A




= ETeY
So whatdoes "
] E,=9E, - n=73
4 .
EH =M El E1= L 3
2 ﬂ'l]-_"-' E2 = 4El . n=2
There is NO E=0 state! i 5 n=l
a zero-point energy The ground state energy E,
Consistent with heisenberg is greater than 0.
momentum>0 e 8 _ 3
g "7 by " g0 T

|
L‘f-fn(}i}:wﬂl % Sm[fb?} 0 e g \f ey \/ :

=<1 and 0 otherwise V@I’ ()2 v ()2

l/\, R MI M .
0 L 0 L 0 L




A nice way to picture it

m Sometime we draw
a picture like this
for clarity.

We don't really
mean that the wave

function starts
higher up.

Ulx) ¥

b

This 1s the x-axis
for the ¢, (x) wave
function.

v

B —9F, F
H
| NS
Allowed Wave
energies /functionr-;
E, =4F, \—/‘ n=2
E




S
Thought questions

m For the n=2 state the particle is most likely to be found

iIn the middle

about 4 of the way from either end
at one of the ends

the same everywhere

() n=1 dr (%) n=2 P () n=3

—X x :
0 L 0 \/L 0 \/ I

W ()] i, (x)|? lr ()]

VANR/AVANAVIYAN

0

D
>
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an example m Prob of finding a
P,(x) = |y, ()| Maximum particle between L/4
 probability to 3L/4 if it is in the
ground state of a
particle in a 1-D box

_, start with normalized
0 Y L wave function!

Note look up i mtegral table (CRC)
The probability of being in the

. , . 7 _ 1 1
center half of the box is the area J sin“(ax)dx= - x— = sinlax
under the curve from L/4 to 3L/4 I,IT .
smee n=1 Y(x)= [ = sm|— |
I PI_D‘I:H &L e 31_- = 1-3: L.;:-"'-lill__.-_ {i‘.,l_-_ = i T3: Ld- Sm_.-_ I"E-..li:f:
II = . rLI_I_E J.-4' L J.-=:I' ! L f
Uplx)= | = sm{ ==) ) 4 ] :
= = L-27 4 L T L 2z Y L Mg
3 01 mjamy_ 1 1 =¢my_ 1, 1_
. = - smfd = |- =+ sm| — | = = + ==0.818
N - L o - LW - -
(<x<L and 0 otherwise. S S



So have we learned anything?

we modeled an coulomb
potential as an infinite well

we used 1-D instead of 3-D

m BUT

©we got quantized energies
© quantized radii

® The shapes of the wave
functions don’t tell us much
about real life
m Maybe if we go to a 3-D
model with a real 1/r coulomb
potential we might get
something that makes sense

| 1 |
[nx] (=4 Wb a
_\

-104s

-1z ¢ /
-14 |

This is the x-axis

33 >
Ulx) ¢ for the f,‘rf.:{.\'} wave
function,
9E, . v
.f' P,
Allowed Wave
energies functions
4E,
E
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Do it
chapter 41

+ n=1:

* n=2:

m=0

) .

1_1...

m=1 m=1 m=2 m=2

m=0

=0 each n, has many orbital shapes
depending on the angular momentum

m Get the right energies!
E=-13.6ev/n?

m Get orbital shapes
Chemistry!

=1

=

| ]




=1

. It Gets pretty complicate

=3




S
The correspondence principle

m If you put a ball in a box and let it rattle around,

the probability of finding it anywhere in the box is
pretty much the same

m How does this square with QM??

m Answer: For large quantum number n the
probabilities approach the classical value

P(x) n=10 P(x) n=100 Now its pretty flat ~classical




"
Now for something more realistic

m Finite potential wells

[ III..E 0.4 0.6 0,5 1
Better approx to = L -
. -4t
Coulomb potential N e
Pretty good model foran |
electron in 10
semiconductor

m transistors, your cell
phone etc —242eV

Two potential finite A
potential wells can be ) S
. 7 ﬂ %)) ﬁ » ."-
like a H, atom 7 = 4 = &%
We can learn a lot from g B B
these... o e

Energy ;

0.0 eV ; E,



A finite potential well

m U=0 O<x<L
m U=U,x<0 or x>L

m Particle with energy E

E can be

m >U, Free particle
energy enough to
puncture walls

m <U, Particle “trapped
in well”

X<0 and X>L is the

“classically forbidden
region”

particle

energy E

Walls are not infinitely strong

(a) U = 0 inside the well.

Ux) U, s the depth of the
potential-energy well.
{ The particle’s
energy is E < U,,.
U b
e
Classically Classically
forbidden forbidden
region region
0 w
0o | I

\

the box.

U = 0 inside /

Turning points

E



" Il

wave function Inside the box particle
energy E

Lets start with the Schroedinger eqn

Lyx) _ ,,.'” [E-U(x)]u(x)

-.".'.?';"

Walls are not infinitely strong
) U = 0 1nside the well.

Inside the well U(x)=0 so we have U(x) U is the depth of the
putentml energy well.

P .
i i;‘ Eu(x) just like we had before.

g

" The parliclc’%
LHLIU} 5B B,

The problem is that we now longer have the boundary

condition Y(x)=0 at x=0 and x=L U -
0
A general solution to this egn is E
U(x) =Asin(lx)*Beos(kx) Lets check it lassically f? Classically
dlle;f_r; * = 2 Asmikx) — i Beos(kx)} so we have 'ﬂ?ldden _) fDI']?lddE:Il
dx gion region
—k* Asin(kx) — i Beos(kx) = - ;1 E[Asin(kx)}+Beos(kx) ] 0 / X
o 0 L
- T r T 7 — II 2mE . .
So it works and we also have k s U = 0 inside
the box.
the solution INSIDE the well is then ‘ _
I Turning points

U(x) =Asin(kx)+Bcos(kx) where IF_H,I' :EE



Lets start with the Schroedinger egn again

T = In EUGN®)

OUTSIDE well U (x) = Up 50 we have wave function OUTSIDE the box
L0 = 2 (£ - Uoly(a)
BUT E—- L3< 0 solets turn 1t around . .
d:,:;[ﬂ = 27 [0p - E]4(x) and remember that Up-E >0 particle
energy E

Note that there is no more negative sign so sin and cos
: : o Walls are not infinitely stron
will NOT solve the solution (try it) The general solution is y 9

(a) U = 0 inside the well.

W(x) = Fe™+Ge™™ (Outside) let check
Ux) U, s the depth of the

we remember that L (™) = k™

] o potential-energy well.
d‘."'?.[;x-: =2 Fe™ 12 Ge ™  sowe have A L
dx? ¢ The particle’s
KJ :FE.':“?; +.|'{1 G E—.':“?; - 2 Elll:l. [L-E _ E]IFEHE_GE—HE:} ',." Cl’]CI'g:y' i*ﬁ E "{: bfl:].
< ‘e et
| ) . e . :" .q-t
So it works and we also have &= ,\I.'I ;mri—g-f Uﬂ "l
: S .
good thing that L7-E > 0 or we would have a problem . .
= = ’ F Classically Classically
the solution OUTSIDE the well is then forbidden forbidden
[ region region
W(x) = Fe™+Ge " where &= .'I M & &
LS. n X Y




More boundary conditions particle
energy E

|
2m(lUn—E)
Ur(x) = Fe®™+Ge™** where &= ,'I +

Walls are not infinitely strong
Now (x) —0 and x—sco or x—-co i We don’t

) Inside and Outside \yant this
So to the left of the well G=0 solutions matched eluttier ,
and to the right of the well F=0 so at boundaries @Kx //
— /
Uz (x) = Fe™ leftof well | . II' 2 m(Up-E) \/
) -with k= | ——— P
Wr(x) = Ge ™ right of well / A , Z
| - /7 4
and vr;(x) = Asin(kx) + Beos(kx) where k= ," ‘EE inside the well ] ] e < il e B
F'"II ’ In Id e 0] tl O / Penetration E
distance
We need to "match" the the wave functions at the boundary so they / =
give the same answer at x=0 and x=L (We want one answer from ekx classically
the solation. not two) gOOd_ Outside fort.)ldden
solution region
wrr(0) =wrp(0) and Wrp(L) =urg(L) (watch it L means x=L) X
BTW we also need the derivative to match up also. I am not going ) / o L
o o U = 0 inside
to do this since it gives some rather ugly algebraic solutions, but we can
the box.

solve them on a computer.

Turning points



1S Walls are not infinitely strong

(x)

. . . \;
What is this Outside the box stuff? 1/ .
particle 4 : m |f we put a particle in a
energy E box (say a match box) it

doesn’t get out.

m QM tells us that there is a
small probability that the
WL(X)=06Ge " = particle is OUTSIDE THE
| KL _ e (x-L) /7 BOX! (the classically
G'e Jee forbidden region)

m Penetration depth=1/k

KO\ = g™ related to probablility for
— enetration - 7 particle to “tunnel” outside
| box

classically

forbidden 2m(U — E)
region K= hg

i i



How big is the effect? '/’R“j;fj“a
K= h‘;

The well

U,=mgh,
s E=mgh
U, -E=mg(h,-h)

h=9cm < £ =.01 (9.8 )(.1-.09)
=.00098J

m find how far a cube of

ice with mass 10g sits

outside the glass penetration depth = 1/k=2x10-32 m
your ice stays in your glass (we will
calculate a probability later)

em [EODCO00E)
(1x107%)

the effect is big on atomic scales



'_
What do the wave function look like?

m electron in a 1eV potential well
=1 Energies are shifted relative to inifinite well
1 wave function penetrates into classically “forbidden region”

(a) Finite potential well (b) Particle in a rigid box

The wave

vi) = yx) *  function is zero
leV /\ /; at the edge of
E, = 0.949 eV n=4 /\ /\ the box.
The wave I‘Lmulm_/ \/ e E = 0.848 oV
extends into the 3 g
classically forbidden 3E
region. "
) ey /\ /\ ,n=3
E,=0.585eV // \/ \ 3
/\\ ) E,=0377eV
E, =0.263eV \\>C7L\ h=2 \/
E, = 0.068 eV > A o E =0.094¢eV
0eV
. . . . — x (nm) | . — x (nm)

e 0 1 2 3




N
So to summarize

m QM has told us that particles penetrate
into classically forbidden regions
Tunneling

decay

m Crazy — your car has a small probability of
being OUTSIDE your garage



S
Covalent bonds

m Model of H atom
particle in a box
E=-13.6 ev (n=1 state)
top of the box be at zero
width of the box is ~ 2a5~0.1 nm

(a) Simple one-dimensional model of
an electron in a hydrogen atom

0.10 nm =~ 2a,
OeV
e-KX
outside
solution
n = 1 \
—13.6eV s
sin(kx)
inside
solution
—24.2 eV
(_B__,,.fProton

m 2 H atoms for a bond
Separation =.12 nm

match solutions at
boundary

(b) An H; molecule modeled as an electron
with two protons separated by 0.12 nm

0.10 nm 0.10 nm
0eV ¢ ) X S

JA At

\ Match

solutions

—24.2 eV

0.12 nm



Now solve for the

E=-17.5eV
\\-_

{a) Bonding orbatal
OeV
n=1
—17.5 eV =
—242eV

prob density

OeV

® @

.
|;].f;||:_;;}|* The electron is
shared between

" the protons.

/1)

L4

new energies

n=2

(b) Antibonding orbital

th(x)
0eV———onoo- -
o] N E=-9 eV
-9.0eV \

\

—242eV

® @

W (1-).|3 . The electron is

ot " s

© 9y ~with one proton
or the other.

=

prob density

o

OeV

—24.2eV




S
Total energy — the covalent bond

m [f the total energy is negative, then the
particles are bound.

pp repulsive energy =

1 €

—=12eV r=.12nm
dre, 1

n=1 E=12 eV-17.5eV = -5.5eV

m covalent bond!!

n=2 E=12 eV -9 eV=+3eV

m doesn’t bind



|
* He auan!um glmple Harmonic Oscillator

and molecular vibrations

m 1-D particle in a box E~nZi.e. not evenly spaced.
m A better model for a molecule and vibrations.

A spring .
U(x)="2kx? QN‘U_WQ

m Classical solution g
vibrates between turning points ey = b Energy
frequency K

w=|—
m

Solving the Sch eqn we get

-
<y 2m | 1 2
— = — 32 |IE—:]:E?L |l.':l"

Fis

0

T
N

E,=(n-+)ho n=123.

Classically Classical Classically
forbidden turning points  forbidden



« B
Wave functions

U(x) = 3k

m Here Is what the wave "
functions look like \

m Note at high n (n=11) _ ﬁw\ﬂL

the probability starts S|\
looking classical A
particle spends most of
time near turning points P = W) b= JI
Notice the energy states /Pc.ass Classical VT
turning

are evenly spaced
E,=(n-+)hw n=123.

=

point

Again, lowest energy>0!
= E=2ho ~4b -2b 0 2 4b
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Sping constant of a bond? Bac(n-L)ho w123

: U(x) Bond
absorption spectrum of

Acetone r

o “'W(“ YA

Transmission (%)

75 _ levels
1 — 2 transition

50 - of a C—CH% bond 2: Thc 1—2 _111'111115-1;}[1'(}11
= 3_ ‘..IS responsibie 10r
— infrared absorption.
29 = 1 — 2 transition 01 " _ | r (am)
of a C=0 bond 00 8 7, 02 = W3
0 A Gy e een
3 4 5 6 is nearly a parabola.
m \What is the spring AE=E, E :(2_%);-10)_(1_%)%:,%@
constant of the carbon- X . .
C 7C
oxygen double bond? 7@g, = T CemT g P Oy
A=5.8um ll.n.e 1s absorbed _(2me) _[20x10) 2911 B
1—2 transition sig =| T ) M= | o g | 0T =0IN/m



"
Tunneling

Quantum Physics

Classical Physics Ulx)
The ball has - The particle approaches from
kinetic energy K. the left with energy E< U,..

‘;:. Y max U{J_ u'.: 11, ,r\ E<U
0
@ e < ! / | \
' X
I
|

I
I
|
|
I
: i decays exponentially
I
I
I
I

A ball with this energy slows down
Ux)  while going over the hill, but it

g : in the classically
S makes it over. (x) A
& forbidden region.
E = (]0 ] [
|
UO— /-A_\ I
" E< T, '
: U= X
: I I
AN
.' ] L
0 N U, = . The particle emerges
A ball w1th this energy \ Ymax with the same de Broglie
reverses direction at Turning point wavelength after tunneling

the turning point. through the energy barrier.



S
Knight's toy model

U(x)
Energy
N barrier
0 [\ /(b(x) = ALe_x’”
/\ Amplitude A,
0 N _ D\ 5
0 w7 < \
—> Tunneling
Amplitude A,
— 2 2=n-2wW/
so Ag=A eWn I:)tunnel_lARl /lALl ==

w=width of barrier
remember n=1/k



"
Nuclear Decay and Spontaneous Fission

nuclear potential

repulsive coulomb
barrier

m Problem

similar nuclei have radically
different lifetimes

U238 4.5B years
U234 244 K years
different by 20,000

m  Answer: Decay is from
% tunneling, exceedingly sensitive

to width of barrier
a

— P~e1=0.4
P~e 11 =1.7x10"°
different by 20,000

alpha particle tunnels

through barrier




S
Scanning Tunneling Microscope

I:)tunnel
tunneling probability is

very sensitive to w



STM of Gold Nanoclusters in Ultra-High
Vacuum

STM images (100 nm x 100 nm) collected from Au
nanoclusters on a TiO,(110) substrate. They were grown by
depositing 1 ML of Au and annealing to 600° C.



STM of Iron foil in a Uranyl Nitrate

The surface of an
iron foil was
monitored with in situ
STM in a solution
containing uranyl
nitrate. The 500x500
nm images show the
rough surface,
characteristic of a
native iron oxide,
becoming smoother
as the reaction
proceeds.

Solution

1 min ~5 min

60 min

~9(0 min

~120 min 190 min



Wolfgang Schonert
GSI




"
Resonant Tunneling diode

m High speed gate 500 GHz??

m When tunneling occurs energy must be conserved

Energy of incoming electron must equal energy of well for

tunneling to occur Gate open:
Voltage across circuit
such that electrons

Gate closed o \ ”
Voltage across (b) match quantum we
(a) circui?=0 Electrons approach from allowed energy / Electrons
outside with energy E . . /
w w1 ".‘ } < / 2 o—
%) ﬂ w g w5 - Eh
< < < < = & =
§ 8 & & & e
0.3eV — eaV. .
Energy E 5 : >
/ +* o - Tunneling current /
hey / " The quantum-well energy matches the electron

Quantum-well energy level E, energy, allowing the electrons to tunnel through.



"

If voltage is too high
gate closes

(c) 1.0 -

Tunneling stops because the /
energies no longer match.

/ <—o Eth 0.6 1
0.4+
7 AU = eV

0.8 1

0.2—J
0_

ﬂ Tunneling current
at AV =0.25V

0

| T | T | AV(V)
02 04 06 08 1.0



