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Lecture 19
The simple harmonic oscillator

  So far our hamiltonians have been pretty simple. We have had the free particle hamiltonian with a kinetic energy term. 
and a spin hamiltonian with a spin-magnetic field interaction. We will now take up a case where we have both the kinetic 
energy term and a x-dependent potential. A classical simple harmonic oscillator (SHO) has a restoring for F=-kx which is 
proportional to the distance, giving us a potential energy term V HxL = 1

2
 kx2. It is the potential given by a stretched spring. 

Where is such a potential useful in the quantum world. It turns out, just about everywhere. The strong interaction makes 
quarks stick together in the form of protons and neutrons (hadrons) - a good approximation to the potential is just a simple 
harmonic oscillator potential. Atoms which jiggle around in a crystal lattice can be thought of as held in place by a bunch 
of springs. In fact if one expands any potential in a power series, the first symmetric term is just the SHO.

  It turns out that the SHO is a problem which is readily solvable (unlike just about all other potentials - the coulomb 
potential being another one which is semi-solvable as you will see) so we tend to model anything force which is attractive 
with a SHO or coulomb potential. OK so lets pretend we have two quarks and they are held together by the strong 
interaction - i.e. with a force which grows linearly with distance.  (Heavy quarks like bottom are well modeled by a 3-D 
version of the model we are now going to build ; we will stay in 1-D to make things easy. BTW one reason you don't see 
free quarks is that the energy you put into two quarks to pull them apart is large - large enough that is easier to pull a pair 
of quarks out of the vacuum, thereby giving you two pairs). These quarks can also have kinetic energy so we will start out 
our model with a hamiltonian as follows:

  H =
p2

2 m
+V(x)   where V(x)= 1

2
 mw2 x2  m is the mass of the quark, and k = mw2 is the "spring" constant which will have 

to  be measured in an experiment. Note that 1
2

 mw2 x2 has the units of energy if m is mass and w is a frequency. Now we 

will just assume now that the p and x will be operators so 

  H
`

=
p
` 2

2 m
+ 1

2
 mw2 x` 2   in the quantum world. Now its a pain working with two quarks, so we can always work in a the 

CM system where the m is a reduced mass and just pretend that its just one quark moving around a fixed point. If you 
dont know what I am talking about, go back to some freshman physics book and look up reduced mass. 

  OK. Now we have a hamiltonian and let our quark be represented by some state †a\. Later we will have to specify some 
sort of initial condition and then find the time dependence. 

  The brute force way is to write this thing in the x representation as 

  -Ñ2

2 m

dyHxL
dx2 + 1

2
 mw2 x`2y(x)=Ey(x)   where y(x)=Xx†a\. It works, its a pain. There is a much cleverer and easier way of doing 

it using raising and lowering operators. 

  Lets define a couple of new operators as follows:

 a`= mw

2 Ñ
(x`+ i p

`

mw
O      and        a` †= mw

2 Ñ
(x`- i p

`

mw
O   [we will call   a`  a lowering operator and a` † a raising operator)
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The reverse eqns for reference are x`= Ñ

2 mw
(a` † + a` )   and p` =i mÑw

2
(a` † - a` )  

  Then remembering that [x` ,p` ]=iÑ      [a` , a` †]= i
2 Ñ

 H-[x` ,p` ]+[p` ,x`])=1

  We can also define the number operator N
`

= a` † a` = mw

2 Ñ
 Hx` 2 +

p
` 2

m2  w2 + i
mw

Ax` , p` E = mw

2 Ñ
 x` 2 +

p
` 2

2 Ñmw
- 1

2
= H

`

Ñw
- 1

2

So   H
`

= ÑwIN` + 1
2
M

  We see immediately that [H
`

,N
`

]=0 so we can have eigenkets of H
`

 which are also eigenkets of N
`

 and we will label the 

eigenkets of both H
`

 and N
`

   as †n\   so that

  N
` †n\=n†n\     and it follows that H

`
 †n\ = ÑwIn + 1

2
M†n\   so the eigenvalues of  H

`
 are En =ÑwIn + 1

2
M

  

  Now why do we call these thing raising and lowering operators. Lets see:

  [N
`

,a`]= [a` † a` ,a` ]=a` †[a` ,a`]+[a` †,a`]a`=-a`           and     [N
`

,a` †]= [a` † a` ,a` †]=a` †[a` ,a` †]+[a` †,a` †]a`=a` †

  So N
`

a` ††n\ =(a` †+a` †N
`

)†n\ =a` †(n+1)†n\ =(n+1)a` ††n\    so   a` ††n\~†n+1\   i.e. it raises it a step!  There is a ~ there because 
there is still a normalization constant to figure out. Similarly

   N
`

a` †n\ =(-a`+a` N
`

)†n\ =a`(n-1)†n\ =(n-1)a` †n\    so   a` †n\~†n-1\   i.e. its a lowering operator. 

Sometimes these things are call annihilation and creation operators because they either create of destroy one quantum of 
energy. Now lets figure out the normalization constant. 

let c be the constant so    a` †n\=c†n-1\. We want both Xn†n\=1 and Xn-1†n-1\=1 so 

Yn … a` † a`  †n] = » c »2 Xn-1†n-1\= » c »2     but  Yn … a` † a`  †n\ =Yn … N
`

  †n\=nXn†n\=n       so c= n    

Also we know  [a` , a` †]=1   Ø  a`  a` †=1+a` † a`=1+N
`

let  a` ††n\=c†n+1\  so Yn … a`  a` † †n\ = » c »2 Xn+1†n+1\= » c »2     but  Yn … a`  a` † †n\ =Yn … N
`

 +1 †n\=(n+1)Xn†n\=n+1       so 

c= n + 1    and finally summing up

a` ††n\= n + 1 †n+1\     and     a` †n\= n †n-1\ 

Now if we can just figure out some lowest energy state, we can just bootstrap our way up by using the raising operators!

So lets see if we can formulate an argument.

First we can show that n must be an integer: For the moment lets call a` †n\=†a\. Now we dont know if this thing is 

normalized (it isn't as we know from above) but we do know that Xa†a\¥0        Ø   n=Yn » N
` » n]=Xn§à† à†n\=Xa†a\¥0    so 

n¥0

Next we know that if we start is some †n\  then we can use the lowering operator as follows

a` †n\= n †n-1\
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a` 2†n\= nHn - 1L †n-2\

à3†n\= nHn - 1L Hn - 2L †n-3\    etc. This can keep going forever, UNLESS at some point the number inside the ket is zero, 
then the series will terminate. 

Putting this together with the fact that n¥0 means that the series MUST terminate at n=0. Therefore n=0 is the lowest 
energy state where we want to start our bootstrap. 

So the ground state is †0\ with energy eigenvalue E0 = 1
2

 Ñw   It is striking that the lowest energy state is NOT zero! This 

has implications as we ask how what things look like at zero temperature - what the state of the vacuum is, dark energy, 
the casmir force etc etc.

Now we can just work our way up to all the other eigenstataes:

†1\=a` † †0\    E1 = 3
2

 Ñw

†2\= a
`†

2
 †1\ =  Ha`†L2

2!
 †0\    E2 = 5

2
 Ñw

†3\= a
`†

3
 †2\ =  Ha`†L3

3!
 †0\    E2 = 7

2
 Ñw

†n\= Ha`†Ln

n!
 †0\    En = In + 1

2
M Ñw

Matrix representation of SHO operators 

Now lets look at some particular ways of writing some of these things down. Lets first look at the matrix representation of 
the SHO operators, using the eigenkets †n\ as the basis. The lowest number n can be is zero, so the rows and columns will 
be numbered, 0,1,2,... A space with a Ñ is a 0.

N
`
UYn ' » N

` » n '']U

0
1

2

n'

      H
`
UYn ' » H

` » n '']U

1 ê 2
3 ê 2

5 ê 2

n' + 1 ê 2

  Ñw

Yn ' » a` » n]U n  dn',n-1U

1

2

3
    Yn ' » a` † » n]U n + 1  dn',n+1U

1

2

3

and using  x`= Ñ

2 mw
(a` † + a` M      and        p` =i mÑw

2
(a` † - a` M  we get 
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Yn ' » x̀ » n]U Ñ

2 mw
( n + 1  dn',n+1+ n  dn',n-1)= Ñ

2 mw

1

1 2

2 3

3

Yn ' » p̀ » n]Ui Ñ

2 mw
( n + 1  dn',n+1- n  dn',n-1)= Ñ

2 mw

− 1

1 − 2

2 − 3

3

Note that x̀, p̀, à, à† all are not diagonal. This makes sense because they all do not commute with N
`

  (or H
`

). As a 
reminder, these matrices are all infinite dimensional. Lets look at how this works, I will only make my matrices 4x4, but 
in your mind let the rows and columns go to infinity. Lets take a look at the raising and lower operator and see what they 

do. The †0\ has a 1 in the 0th row.   à† †0\ U 
1

2

3

1
0
0
0

  = 1

0
1
0
0

U 1 †1\As expected the 

raising operator moves the "1" up to the next row. Doing it again would give 2

0
0
1
0

 U 2 †2\. Using the lowering 

operator would "lower" the row by one.  The expectation value for energy for †2\ is 

Y2 » H
` » 2]=H 0 0 1 0 L

1 ê 2
3 ê 2

5 ê 2
7 ê 2

 

0
0
1
0

 Ñw = 5 ê2 Ñw = I2 + 1
2
MÑw

 

We avoided solving the differential eqn which would give us the wave function in position representation - because it is a 
pain. It turns out, this raising and lowering operator also makes finding the wave functions easier. Remember we decided 

that n=0 was the ground state  and we know  a`  †0\= 0 †-1\=0. Writing this in position representation gives

Yx ' » a` » 0]= mw

2 Ñ
[x ' Ã x` +

i p
`

mw
Ã 0_= mw

2 Ñ
 HYx ' » x` » 0] + i

mw
 Yx ' » p` … 0]M

Now Yx ' » x` » 0]=Yx ' » x` » 0] ††=Y0 » x`† » x '] †=Y0 » x` » x '] †=x'X0 » x '\ †=x'Xx'»0\  and     Yx ' » p` … 0] = Ñ

i
 d
dx'

Xx ' » 0\   so

Yx ' » à » 0]= mw

2 Ñ
(x'Xx'»0\+ Ñ

mw
 d
dx'

Xx'»0\)            and finally Ix ' + x0
2 d

dx'
)Xx'»0\=0   where x0 = Ñ

mw

The solution to this is a gaussian:
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Xx ' » 0\ = 1

p1ê4  x0
 expB- 1

2
 K x'

x0
O

2
F   (check it). We can just use the raising operator to find the rest:

Xx'†1\=Yx ' » a` † » 0]= mw

2 Ñ
[x ' Ã x` -

i p
`

mw
Ã 0_= mw

2 Ñ
 HYx ' » x` » 0] - i

mw
 Yx ' » p` … 0]M= mw

2 Ñ
(x'Xx'»0\- Ñ

mw
 d
dx'

Xx'»0\) 

= 1

2  x0
 Ix ' - x0

2 d
dx'

)Xx'»0\

We can going and in general Xx ' » n\ = 1

p1ê4  2n  n!
 1

x0
n+1ê2  Ix ' - x0

2 d
dx'

n

expB- 1
2

 K x'
x0

O
2
F

Xx ' » n\ = An n HxL e-x2   where x =
mw0
Ñ

 x2  ,  An = I2n n ! p M-1ê2
  and n HxL are the Hermite polynomials

so Xx ' †0\ = A0e-
x2

2    Xx ' †1\ = A1 2 xe-
x2

2    Yx ' †2\ = A2I4 x2 - 2Me-
x2

2     etc

Lets figure out some stuff for the ground state †0\

Xx̀\= Ñ

2 mw
Xà† + à\=0    and X p̀\=i mÑw

2
Xà† - à\=0   

Xx` 2\= Ñ

2 mw
Xa` † a` † + a` † a`+ a`a` †+ a`  a` ] = Ñ

2 mw
 Ya`  a` †] = Ñ

2 mw
 X0§ a`  a` † †0\ = Ñ

2 mw
 H0 + 1L X1§ 1^ = Ñ

2 mw
=

x0
2

2

Xp` 2\=- mÑw

2
Xa` † a` † - a` † a` - a`a` †+ a`  a`] = mÑw

2
 Ya`  a` †] = mÑw

2
 X0§ a`  a` † †0\ = mÑw

2
 H0 + 1L X1§ 1] = mÑw

2

The kinetic energy [ p
` 2

2 m
_= Ñw

4
= XH` \

2
   and        [ mw2  x

`2

2
_= mw2

2
Ñ

2 mw
= Ñw

4
= XH` \

2
    so the energy is split for the ground state 

between the potential energy and kinetic energy as expected from the virial theorem

Dx= Ñ

2 mw
    Dx= mÑw

2
     Dx Dp = Ñ

2
  (i.e. it is at the minimum uncertainty by Heisenberg)

What to these wave functions look like?. 

Here are a few

Xx'†0\= ‰
-

x2

2

p
4

  Xx'†1\= 2 ‰
-

x2

2 x

p
4

  Xx'†2\= ‰
-

x2

2 I2 x2-1M

2 p
4

   Xx'†3\= ‰
-

x2

2 x I2 x2-3M

3 p
4

  Xx'†4\= ‰
-

x2

2 I4 Ix2-3M x2+3M

2 6 p
4

I have plotted Xx'†n=15\. (See qm19work for the mathematica to figure out the wave functions and plot it)

Xx'†15\= ‰
-

x2

2 x I2 x2 I2 I2 x2 I2 I8 x6-420 x4+8190 x2-75 075M x2+675 675M-2 837 835M x2+4 729 725M-2 027 025M

30 240 715 p
4
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I have also plotted the probability (in black) and the classical probability (in red). Now note that the classical probability is 
really the mass that goes back and forth with time. The QM probability is the probability at t=0! So far there is no time 
dependence.
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Let's now add the time dependence for the eigenstates. 

†n, t\ = expK- i H
`

 t
Ñ

O †n, t = 0_ = exp -
i HN` +1ê2N Ñw t

Ñ
 †n, t = 0_ = e

-i Kn+
1
2
O w t†n,t=0\

From here we can immediately see that  the time dependence of Xx`\ and Xp` \ are equal to zero since we get

Yn, t » x` » n, t]=[n e
i Kn+

1
2
O w t

 x`  e
-i Kn+

1
2
O w t

n_=Yn » x` » n]=0 from before and similarly for Xp` \

Its more interesting if we look at the time dependence of the expectation values for a mixture of states, e.g. 

†a\ = cn †n\ + cm †m\         where we get for the time dependence  †a, t\ = cn e
-i Kn+

1
2
O w t

 †n\ + cm e
-i Km+

1
2
O w t

 †m\

Xx̀\a,t=Ya, t » x̀ » a, t]=(cn
* [n e

i Kn+
1
2
O w t

+ cm
* [m e

i Km+
1
2
O w t

)x̀(cn e
-i Kn+

1
2
O w t

 †n\ + cm e
-i Km+

1
2
O w t

 †m\)=
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=cn
* cm ei Hn-mL w t  Xn »x` †m\+cm

* cn ei Hm-nL w t  Xm »x` †n\   which will have non-zero components of n and m differ by 1

similarly Xp` \a,t=cn
* cm ei Hn-mL w t  Xn »p` †m\+cm

* cn ei Hm-nL w t  Xm »p` †n\

Lets take the case where n=0 and m=1  and †a\ = 1

2
 †0\ + 1

2
 †1\

Xx`\a,t = 1
2

 Ñ

2 mw
 e-iwtX0 »a` † + a` †1\+ 1

2
 Ñ

2 mw
 ei w t  X1 »a` † + a` †0\ =  1

2
 Ñ

2 mw
 Ie-iwt+ei w t)=  Ñ

2 mw
coswt

Xp` \a,t = 1
2

 i mÑw

2
 e-iwtX0 »a` † - a` †1\+ 1

2
 i mÑw

2
 ei w t  X1 »a` † - a` †0\ =  1

2
 i mÑw

2
 Ie-iwt-ei w t)=  1

2
 mÑw

2
sinwt

Lets take a look at these graphically, first the n=0 
state
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then the n=1 state
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then the sum

†a\ = 1
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 †0\ + 1
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 †1\
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and the corresponding probability
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Now here is a series of plots of  Xx`\ where wt = 0, p

4
, p

2
, 3 p

4
and p
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