
1

Seminar class on RHIC Physics
Lecture 4 – Basic Heavy Ion 
Collisions – Impact parameter, 
Npart and Nbin

Richard Seto+Class
UCR
Spring 2007
May 8, 2007 2PM BNL time 11AM UCR time
bridge line 631-344-6363      room 2-95
Website:https://www.phenix.bnl.gov/WWW/publish/seto/clas
s/UCR%20RHIC%20seminar/



2

Centrality~impact parameter

“Spectators”

“Spectators”

“Participants”

Impact Parameter

Soft interactions ~ Nparticipants
Hard interactions ~  Ncollisions

A simple Glauber model gives
Ncollisions and Nparticipants

Centrality def’n
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We need to worry about Geometry 
Measuring Centrality (impact parameter)

Zero Degree Calorimeters 
(ZDC) 

Sensitive to spectator 
neutrons 
common to all four RHIC 
experiments

Beam Beam Counters (BBC)
Using a combination of the 
ZDC’s and BBC’s we can define 
Centrality Classes

“Spectators”

“Spectators”

“Participants”
.
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Conversion from Centrality to 
Nbinary collisions and Nparticipants

5 ± 60%3.7 ± 60%80-92%

19 ± 60%19 ± 60%60-80%

76 ± 15%123 ± 15%30-60%

178 ± 15%383 ± 15%15-30%

271 ± 15%673 ± 15%5-15%

347 ± 15%945 ± 15%0-5%

ParticipantsBinaryCentrality

Many models of particle production identify two components.
Soft interactions where production scales with Nparticipants
Hard interactions where production scales with Nbinary

0
ch binpartdN d Soft N Hard N

η
η

=
= × + ×

Introduces  systematic error
Large for peripheral events

A simple Glauber model gives Nbinary and Nparticipants



pp collisions
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Setting the baseline 

Pp collisions scaled to √s 
= 130 GeV

Good fit to a power law

1/pT dN/dpT~
A(1+pT/p0)-n   

Especially at high pT



Soft Collisions

AuAu collisions at Low PT
usual fit is to Mt=sqrt(pt^2+m^2)
Assume absence of flow
1/Mt dN/dMT ~ Aexp(-(mt-m0)/T)

A, and T are fit. m0=mass
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strongly interacting QGP???
partonic energy loss

Hard probes
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The Powerlaw Function
pQCD approach for Ed3σ/dp3

Point-like scattering process a+b→c+d (via vector gluon exchange) 
(Berman, Bjorken, Kogut 1971)

dσ/dt ~ 1/s2

Ed3σ/dp3 ~ pT
-4 f(xT,θ) 

“Black Box model” (Feynman, Field, Fox)
assume arbitrarily dσ/dt ~ 1/(s t3)
Ed3σ/dp3 ~ pT

-8

Constituent Interchange Model and quark-fusion model
add other subprocesses (quark-meson,quark-diquark scattering)
n = 8 for pions
n = 12 for baryons

Data (pp,⎯pp) appears to scale approximately like n=8 pions and kaons 
and n=10-12 for protons but only in certain regions
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The Powerlaw Function
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• p0 ↑⇒ flattens spectra
• p0 ~ 〈pT〉
• n ↓⇒ lifts tail
• n ~ 1/〈pT〉
• n, p0 strongly correlated

often:
use 〈pT〉 directly in fit
Beware of extrapolations!

Powerlaw using mT
describes low pT region 
usually better 

A pQCD inspired
phenomenological 
approach

n=12 9
8

n = 0.75, p0 = 8.3
n = 1.2,   p0 = 11.4
n = 1.5,   p0 = 13.5
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“Thermal” Spectra
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Invariant spectrum of particles radiated by a thermal source:

where: mT= (m2+pT
2)½ transverse mass (Note: requires knowledge of mass)

μ = b μb + s μs grand canonical chem. potential
T temperature of source

Neglect quantum statistics (small effect) and integrating over rapidity gives:
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R. Hagedorn, Supplemento al Nuovo Cimento Vol. III, No.2 (1965)
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−∝At mid-rapidity E = mT cosh y = mT and hence:

“Boltzmann”
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“Thermal” Spectra (flow aside)

N.B. Constituent quark and parton recombination models yield exponential spectra with 
partons following a pQCD power-law distribution. (Biro, Müller, hep-ph/0309052)
⇒ T is not related to actual “temperature” but reflects pQCD parameter p0 and n.
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dmm
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TT

TT
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Describes many spectra 
well over several orders of 
magnitude with almost 
uniform slope 1/T

• usually fails at low-pT
(⇒ flow)

• most certainly will fail 
at high-pT
(⇒ power-law)
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“Thermal” Spectra and Flow

• Different spectral shapes for 
particles of differing mass
→ strong collective radial flow

• Spectral shape is determined by 
more than a simple T

• at a minimum T, βT

mT

1/
m

T
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/d
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T light
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T

purely thermal
source

explosive
source
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Thermal + Flow: “Traditional” Approach
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1. Fit Data ⇒ T 2. Plot T(m) ⇒ Tth, βT

Problem: spectra are not exponential in the first place (fit range dependence)

Assume common flow 
pattern and common
temperature Tth
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Functions, Functions, …
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Hard Probes In Heavy Ion Collisions, aka Jet  quenching

The experiment we would 
like to do – Deep Inelastic 
Scattering of the QGP

hadronizationpre-equilibrium

QGP and
hydrodynamic expansion

hadronic phase
and freeze-outHard parton

Softened 
Jet

Colorless
Hadrons

Colored
QGP

Beams of  colored quarks

“hard” probes  
Formed in initial collision with high Q2

• penetrate hot and dense matter
• sensitive to state of hot and dense matter

– dE/dx by strong interaction
– ⇒ jet quenching
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How do we scale from pp to AA?
Nuclear Geometry

• Scale Hard processes with Nbinary
• Scale soft processes with Nparticipants

– Remember – Nbin and Npart taken from centrality measurement

pp effects
• Intrinsic kT

pp to pA effects
• “Cronin effect”, initial state quark scattering

i.e. pT broadening
Enhances higher pT 

• Nuclear shadowing 
– Gluon shadowing 

• is not measured
• large role at RHIC

Models – scaling pp to AA

Measure pA at RHIC!
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Setting the baseline 
To find jet suppression – compare 
to what?

Pp collisions scaled to √s = 130 
GeV

Good fit to a power law
Peripheral collisions – an 
approximation to pp, or pA

and
pQCD Models – Hijing, VNI, etc.              
+ jet dE/dx

Needed to make quantitative 
statements about energy loss
Some are extensions of standard 
Monte-Carlo’s
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PHENIX Data:PHENIX Data: ππ0 0 spectraspectra
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Systematic errors included
Main sources:

peak extraction
PID loss 
efficiency calculations
non-vertex pions
pT scale

Centrality   ~Nbin      ~Npart
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the Validity of binary scaling
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hard processes 
scale with Ncoll
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Calibrated Probe – direct photons 
• (simple) p+p collisions 

• Supported by pQCD

• AuAu collisions
• assumes binary scaling

pppp

direct γ

AuAu
direct γ

CTEQ 6+GRV frag
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Parton Energy Loss – π0 Production
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peripheral Au+Au

• Calibrating the 
probes- pp reference 
data

-agrees with NLO pQCD

• Peripheral Collisions
-Scale with Ncoll

• Central Collisions
DO NOT SCALE!

• Is it
• Suppression of 

low-x gluons in 
the initial state?

• Energy loss in 
sQGP

Central 0-10%

PHENIX
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dA – the null experiment

Au + Au Experiment d + Au Control Experiment

Preliminary DataFinal Data
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d N dp dR p
N d N dp d

η
η

=
Nuclear 
Modification 
Factor:

• Its a final state thing!

PeripheralCentral



26

High Energy Densities?High Energy Densities?
A Calculation of energy loss

Au+Au suppression (I. Vitev and M. Gyulassy, hep-ph/0208108)
d+Au enhancement (I. Vitev, nucl-th/0302002 )

understood in an approach that combines multiple 
scattering with absorption in a dense partonic medium

dNg/dy ~ 1100
ε=15 GeV/fm3

Au+Au

d+Au


