J/ψ production in p+p collisions at PHENIX and gluon distribution

Hiroki Sato (Kyoto University) for the PHENIX collaboration

QWG meeting at FNAL September 20-22

Total and differential cross section results and gluon distribution
Prospects for spin asymmetry (A_{LL})

measurements and polarized gluon

distribution

The PHENIX Detector

 $e, \gamma, h \rightarrow \text{Central Arms}$ (West + East) • $|\eta| < 0.35, \ \Delta \phi = \pi$ • $p_T > 0.2 \text{ GeV}/c$ $\mu \rightarrow$ Muon Arms (North + South) • $1.2 < |\eta| < 2.4, \Delta \phi =$ 2π • $p_{tot} > 2 \text{ GeV}/c$

Interaction-trigger and vertex detectors

Independent measurements of J/ψ **using both** e^+e^- **channel and** $\mu^+\mu^-$ **channel**

Low momentum (p_T) cut and wide rapidity coverage \rightarrow enables the extraction of the total cross section at the highest energy

Invariant Mass

PHENIX Run2(2001-2002) p+p at $\sqrt{s}=200$ GeV

Clear J/ ψ peaks with small background in both $e^+e^$ and $\mu^+\mu^-$ pairs

 $d\sigma_{J/\psi}/dp_T$

➢ Reasonable agreement with NRQCD (COM) predictions
➢ Increased statistics in high-p_T is useful for more quantitative argument → Run-3 (~10 times statistics) and later

- Average transverse momentum ($\langle p_T \rangle$) is slightly higher than lower energy results.
- Energy dependence can well be fitted with a logarithmic function.

J/ψ rapidity distribution and gluon distribution function

In hadron-hadron collisions at moderate energy (√s≥20GeV), p_T-integrated yield should be dominated by g+g → J/ψ. Neglecting other contributions (q+q_bar, gluon fragmentation and *b*-decay), rapidity (or x_F) distribution and energy dependence of total cross section can be simply written by gluon distribution function g(x)

$$\frac{d\sigma}{dy} \propto g(x_1)g(x_2), \ x_{1,2} = (2m_c/\sqrt{s})\exp(\pm y)$$
$$\sigma_{J/\psi}(\sqrt{s}) \propto \int_{\sqrt{\tau}}^1 \frac{dx}{x} g(x)g(\tau/x)$$
$$\sqrt{\tau} = 2m_c/\sqrt{s}$$

 $d\sigma_{J/\psi}/dy$ and $\sigma_{J/\psi}$

Using the curve which fits our data best, total cross section was obtained

 σ (**p**+**p** \rightarrow **J**/ ψ **X**) = **4.0** ± **0.6** (stat.) ± **0.6** (syst.) ±**0.4** (abs.) μ b using Br (J/ ψ \rightarrow l⁺l⁻) = 0.059

CTEQ6M, Q = 2.3 GeV

10²

√s (GeV)

Experimental data

Energy dependence of $\sigma_{J/\psi}$ is sensitive to gluon distribution **function** and its scale Q

√s (GeV)

Experimental data

10²

10⁻⁴

10

Our new result and lower-energy results are consistent with typical gluon distribution functions with a reasonable choice of $Q \rightarrow$ confirms the gluon fusion picture of J/ψ production in hadronhadron collisions in a wide energy range

10^⁴

10

 \sqrt{s} dependence of $d\sigma_{J/\psi}/dy|_{y=0}$

$$\frac{d\sigma}{dy}\bigg|_{y=0} (\sqrt{s}) \propto \left[g(2m_c/\sqrt{s})\right]^2$$

CDF Run-II preliminary

• New Tevatron data ($\sqrt{s} = 2\text{TeV}$) will further constrain gluon distribution ?

 $\sigma_{J/\psi}$ (absolute value)

Absolute normalization for $\sigma_{J/\psi}$ is sensitive to production model

Color-evaporation model (CEM)

can explain $\sigma_{J/\psi}$ using $\rho_{J/\psi}$ (fraction of J/ψ to all produced $c\overline{c}$ pairs) ~ 0.06 determined by photo-production data

Color-singlet model (CSM)

Color singlet production underestimate $\sigma_{J/\psi}$ by a large (~10) factor

Color-octet model (COM)

Consistent using the color octet matrix element $\langle O^{J/\psi_8}(^1S_0) \rangle + 7/M_c^2 \langle O^{J/\psi_8}(^3P_0) \rangle = 0.02 \text{ GeV}^3$ from photo-production data, but has large uncertainties from

- Extraction of color-octet matrix element
- Charm quark mass
- Factorization and renormalization scales

Measurement of polarized gluon distribution in polarized p+p collisions

We have confirmed that J/ ψ production is dominated by gluon fusion -> ready to measure polarized gluon distribution ($\Delta G(x)$) in longitudinally polarized p+p collisions at RHIC

$$A_{LL}^{p+p\to J/\psi+X} \equiv \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} = \frac{\Delta G(x_1)}{G(x_1)} \frac{\Delta G(x_2)}{G(x_2)} a_{LL}^{g+g\to J/\psi+X}$$

 $\Delta G(x)$: polarized gluon density

 $a_{LL}^{g+g \rightarrow J/\psi+X}$: partonic subprocess asymmetry

Versus

~+1 (CEM) ~ -1 (CSM) -0.3 ~ +0.7 (COM) P

Gupta and Mathews, Phys. Rev. D55, 7144

 $\delta A_{LL}(\text{stat.}) \sim 1\%$ with 1-year full luminosity (32pb⁻¹)

$\begin{array}{c} NRQCD\\ calculation \ of\\ A_{LL} \end{array}$

M. Klasen et al. Phys. Rev. D68, 034017 (2003)

Conclusion

- J/ψ particles are clearly identified with PHENIX with a small background via e⁺e⁻ and μ⁺μ⁻ decays in the first p+p Run at RHIC (Run-2) at √s = 200 GeV
- > Rapidity distribution is consistent with gluon distribution function and total cross section $\sigma_{J/\psi}(\sqrt{s} = 200 \text{ GeV}) = 4.0 \pm 0.6 \text{ (stat.)} \pm 0.6 \text{ (syst.)} \pm 0.4 \text{ (abs.)} \mu \text{b}$ was extracted.
- $\succ \ Energy \ dependence \ of \ \sigma_{J/\psi} \ can \ be \ well \ reproduced \ by \ gluon \ distribution \ function.$
- ➢ We plan to measure double-longitudinal spin asymmetries (A_{LL}) which are sensitive to polarized gluon distribution at leading order.

References

- hep-ex/0307019 (submitted to Phys. Rev. Lett.)
- hep-ph/0305239 (My Ph.D thesis)