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Introduction Renormalization Summary

Plan of lectures

I Introduction

I Renormalization and scale dependence
choosing and varying the scale

I e+e− → hadrons
some basics of applied perturbation theory

I Spin and spinors
since this is a Spin Fest

I Collinear factorization
parton densities and fragmentation functions in QCD

I Evolution
scale dependence once more

I Transverse-momentum dependent factorization
Boer-Mulders, Collins, Sivers, and friends
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Introduction Renormalization Summary

The main players

I degrees of freedom of the field theory: quarks and gluons
observed degrees of freedom: hadrons

I wide range of quark masses:

mu,md ∼ a few MeV, ms ∼ 100 MeV,
mc ≈ 1.3 GeV,mb ≈ 4.2 GeV, mt ≈ 171 GeV

I symmetries
I gauge invariance: color SU(3)
I Lorentz invariance
I discrete symmetries: parity, charge conjugation, time reversal
I approximate flavor symmetries: isospin (u, d), SU(3) (u, d, s)

I QCD is part of Standard Model: quarks couple to γ, W , Z

coupling conveniently described in terms of currents:
jµV = q̄ γµq and jµA = q̄ γµγ5q
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Introduction Renormalization Summary

Basics of perturbation theory

I the elementary vertices from the Lagrangian:
∝ g ∝ g2

ghostquark

∝ g ∝ g

must fix gauge  in general have ghost fields,

for physical amplitudes only appear in loops
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Introduction Renormalization Summary

Loop corrections

I in loop corrections find ultraviolet divergences

I only appear in corrections to
propagators elementary vertices

nF

nF

Trex (Truly Recommended EXercise): Draw the remaining
one-loop graphs for all propagators and elementary vertices
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Introduction Renormalization Summary

I origin of UV divergences: region of ∞ ly large loop momenta
↔ quantum fluctuations at ∞ ly small space-time distances

I idea: remove this when describe physics at some given scale µ
 renormalization

I technically:

1. regularize: artificial change of theory
such that divergent terms become finite
• physically intuitive: momentum cutoff
• in practice: dimensional reg.

2. renormalize: absorb would-be infinities into
• quark and gluon fields (“wave function renormalization”)

• quark masses mq(µ)
• coupling constant αs(µ)

3. remove regulator: quantities are finite when expressed in terms
of renormalized parameters and fields

I renormalization scheme: choice of which terms to absorb
“∞” is as good as “∞+ log(4π)”
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Introduction Renormalization Summary

Dimensional regularization in a nutshell

I choice of regulator ≈ choice between evils

I dim. reg.: little (any?) physics intuition, but keeps intact
essential symmetries (gauge and Lorentz invariance)

I idea: integrals for Feynman graphs become UV finite in lower
space-time dimension, e.g.∫

dDk

(2π)D
1

k2 −m2

1
(k − p)2 −m2

log. div. for D = 4
converg. for D = 3, 2, 1

I procedure:

1. formulate theory in D dimensions (with D small enough)
2. analytically continue results from integer to complex D

original divergences appear as poles in 1/ε (D = 4− 2ε)
3. renormalize
4. take ε→ 0
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Enter: a mass scale

I coupling in 4− 2ε dimensions is µεg with g dimensionless

I typical one-loop integral gives
 blackboard
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Introduction Renormalization Summary

Enter: a mass scale

I coupling in 4− 2ε dimensions is µεg with g dimensionless

I typical one-loop integral gives

1
ε

+ ln(4π)− γ + lnµ2 + fct. of external momenta

at higher orders get higher poles g2n/εn

I MS (minimal subtraction): absorb only pole terms ∝ 1/εn

leaves terms ln(4π)− γ ≈ 1.95 in final results
artifacts of dim. reg.

I MS (modified min. subtr.): absorb these terms into the scale

µ2
MS

= 4πe−γµ2
MS

I any other regularization introduces some mass parameter
renormalized quantities depend on a scale µ
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Renormalization group equations (RGE)

I scale dependence of renormalized quantities described by
differential equations

d

d logµ2
αs(µ) = β

`
αs(µ)

´
d

d logµ2
mq(µ) = mq(µ)γm

`
αs(µ)

´
β, γm = perturbatively calculable functions

in region where αs(µ) is small enough

β = −b0α2
s

ˆ
1 + b1αs + b2α

2
s + b3α

3
s + . . .

˜
γm = −c0αs

ˆ
1 + c1αs + c2α

2
s + c3α

3
s + . . .

˜
coefficients known including b3, c3

b0 = 1
4π

`
11− 2

3
nF

´
c0 = 1

π

I βQCD < 0  asymptotic freedom at large µ
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Introduction Renormalization Summary

The running of αs

I truncating β = −b0 sα2
s(1 + b1αs) get

αs(µ) =
1
b0L
− b1 logL

(b0L)2
+O

( 1
L3

)
with L = log

µ2

Λ2
QCD

I more detail  blackboard
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plot from PDG 2008
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Scale dependence of observables

I variation of µ in result including order αns
 variation of observable corresponding to

αn+1
s

imax∑
i=1

(known coefficient)×
[
log µ2

Q2

]i
+O(αn+2

s )

but no information on αn+1
s term without log

consequences:

I when calculate higher orders, expect that scale dependence
decreases

I scale variation estimates size of certain higher-order terms,
but not of all

I uncalculated higher orders often estimated by varying µ
between 1/2 and 2 times some central value
is a conventional choice

I but what to take for central value?
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Renormalization scale choice

I prescriptions for scale choice aiming to minimize size of
higher-order terms

take NLO calc. of C(µ) = C0 + αs(µ)C1 + α2
s(µ)C2(µ) +O(α3

s)
I µ = typical virtuality in hard-scattering graphs

plausible guideline, but obviously not a well-defined quantity
I principle of minimal sensitivity (PMS):

d
dµ2

2∑
n=0

αns (µ)Cn(µ) = 0

I fastest apparent convergence (FAC): C2(µ) = 0

I Brodsky-Mackenzie-Lepage (BLM): C2(µ) indep’t of nF
recall: coefficients b0, b1, . . . of β function depend on nF

I how much these reduce higher orders depends on process
cannot “predict” higher orders without calculating them
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An example N. Glover, hep-ph/0211412

I single-jet production at Tevatron

dσ

dET
= α2

s(µ)C2 + α3
s(µ)

[
C3 + 2b0LC2

]
L = log

µ2

E2
T

+ α4
s(µ)

[
C4 + 3b0LC3 + (3b20L

2 + 2b1L)C2

]

I C4 not known, curves for

“NNLO” and “NNLO”± with

C4 = 0 and C4 = ±C2
3/C2

I weak µ dependence of
cross section at “NNLO”
but need C4 to know its value
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Summary of lecture 1

Renormalization

I beyond all technicalities reflects physical idea:
eliminate details of physics at scales � scale µ of problem

I dependence of observable on µ governed by RGE
reflects (and estimates) particular higher-order corrections

. . . but not all

I prescriptions for scale choice = educated guesses
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