Triggering In Particle Physics Experiments

John Lajoie
Iowa State University
Outline

• Why Trigger?
  – Early Experiments

• Experimental Constraints
  – Cross Sections and Luminosity
  – Electron+positron, hadron machines
  – Multiple Interactions

• Efficiency and Deadtime
  – Minimizing deadtime
  – Queuing Theory

• Signatures in Detectors
• Multilevel Trigger Systems
• Pipelined Trigger Systems
• Components of Modern Trigger Systems
  – Hardware Implementation

• The PHENIX Trigger System

• The (Near) Future
  – Trigger/DAQ at LHC

• “Non-Traditional” Expts.

Material drawn heavily from IEEE NSS 2002 Workshop by Peter J. Wilson
Why Trigger?

• The purpose of a trigger system for an experiment is to select rare events and suppress background as efficiently as possible.
  — NOTE: This doesn’t mean a trigger only selects the physics we want!

• A trigger system must match the physics event rate to the data acquisition rate.
Example: CDF/D0 Trigger In Run-II

- Beam crossing rate of 7.6MHz
- About 750k channels at ~4 bytes each
  - Total of ~3MB per event
- “Event” data rate ~20 TeraBytes/s
- Zero suppression of unoccupied channels approx a factor of 10
  - “Event” data rate still ~2 TeraBytes/s
- Trigger rejects 99.999% of crossings
  - Data rate to tape now ~20 MegaBytes/s
Early Particle Physics Experiments

• Bubble Chambers, Cloud Chambers, etc. \((4\pi)\)
  – DAQ was a stereo photograph!
  – Effectively no Trigger:
    • Each expansion was photographed based on accelerator cycle
    • High level trigger was \textit{human} (scanners).
  – Slow repetition rate.
    • Only most common processes were observed.
  – Some of the high repetition experiments (>40 Hz) had some attempt at triggering.

• Emulsions still used in some \(\nu\) experiments (e.g. CHORUS, DONUT).
  – Events selected with electronically readout detectors via scanning of emulsion seeded by external tracks
Early Fixed Target Triggers

1964 Cronin & Fitch CP Violation Experiment:
- $K^0$ mesons produced from 30 BeV protons bombarding a Be target
- Two arm spectrometer with spark chambers, Cerenkov counters and trigger scintillators
- Spark chambers require fast (~20ns) HV pulse to develop spark, followed by camera to photograph tracks (readout)
- Trigger on coincidence of scintillators and water Cerenkov counters
- Only one trigger level
- Deadtime incurred while film advances

Detector Layout of $K^0 \rightarrow \pi\pi$ Experiment of Cronin and Fitch (1964)

FIG. 1. Plan view of the detector arrangement.
Christenson, Cronin, Fitch and Turlay PRL 13, 138 (1964)
Experimental Constraints

Different experiments have very different trigger requirements due to different operating environments

- Timing structure of beam
- Rate of producing physics signals of interest
- Rate of producing backgrounds

- Cosmic Ray Expts – no periodic timing structure, background/calibration source for many other experiments.
- Fixed Target Expts – close spacing between bunches in train which comes at low rep rate (~Hz)
  - Backgrounds from undesirable spray from target
  - Cosmics are particularly a background for neutrino beams

- e+e- collider – very close bunch spacing (few nsec), beam gas and beam wall collisions
- ep collider – short bunch spacing (96ns), beam gas backgrounds
- pp/ppbar collider – modest bunch spacing (25-400ns), soft QCD
Cross Sections and Luminosity

• Standard method of characterizing rates is:

\[
\text{Rate} = \sigma L
\]

\(\sigma = \text{cross section}\) (units of barn=\(10^{-24}\text{cm}^2\))

The probability that an interaction will occur. If this were a game of darts, the larger the area of the dart board the more likely you will get the dart on the board.

\(L = \text{luminosity}\) (units of \(\text{cm}^{-2}\text{s}^{-1}\) or barn\(^{-1}\) sec\(^{-1}\))

Cross sectional density of the beams. The more particles per beam or the more compact (transverse) the higher the luminosity. For colliding beam, goes as the product of the two beam currents.

Convenient conversion: \(L = 10^{30}\text{cm}^{-2}\text{s}^{-1} = 1\mu\text{b}^{-1}\text{s}^{-1}\)
Cross Sections for $e^+e^-$

• At $E_{cm} = 10.6$ GeV (CESR/CLEO III)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>$\sigma$(Tot) (nb)</th>
<th>$\sigma$(Barrel) (nb)</th>
<th>$\sigma$(Endcap) (nb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^+e^- \rightarrow e^+e^-$</td>
<td>72</td>
<td>19</td>
<td>53</td>
</tr>
<tr>
<td>$e^+e^- \rightarrow \gamma\gamma$</td>
<td>6.2</td>
<td>3.7</td>
<td>2.5</td>
</tr>
<tr>
<td>$e^+e^- \rightarrow \mu^+\mu^-$</td>
<td>0.72</td>
<td>0.60</td>
<td>0.12</td>
</tr>
<tr>
<td>$e^+e^- \rightarrow \tau^+\tau^-$</td>
<td>0.72</td>
<td>0.60</td>
<td>0.12</td>
</tr>
<tr>
<td>$e^+e^- \rightarrow$ hadrons</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>84</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total rates of few hundred Hz at CESR luminosities ($10^{33}$ cm$^{-2}$ s$^{-1} = 1$ nb$^{-1}$s$^{-1}$)

• At $E_{cm} = 90$ GeV (LEP, SLC on Z-boson)
  – 30 nb to hadrons
  – 2 nb to $\tau^+\tau^-$ or $\mu^+\mu^-$

Total rates of 5-10 Hz at LEP and LEPII luminosities ($2\times10^{31}$ cm$^{-2}$ s$^{-1} = .01$ nb$^{-1}$s$^{-1}$)
B Factories (PEP II and KEKB)

- Designed from the start as high luminosity production machines
  - 10.58 GeV CM energy (Upsilon 4S)
- KEKB holds current world luminosity record:
  - $2.11 \times 10^{34}$ cm$^{-2}$ s$^{-1}$ (peak)
  - crab crossing design
- PEP II achieved design goal
  - $3.0 \times 10^{33}$ cm$^{-2}$ s$^{-1}$
- Interaction rates as high as a few kHz
Cross Sections for pp/pp̅

- **pp̅ at ~2 TeV (Tevatron)**
  - Total cross section about 60mb
  - Dominated by inelastic scattering
  - At current Run II peak luminosity ~ $3 \times 10^{32}$ cm$^{-2}$ s$^{-1}$, interaction rate is ~20MHz

- **pp at RHIC (200-500GeV)**
  - Total cross section about 40-50mb
  - Dominate by inelastic scattering
  - Maximum luminosity at 500GeV ~$2 \times 10^{32}$ cm$^{-2}$ s$^{-1}$, interaction rate is ~8MHz

- **pp at 14TeV (LHC)**
  - Total cross section about 70mb
  - Dominated by inelastic scattering
  - LHC design luminosity: $10^{34}$ cm$^{-2}$ s$^{-1}$
  - Interactions rates approach 1GHz (!)
Multiple Interactions

• For hadron colliders (and some fixed target experiments) the interaction rate exceeds the machine bunch spacing causing multiple interactions per crossing:

\[ \mu = \frac{\text{<Interactions/Crossing>}}{\text{Crossing Rate}} = \sigma \ast \frac{L}{\text{Crossing Rate}} \]

- RHIC pp@500 GeV: \( \mu \sim 1 \)
- LHC: \( \mu \sim 25 \)

• The number of interactions for each crossing is a Poisson distribution about the mean \( \mu \).
Particle Spectrum in pp (LHC)

- Cross sections for particle production vary by a factor of $\sim 10^{10}$ (diffraction to Higgs)

- Spectrum is similar for higher energy machine (e.g. LHC) except higher mass particles are more accessible

- Triggering challenge is to reject low $p_T$/mass objects while keeping high $p_T$/mass

- Of course CDF, D0, LHCb want to keep a large fraction of b events as well...
Heavy Ions (RHIC-II)

• HI cross sections can be very large
  – AuAu inelastic cross section ~8b
• RHIC-II will provide ~7x10^{27} \text{ cm}^{-2} \text{ s}^{-1}
  – Electron cooling will keep luminosity ~ constant vs. time.
  – Interaction rate ~50kHz
• Large variation in particle flux depending on collision centrality
  – Triggers will almost always have some centrality bias

with e-cooling
without e-cooling
# Colliding Beam Machines Summary

<table>
<thead>
<tr>
<th>Accelerator</th>
<th>Type</th>
<th>Energy (GeV)</th>
<th>Bunch Spacing (ns)</th>
<th>Luminosity (ub⁻¹s⁻¹)</th>
<th>Int. per Crossing</th>
</tr>
</thead>
<tbody>
<tr>
<td>CESR (CLEO)</td>
<td>e+e-</td>
<td>10.6 (3-4)</td>
<td>14</td>
<td>1280</td>
<td>~10⁻⁵</td>
</tr>
<tr>
<td>KEKB (Belle)</td>
<td>e+e-</td>
<td>10.6(3.5x8)</td>
<td>8 (2)</td>
<td>8256</td>
<td>~10⁻⁵</td>
</tr>
<tr>
<td>PEP-II (Babar)</td>
<td>e+e-</td>
<td>10.6(3.1x9)</td>
<td>4.2</td>
<td>4600</td>
<td>~10⁻⁵</td>
</tr>
<tr>
<td>LEP (Aleph, Opal, Delphi, L3)</td>
<td>e+e-</td>
<td>90-210</td>
<td>22,000</td>
<td>24-100</td>
<td>~10⁻³</td>
</tr>
<tr>
<td>HERA (H1, Zeus)</td>
<td>ep</td>
<td>27x920</td>
<td>96</td>
<td>75</td>
<td>&lt;&lt;1</td>
</tr>
<tr>
<td>Tevatron (CDF, D0)</td>
<td>pp</td>
<td>1960</td>
<td>396(132)</td>
<td>36(200-500)</td>
<td>1(3-10)</td>
</tr>
<tr>
<td>RHIC-II (STAR, PHENIX)</td>
<td>pp/HI</td>
<td>200-500/200</td>
<td>106</td>
<td>200/0.01</td>
<td>1/&lt;&lt;1</td>
</tr>
<tr>
<td>LHC (Atlas, CMS, LHCb, Alice)</td>
<td>pp</td>
<td>14,000</td>
<td>25</td>
<td>10,000</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: [http://pdg.lbl.gov](http://pdg.lbl.gov) and experiment web sites

For e+e- and ep machines, cross sections are small and multiple interactions are negligible at all current machines.
For e+e- even pileup in slow detectors (~1ms) not a large problem.
At HERA beam-gas background (50-100kHz) can be problem.
For hadron colliders: multiple interactions are a major issue for detector design, particularly tracking chambers, DAQ and Trigger.
Efficiency and Deadtime
Efficiency and Deadtime I

The goal of trigger and DAQ is to maximize the amount data sent to storage (for later analysis) for a desired process with minimal cost:

\[ \varepsilon = \varepsilon_{\text{operations}} \times \varepsilon_{\text{trigger}} \times (1-\text{deadtime}) \]

- Relevant efficiency is for events that will be useful for later analysis:

\[ \varepsilon_{\text{trigger}} = \frac{N_{\text{good}}(\text{accepted})}{N_{\text{good}}(\text{produced})} \]

- For low rate process (e.g. e+e- to hadrons, Higgs production at Tevatron or LHC) try to accept all signal in trigger ⇐ Maximize efficiency

- Deadtime is due to fluctuations when the rate into a stage of the trigger (or readout) approaches the rate it can handle (busy). Simple case of no buffering:

\[ \text{deadtime} = (\text{Input Rate}) \times (\text{Execution Time}) \]

- Buffering incoming data reduces dead time, more buffering less dead time
  - If \(<\text{Incoming Rate}> > 1/<\text{Execution Time}>\), dead no matter what!
- **Minimizing dead-time helps all processes (and all budgets!)**
  - 1% of machine time * 1 year = $$$$$
Efficiency and Deadtime II

• Need to ensure full efficiency when detector channels are broken, masking registers are used at the input from front-ends
  – For tracking mask on dead channels
  – For calorimeter mask off hot channels

• Need precise measurements of $\varepsilon_{\text{trigger}}$ and deadtime for cross-section measurements
  – Other cases (e.g. particle lifetime) need to evaluate other biases that trigger may introduce (e.g. removing long lived decays)

• Measure deadtime by scaling rates of operational states of Trigger/DAQ system
  – Constant attention required during running to limit deadtime

• Need Mechanisms to evaluate the efficiency and biases
  – Redundant, independent paths
  – Lower bias triggers with accepted with a prescale
  – Zero bias - trigger on accelerator clock structure
  – Minimum bias – trigger on very low energy scattering
Triggers and Deadtime

• Assume you get $n_e$ events per second ($t_e=1/n_e$), and the time to record an event is $t_R$
  – The rate of recorded events is: $n_R = 1/(t_R + t_e)$
  – The fraction of all events recorded is: $f = n_R/n_e = (1+t_R/t_e)^{-1}$

• You can’t change $t_R$. What if you can select only the events you want to record:
  – Trigger processor decision time $t_p$, triggered event rate $n_t$
  – $K_n$ is rejected event rate ($K$ is the rejection factor)
  – The rate of recorded (triggered) events is now $n_t = 1/((t_R + t_e) + K(t_p + t_e))$

• The fraction of events processed is now given by

$$f_P = \frac{n_t}{n_e} = \left(1 + \frac{t_R}{t_e}\right)^{-1} \frac{K + 1}{1 + K \left(1 + \frac{t_p}{t_e}\right) / (1 + t_R / t_e)} = f_G$$

If $t_p << t_e, t_R >> t_e$ then $G \sim K+1$
Minimizing Deadtime

• Introducing a trigger with decision time $t_p$ increases your ability to select the physics you want
  – Increasingly important for rare events!
• How do we minimize deadtime even further?
  – Need to minimize the effect of the trigger decision time $t_p$
  – This can be accomplished by “buffering” events in front of a set of trigger processors
    • Works well for fixed target or asynchronous beam
  – Alternatively, trigger deadtime can be eliminated by “pipelining” the trigger
    • Works well for collider expts.

See Data Analysis Techniques for High Energy Physics by Fruhwirth, Regler, Bock, Grote and Notz.
Queuing Theory

• Consider a system with:
  – exponential arrival times with average rate $\lambda$
    • Equal probability of event arrival per unit time
  – exponential distribution of trigger service times with time constant $\mu$ (ratio $\rho = \frac{\lambda}{\mu}$)
    • Usually isn’t exponential, but makes the math nice...
  – A buffer depth $N$, where the system will produce dead time if the buffer becomes full
  – The probability that the buffer will have $N$ events in time interval $[t, t+dt]$ is given by:

$$dP_n = \left[ \lambda P_{n-1} + \mu P_{n+1} - (\lambda + \mu)P_n \right] dt$$
Queuing Theory (cont.)

\[ dP_n = \left[ \lambda P_{n-1} + \mu P_{n+1} - (\lambda + \mu)P_n \right]dt \]

- Set the above equal to zero for a steady-state solution
  - Solve \( P_0, P_N \) as a special case!
- Solve for the dead time as the probability (fraction of the time) that the buffer has \( N \) events

\[
\tau = P_N = \frac{(1-\rho)\rho^N}{1-\rho^{N+1}} \quad \rho = \left( \frac{\lambda}{\mu} \right) \neq 1 \\
\tau = \frac{1}{N+1} \quad \rho = 1
\]

For \( \rho=1 \), if \( N=1 \) then deadtime = 50%. If \( N=5 \), the deadtime is reduced to 16%.
Signatures in Detectors
Collider Detector Schematic

Key
CDF and D0
CDF
D0

Muon detectors
Hadron calorimeter
Electromagnetic Calorimeter

μ⁺

Jet

K⁺, π⁺, p,…
K⁰ → π⁺π⁻, … etc

Particle ID: Time of Flight

Solenoid
1.4T
2.0T

Tracking Chamber:
Drift Chamber (COT)
Fiber Tracker (SFT)

Silicon Detector

ν, lsp
The BELLE Detector

Aerogel Cherenkov cnt. n=1.015~1.030
3.5GeV $e^+$
_tracking + dE/dx small cell + He/C$_2$H$_5$

SC solenoid 1.5T
CsI(Tl) 16$X_0$
TOF counter
8GeV $e^-$

Si vtx. det. 3 lyr. DSSD
$\mu / K_L$ detection 14/15 lyr. RPC+Fe
Requirements for $e^+e^-$ Triggering

Accept: (almost) all real collisions

Reject:
- very low angle $e^+e^-$
- Beam-gas/wall events - tracks not from beam spot in r or z

Trigger on simple event topology
- Time-Of-Flight coincidence
- Multiplicity of good tracks (from beam spot) – low pt cuts (100s of MeV/c)
- Calorimeter activity: global energy and clustered energy in relative coarse spatial bins
- Simple combinations

Time stamping
- Beam Xing << detector response times (few nsec vs 100-1000ns)
$e^+e^- \text{ versus } pp(p\bar{p})$

Aleph $Z \rightarrow \mu^+\mu^-$ Event
Only 2 Tracks

CDF $Z \rightarrow \mu^+\mu^-$ Event
Many Tracks over 500MeV/c
Signatures for pp(pbar) Triggering

Accept specific decays modes
- High $p_T$ leptons from W, Z, top, W/Z+Higgs QCD: High $E_T$ jets
- $\psi \rightarrow \mu\mu$, medium $p_T$ leptons for B physics

Reject:
- Lower $P_T$ objects (QCD)

Select on object/event kinematics:
- $E_T$ in calorimeter tower, missing $E_T$
- $\mu$ $P_T$ (+ track $P_T$)
- Track $P_T$ (+ impact parameter/detached vertex)
Trigger Strategies

• Select objects: muon, electron (photon), jet, track by applying threshold cuts in subsystem processors (custom hardware)
  – Tevatron – fine granularity and lots of $E_T/P_T$ thresholds for different physics (eg top vs B’s)
  – B-Factories, LEP – coarse granularity few thresholds
  – Hera – combination of above

• Track finding difference
  – Tevatron $\rightarrow$ Cut on $P_T$, good resolution and many bins
  – B-Factories, LEP and HERA $\rightarrow$ Number and $\phi$ correlation of tracks above minimal $P_T$, $z$ information to reject beam background

• Two strategies for combining objects:
  – CDF (and D0 muon) $\rightarrow$ fine Track match in subsystems, pass global count to decision logic. Complex subsystem logic, simpler final decision logic
  – B-Factories, LEP and HERA $\rightarrow$ Send counts in coarse geometric regions to global and do correlations there. Simpler subsystem logic, more complicated final decision
ATLAS and CMS Strategy

Level-1: only calorimeters & muons ....

Compare to Central tracking at $L = 10^{34}$
(50 ns integration, $\approx 1000$ tracks)

Algorithm Complexity
+ huge amount of data

Pattern recognition much easier on calo & muon:

Complexity handled in software on CPUs
Trigger Flow: ATLAS Example
Example: ATLAS Calorimeter Trigger

Electron/photon trigger

4 x 4 window
0.1 x 0.1 elements
step by 1 element
|Etal<2.5

Hadron/tau trigger

4 x 4 window
0.1 x 0.1 elements
step by 1 element
|Etal<2.5

Rol-cluster
Et-measure-cluster
trigger-element, em. and had. separate

Isolation:

7/9/2009

PHENIX SpinFest 2009
Note on Projective Geometry

• Projective geometry is important
  – ZEUS: Used complicated cable mapping and pattern searches to reduce fake rate
  – ATLAS, CMS: Calorimeters are built projective
  – Mapping with muon system: Important for isolation
CMS Muon System

4 Stations in the barrel and each endcap
Example: CMS Muon Trigger

- **DT hits**: local trigger track segments ($\phi$, $\delta\phi$, $\eta$, $\delta\eta$)
- **CSC hits**: local trigger track segments ($\phi$, $\delta\phi$, $\eta$, $\delta\eta$)
- **RPC hits**: PAttern Comparator Trigger
  - $\leq 4$ barrel + $\leq 4$ endcap muon candidates ($p_t$, $\eta$, $\phi$, quality)

**Regional Trigger**
- **Barrel Track Finder**: $\leq 4$ muon candidates ($p_t$, $\eta$, $\phi$, quality)
- **Endcap Track Finder**: $\leq 4$ muon candidates ($p_t$, $\eta$, $\phi$, quality)

**Global Muon Trigger**
- $\leq 4$ muons ($p_t$, $\eta$, $\phi$, quality)
Multilevel Trigger Systems
Multi-Level Trigger Systems

High Efficiency ↔ Large Rejection

- Often can’t achieve necessary rejection in a single triggering stage
- Reject in steps with successively more complete information

**L0** – very fast (<~bunch x-ing), very simple, usually scint. (TOF or Luminosity Counters) (Few expts use a L0 anymore)

**L1** – fast (~few μs) with limited information, hardware

**L2** – moderately fast (~10s of μs), hardware and sometimes software

**L3** – Commercial processor(s)
**Example: CLEO II Trigger (ca 1989)**

**TOF (Cal) trigger (L0,L1,L2):**
- discriminators on each bar ($\Sigma$ 16 X-tals) and OR’d into 30(32) sectors
- >1 sector, 2 opposite, non-adjacent

**BLT, TSP triggers (L1,L2):**
- Count low $P_T$ tracks (threshold algorithm) and determine charge (BLT)

**PD trigger (L2):**
- Vertex chamber path consistent with coming from beam spot

**Hadron Trigger:**
- L0 TOF non-adjacent
- L1 Three tracks
- L2 Two PD tracks

<table>
<thead>
<tr>
<th>Stage</th>
<th>Devices Used</th>
<th>Output</th>
<th>Execution Time</th>
<th>Dead Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0</td>
<td>Cal, TOF, VD</td>
<td>20kHz</td>
<td>&lt;360ns</td>
<td>0</td>
</tr>
<tr>
<td>L1</td>
<td>Cal, DR, TOF, VD</td>
<td>20Hz</td>
<td>2.56ms</td>
<td>5%</td>
</tr>
<tr>
<td>L2</td>
<td>Cal, DR, VD</td>
<td>5Hz</td>
<td>50ms</td>
<td>0.10%</td>
</tr>
<tr>
<td>ReadOut</td>
<td>N.A.</td>
<td>5Hz</td>
<td>12ms</td>
<td>1.20%</td>
</tr>
</tbody>
</table>
Example: D0 Run-1 (1991-95)

L0 Trigger (285kHz in, 150kHz out)
- Beam hodoscopes

L1 Trigger (200Hz out)
- Single Cal trigger towers (4 thresh)
- Global $E_T$ and missing $E_T$ (EM, HAD)
- Muon chamber tracks
- No deadtime, exec. time <1 μs

L1.5(2) Trigger (100Hz out)
- Higher resolution muon chamber tracks
- TRD confirmation for electrons
- Execution time: up to 100μs

L2(3) Trigger (2Hz out)
- Farm of Vaxes running offline type code

**Example: CDF Run-1**

Every 3.5μs (bunch spacing):
- Calorimeter Sample and Hold get reset
- Muon and CTC TDC get stop

**L1 Trigger (285kHz in, 1.5kHz out)**
- Trigger decision on fast output of Beam-Beam, Calorimeter, and Muon
- Execution <3.5μs ⇔ no dead-time
  L1 Accept ⇔ stop gating detector
  L1 Reject ⇔ continue gating detector

**L2 Trigger (up to 50Hz out)**
- Add CTC tracks and match to muon and Calorimeter clusters
- Execution 30-50μs ⇔ dead-time <10%
  L1 Accept ⇔ digitize and readout
  L1 Reject ⇔ resume gating detector

**L3 Trigger (up to 5-8Hz out)**
- Event size 300kB in, 100kB out
- Farm of SGIs running offline type code
- Readout ~3ms, Readout deadtime <10%

---

CDF/D0 L2 Trigger Strategy

Two stage process:

1. Reconstruct objects: muon, electron/photon, jet, tracks in pre-processors and pass object kinematics to central processing
   - Some input information will be the same as used at L1 (e.g. tracks from central tracker)
   - Remaining information will be newly formed (e.g. Silicon tracks with impact parameter measurement)

2. Assemble event in processor memory and run event filters much like a L3 trigger except on a very limited scale
   - Processor is custom VME module based on DEC Alpha chip
   - Filters written C/C++
CDF/D0 Run-1 L2 Implementation

**CDF L2**
- Drift Chamber Tracks
  - Digital pipeline finds tracks serially scanning 360° in \( \phi \)
  - Eight \( P_T \) bins
  - Track \( P_T, \phi_0 \) feed Cal and Muon matching hardware (15°, 5° match respectively)
  - Fast CMOS rams and AS TTL logic
- Other: Fine grain shower max info for electrons and Calorimeter Isolation trigger using analog NN chip
- Programmable processors (custom Fastbus) apply final event cuts:
  - 1A: Motorola bit slice
  - 1B: DEC Alpha
- Up to 64 different L2 triggers possible
- Other than track processor almost completely based on ECL logic

**D0 L2**
- No drift chamber tracking (no solenoid)
- 16 muon bits from finer matching
- L2 Triggers pre-requisite on L1 triggers
- Uses same global decision (L1 Framework) logic as L1
Pipelined Trigger Systems
What is a pipeline?

• A trigger pipeline is used to avoid trigger deadtime
  – Typically used in a collider environment where the accelerator RF provides a natural pipeline clock
  – Tight design constraints between trigger and FEE:
    • FEE pipeline must “buffer” events while waiting for trigger decision
    • Accomplished in one of two ways
      – FADC on input channels
      – Analog charge storage (AMUADC)
  
• Resulting system has no deadtime due to L1 trigger processing
  – Additional complication: synchronization
Trigger and FEE Pipelining: ZEUS, H1

Poor vacuum due to synchrotron radiation.
Large proton-beam background: $\sigma_{pp} \gg \sigma_{ep}$
Beam-gas rate $\sim 100$kHz (10\(\mu\)s)

Bunch crossing rate 10.41MHz (96\(\mu\)s)
Can’t make the decision in one step!
Solution is to pipeline the FEE and trigger.

Three-Level Trigger
• **L1 (FLT):** Hardware triggers
  starts readout (digitization)

• **L2 (SLT):** Software trigger with distributed processors
  starts event building

• **L3 (TLT):** Software trigger in a single processor
  starts data storage
ZEUS Pipelined Trigger

Component A
readout

Detector

96 ns

0 μS

Component Z

<2.6 μS

4.6 μS + prop. delay

Timing

GFLT

4.6 μS

ZEUS FLT

• Synchronous pipeline system
• Deadtime-free trigger

TOF+Detector response

Readout Electronics

96 nS clock

HERA clock
Rejecting Beam-Gas at HERA

- Timing of TOF hits (H1) rejects out of time events
- Track processors reject events with large impact parameter in r-φ and r-z planes to remove beam-wall and beam-gas backgrounds
- Example: Look for patterns in r/z across layers:
  - Good tracks constant r/z
  - Tracks not from interaction region will have wrong pattern

Also can be effective for beam backgrounds at e+e- machines (OPAL, M. Arignon et al NIM A313 (1992) 103.)
Pipeline Synchronization

Need to design in time alignment wherever L1 primitives come together

Delay L1 Muon by 2 clocks to align with L1 Cal before combining
Bunch Crossing Counters

- Critical for pipeline system design to provide method(s) of determining if pipelines are staying synchronized

- Common method: bunch xing counters in each component which reset once per accel turn
  - Count fundamental clock even for unfilled buckets
  - CDF and D0: count 7.6MHz (132ns) clocks (0-158), actual number of beam x-ing per accelerator turn is 36 (104) for 396ns (132ns) accelerator operation (its actually a clock counter).
  - Distribute to each component: fundamental clock and beginning of turn marker, called bunch 0 (b0) at Tevatron
Bunch Crossing Checks

• CDF: bunch counter readout from each board into event data
  – Compare between boards in VME readout controller (PowerPC SBC). Out of synch pull local error line.
  – Compare between crates at event building time. Out of synch send error message
  – Can miss occasional short term synch problems
  – Most frequent problem: errors in bunch counter logic on board

• Zeus passes BX number along with data in L1 pipe to test synch at decision time
  – Some CDF components pass B0 mark: test every 21μs

• PHENIX distributes a common start for all FEE clock counters
  – Each FEE counts independently
  – Event and bunch crossing counters crosschecked in EvB
Deadtime cannot be incurred by L1 Trigger. Always complete before data comes off end of pipeline. L1 Deadtime → Broken System

L2 incurs deadtime if all L2 buffers fill up before completing L2 decision. L1A must be held off.

Readout incurs deadtime if VRB buffers fill up then L2 buffers will fill and L1A must be held off.

L3 incurs deadtime if the switch has no node to send output to. Again system backs up until L1A is stopped.

Dead-time is only incurred when all L2 buffers are full
Detector FEE Affects Pipeline Design

- L1 pipelines implemented many ways: capacitor array, RAM, shift register (e.g., in FPGA), discrete FIFO
- L2 buffering also implemented many ways: capacitor array, RAM, discrete buffer chips
- CDF and D0 Si strip detectors use a capacitor array for the L1 pipeline and digitize on L1A
  - Capacitors are controlled as circular buffer.
  - 128 Channels on digitized sequentially
  - CDF uses SVX3 chip: has 4 additional capacitors and skip logic that permit additional L1As during readout
  - D0 uses SVX2 chip: dead during digitization and readout (~10 μs).
Impact of Si Readout on D0 Trigger

- Since D0 has SVX2 chip for Silicon and Fiber tracker readout, detector is dead for ~10ms after L1A
  - Limit L1A to ~5-10kHz
  - Queuing simulations show benefit from more VRB buffering
  - With low L1 rate and more buffering, can take more time for L2 processing ~100μs
Components of Modern Trigger Systems
CDF Trigger
D0 Trigger System

**Decision times:**
- ~4.2 μs
- ~100 μs
- ~50 ms

**Subdetectors**
- LUM
- CAL
- FPS
- CFT/CPS
- SM T
- Muon
- FPD

**Level 1**
- Subdetectors
- Towers, tracks, clusters, $E_T$
- Some correlations
- Pipelined

**Level 2**
- Correlations
- Calibrated Data
- Separated vertex
- Physics Objects $e, \mu, j, \tau, E_T$

**Level 3**
- Simple Reconstruction
- Physics Algorithms

- Entire Trigger Menu configurable and downloadable at Run start
- Trigger Meisters provide trigger lists for the experiment by collecting trigger requests from all physics groups in the Trigger Board
- All past and present trigger lists are stored and maintained in the dedicated trigger database

L1FW: towers, tracks, correlations
Global Decision Logic

Decision logic typically implemented in RAM - very flexible in allowed combinations
Combinations limited by software to configure the RAM
Can be arranged in several stages to allow more flexible combination
Prescale counters used for monitoring trigger and adjusting trigger rate
Scalers are used to count both inputs and outputs
They all sort of look the same...

Zeus Calorimeter Trigger Adder Card

CLEO III

Trigger Logic

XFT FINDER - CDF

Babar

Track Segment Finder (x24)
Moore’s Law

In 1965 Gordon Moore (Intel co-founder) observed that transistor densities on ICs were doubling every year.
Trigger Hardware Evolution

• Need to condense a large number of signals to a final decision in a very short time

• Premium on fast, high density processing, preferably re-programmable:
  - c 1980 – ECL (high power dissipation)
  - c 1990 – RAM, Shift registers, PALs, small CPLDs, gate arrays, multiple layers for complicated tasks
  - c 2000 – CPLDs, FPGAs, large RAM, FPGAs with embedded RAM ASICs see less use than in FE due to high initial cost
  - 2003+ Integration of high speed serial links, DSP cores with FPGAs

• Analog→Digital triggers:
  - 1988 CDF Cal trigger – analog summing, discriminators
    • Digitize after accept, hard to confirm trigger decision offline
  - 1990-92 D0, Zeus initial analog sum, digitize the final sum and thresholds
    • Readout of trigger data used for decision
  - 2000 CDF uses same digitized input for readout and Trigger in Calorimeter and Silicon (D0 too with Silicon)
e^+e^- Luminosity Growth

- Luminosity at Upsilon(4S) has grown substantially over time:

<table>
<thead>
<tr>
<th>Accelerator</th>
<th>Year</th>
<th>Luminosity (fb^-1/month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CESR (CLEO)</td>
<td>1982</td>
<td>0.010</td>
</tr>
<tr>
<td>CESR (CLEO)</td>
<td>1987</td>
<td>0.075</td>
</tr>
<tr>
<td>CESR (CLEO)</td>
<td>1992</td>
<td>0.250</td>
</tr>
<tr>
<td>CESR (CLEO)</td>
<td>1998</td>
<td>0.750</td>
</tr>
<tr>
<td>KEKB (Belle)</td>
<td>2006</td>
<td>30.0</td>
</tr>
<tr>
<td>PEP-II (Babar)</td>
<td>2006</td>
<td>17.0</td>
</tr>
</tbody>
</table>

- Factor of 25 from ’82-’92
- Factor of 35 from ’92-’02
- Close to a factor of 1000 in 20 years
- Luminosity doubles about every 2 years
- Slightly slower than Moore’s law
**pp Luminosity Growth**

- Factor of ~10 in 10 years
  - Smaller than CESR
  - Trigger on lower $p_T$ (expand B physics programs)
- Expect large increase going to LHC
  - Bigger than CESR to B-factory

<table>
<thead>
<tr>
<th>Accelerator</th>
<th>Year</th>
<th>Luminosity ($\mu$b$^{-1}$s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tevatron (0)</td>
<td>1989</td>
<td>2.0</td>
</tr>
<tr>
<td>Tevatron (1A)</td>
<td>1993</td>
<td>9.0</td>
</tr>
<tr>
<td>Tevatron (1B)</td>
<td>1995</td>
<td>25.0</td>
</tr>
<tr>
<td>Tevatron (2A)</td>
<td>2002</td>
<td>36.0</td>
</tr>
<tr>
<td>Tevatron (2A)</td>
<td>2003</td>
<td>80.0</td>
</tr>
<tr>
<td>Tevatron (2B)</td>
<td>NOW</td>
<td>300</td>
</tr>
<tr>
<td>LHC</td>
<td>2009+</td>
<td>10,000</td>
</tr>
</tbody>
</table>
The PHENIX Trigger System
PHENIX Granules

• The PHENIX DAQ partitions the detector into granules.
  – A granule is the smallest possible readout element
  – Each granule receives timing information (clock, mode bits) from a GTM
  – The Level-1 accept is also distributed by the GTM
  – FEMs pipeline the data and send it up to DCM’s on a valid L1 accept
The PHENIX Level-1 Trigger

Global Level-1 manages the partitioned running of the detector.

Local Level-1 generates primitives from detector data received over optical fiber. Primitives are sent to GL1 for trigger decision.
Pipelining (PHENIX AMUADC)

- PHENIX chose to develop a single custom ASIC to handle FEM pipelining
  - Analog memory storage
  - Heap manager

- Dead-4-4 on digitization
  - Minimal deadtime
  - Currently run Dead-4-16 due to FEM limitations

- PHENIX FEE also include 5 event buffer to mitigate readout deadtime
PHENIX BBC LL1 Trigger

1. Converts input bits into channel time values
2. Masks off bad channels
3. Checks time range for each channel
4. Determines number of hits in each arm
5. Calculates average arm time
6. For each arm checks if number of hits is in range
7. Checks if Vertex is in range
8. Result of the last two checks and FEM Unreliable signal are used as an input into 4->2 Look Up Table that creates 2 output bits for GL1.

\[
\begin{align*}
t_N &= \frac{L-z}{c} \\
t_S &= \frac{L+z}{c} \\
z_{VTX} &= \left( t_S - t_N \right) \cdot \frac{c}{2} = (L+z-L+z) = z
\end{align*}
\]
BBC LL1 and Multiple Collisions

- What does the BBC LL1 do with multiple collisions

\[ t_{N1} = \frac{L-z_1}{c}, \quad t_{S1} = \frac{L+z_1}{c}, \quad t_{N2} = \frac{L-z_2}{c}, \quad t_{S1} = \frac{L+z_2}{c} \]

\[ t_N = \frac{1}{2} \frac{L-z_1 + L-z_2}{c}, \quad t_S = \frac{1}{2} \frac{L+z_1 + L+z_2}{c} \]

\[ z_{VTX} = (t_S - t_N) \cdot \frac{c}{2} = \frac{1}{2} (z_1 + z_2) \]

- You **average** the two vertices
  - In general this is a weighted average depending on multiplicity
PHENIX ERT Trigger Algorithm

Photon trigger from EMCal cluster.

Pions >5 GeV/c fire RICH, minimal energy in EMCal.

Electron trigger from EMCal/RICH matching.
MuID LL1 Trigger

Logical tubes formed by OR of physical tubes across panels in each gap.

The most probable trajectory for a vertex muon striking a gap-1 logical tube is to continue on a path of equal $dx/dz$ (vertical tubes) or $dy/dz$ (horizontal tubes). Tubes w/ the same $dx/dz$ (or $dy/dz$) get the same index.
“Generic” LL1 Board Design

- Fiber Bus Termination
- 1.8V Regulator
- VME Interface
- Xilinx FPGA Logic
- JTAG Connector
- Fiber Transceiver/GLINK
MuID LL1 Trigger Symsets (Deep)

- Either gap 0 or gap 1
- Either gap 3 or gap 4
- Three or more hit gaps
MuLD LL1 Trigger (Shallow, Run-4)

- Either gap 0 or gap 1
- Two or more hit gaps
- Lots of combined logic with 1D symset.
MuID LL1 Trigger (Hadron, Run-8)

- Either gap 0 or gap 1
- Either gap 2 or gap 3
- NO hit in gap 4
- Three or more hit gaps
The use of modern FPGA’s allows trigger algorithms to be programmed in higher level languages (VHDL, Verilog)

- Easier to maintain
- Easier to debug
- Easier to simulate
- Get more people involved!
FPGA Debugging

- Modern software tools allow for the integration of a configurable “software logic analyzer” into a design – Allows for complete debugging of complex designs!
MuID LL1 Improvements (Run-10?)

- Investigate improving MuID LL1 rejection
  - Panel-based algorithm
    - No logical tubes
    - Reduced sensitivity to combinatoric background
    - Investigating if this can be implemented in existing hardware
      - Horizontal chips undergoing conversion, testing in Run-10...

Run-6 AuAu Data:

- South 1 Deep rejection = 5.32874(33047)
- South 1 Deep rejection (NEW) = 9.57841(18385)
- South 1 Deep 1 Shallow rejection = 5.62329(31316)
- South 1 Deep 1 Shallow rejection (NEW) = 11.3825(15471)
- South 2 Deep rejection = 16.3752(10754)
- South 2 Deep rejection (NEW) = 58.602(3005)
- North 1 Deep rejection = 5.75393(30605)
- North 1 Deep rejection (NEW) = 9.01685(19530)
- North 1 Deep 1 Shallow rejection = 6.34111(27771)
- North 1 Deep 1 Shallow rejection (NEW) = 11.2812(15610)
- North 2 Deep rejection = 20.9692(8398)
- North 2 Deep rejection (NEW) = 63.9895(2752)
Muon Trigger for W Physics @500GeV

Design Luminosity
\[ \sqrt{s} = 500 \text{ GeV} \quad \sigma = 50 \text{mb} \]
\[ L = 2 \times 10^{32} \text{cm}^2/\text{s} \]

Total X-sec rate \( \sim 10 \text{MHz} \)

DAQ LIMIT
\( = 1-2 \text{kHz} \) (for \( \mu \) arm)

Required RF
\( \sim 10,000 \)

\[ \mu \text{ momentum distribution} \]

\[ P_T > 10 \text{GeV/c} \]
HQ signal

\[ P_T > 20 \text{GeV/c} \]
W signal

Momentum GeV/c

Entries 102517
Mean 3.606
RMS 2.218

Need Momentum Selectivity in the LVL-1 Trigger!
PHENIX Muon Trigger Upgrade

• Momentum selectivity through online sagitta measurement
  – Uses MuTR 1,2,3 and RPC1,3 planes

PHENIX LL1 decision time
40xBCLK (4μs)

Implement trigger using fast, parallel logic on FPGA’s
The LL1 Trigger Tile
Muon Trigger Block Diagram

One board processes four trigger octants (one octant per tile).
PHENIX FOCAL

“brick”

85 cm

6 cm

17 cm

7/9/2009 PHENIX SpinFest 2009
The FOCAL LL1 Trigger

- Algorithm starts by searching NxN (2x2, 4x4 or 4x4 overlapping) tiles in EM1 for tile with nonzero energy in pads
- Using z=0 and center of EM1 tile, project into EM0 and EM2
- Sum pad energy in EM0, EM1 and EM2
- Compare energy sum to threshold
  - Energy threshold scaled by pseudorapidity
  - Based on center of trigger tile in EM1 and assumes z=0 for vertex
PHENIX Level-2 Trigger

• Sophisticated software trigger implementation within the Event Builder
  – Uses offline-compatible framework
    • Some special purpose objects for efficiency
  – Variety of triggers implemented
    • Dimuon, high-$E_T$ cluster most useful
  – Used primarily for event filtering, not rejection
    • Data archiving bandwidth has kept pace with RHIC luminosity growth, no need to reject
The (Near) Future
LHC Detector Schematic

Key
CMS and ATLAS
CMS
ATLAS

Jet
Hadron calorimeter
Electromagnetic Calorimeter

Muon detectors

\( K^+, \pi^+, p, \ldots \)

\( K^0 \rightarrow \pi^+\pi^-, \ldots \text{etc} \)

Solenoid 4T, 2T
Air core torroids (muons)

Tracker:
\( \mu \)strip gas chambers
Straw, Transition Rad Tracker

Silicon Detector:
Pixels and Strips

7/9/2009
PHENIX SpinFest 2009
pp Collisions at the LHC

Operating conditions:
- one “good” event (e.g. Higgs in 4 muons) + ~20 minimum bias events

Event rate

All charged tracks with pt > 2 GeV

Reconstructed tracks with pt > 25 GeV

Event size: ~1 MByte

Processing Power: ~X TFlop

ATLAS/CMS Trigger Rates

- Same challenges as Tevatron but higher energies, much higher luminosity → more interactions/crossing (20-25)
- Cut on $E_T$ and $P_T$ to discriminate against QCD backgrounds
  - Higher $E_T$ cuts than Tevatron needed
  - More boost → don’t loose efficiency
- Unprescaled High $p_T$ trigger thresholds and rates:

<table>
<thead>
<tr>
<th></th>
<th>CDF L1</th>
<th>CDF L2</th>
<th>LHC L1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$P_T$ Cut</td>
<td>Rate (HZ)</td>
<td>$P_T$ Cut</td>
</tr>
<tr>
<td>Single $\mu$</td>
<td>4 GeV/c</td>
<td>280</td>
<td>12 GeV/c</td>
</tr>
<tr>
<td>Single $e$</td>
<td>8 GeV</td>
<td>240</td>
<td>16 GeV</td>
</tr>
<tr>
<td>Single $\gamma$</td>
<td>8 GeV</td>
<td>2400</td>
<td>18 GeV</td>
</tr>
<tr>
<td>Single Jet</td>
<td>10 GeV</td>
<td>10K</td>
<td>90 GeV</td>
</tr>
</tbody>
</table>

CDF Rates for $2 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$, scaled from $3 \times 10^{31} \text{cm}^{-2} \text{s}^{-1}$ (no L2 $\mu$)

LHC rates for $10^{34} \text{cm}^{-2} \text{s}^{-1}$, from N. Ellis, LECC Workshop 2002 at Colmar
ATLAS and CMS Trigger Architecture

Large improvements in FPGA size, speed and link bandwidth
→ Only L1 trigger in custom hardware
→ No L2 trigger for CMS

ATLAS

- Levels: 3
- LV-1 rate: 100 kHz
- Readout: 10 GB/s
- Storage: 100 MB/s

CMS

- Levels: 2
- LV-1 rate: 100 kHz
- Readout: 100 GB/s
- Storage: 100 MB/s
ATLAS/CMS L1 Trigger

- CMS and ATLAS L1 triggers both use data from Calorimeters and Muon detectors
  - No data from inner trackers – very high track density
  - $E_T$ of clusters for $e/\gamma$/Jet triggers
  - Missing $E_T$ for $\nu$ or SUSY LSP
  - $P_T$ of Muon in flux return (CMS), air torroids (ATLAS)
- Same general functions as CDF/D0 Run 1 L1 Triggers
  - Better muon $P_T$
  - More sophisticated algorithms
  - Many more channels to handle
CMS DAQ/Trigger Structure

Collision rate 40 MHz

Level-1 Maximum trigger rate 100 kHz(*)

Average event size ≈ 1 Mbyte

Event Flow Control ≈ 10^6 Mssg/s

No. of In-Out units ≈ 500

Readout network bandwidth ≈ 1 Terabit/s

Event filter computing power ≈ 5 TFlop

Data production ≈ Tbyte/day

No. of PC motherboards ≈ Thousands

7/9/2009 PHENIX SpinFest 2009
Budget of 128bx = 3.2 µs
CDF/ D0 (30-42bx) ~ 4-5.5 µs

L1 latency currently dominated by cable/transmission delays.
Non-Traditional Trigger Systems
MINOS (Far Detector)

- Steel/Scintillator sampling calorimeter
  - 5.4 kt, 8m diameter, 31m long
  - 486 layers, each made of:
    - 1” steel
    - 1 cm plastic scintillator
  - Magnetized to ~1.5 T

- Design goals
  - $\nu_e/\nu_\mu/\pi$ discrimination
  - Good energy resolution
    - For both $\mu$ and showers
  - Good timing, both hit-to-hit and absolute
    - For particle direction and synching with Fermilab beam
MINOS Readout and Trigger

- Two detectors – near and far (730km separation)
- Time synch date <1ms (GPS)
- No hardware trigger
- Beam structure:
  - ~10ms spill at ~1Hz
  - 53MHz structure within spill
- Continuous digitization at 53MHz
- Readout into Trigger farm in overlapping ~4ms long frames of data
- Readout rate: 40MB/s
Pierre Auger Observatory

Search for Origin of cosmic rays with E>10^{20}eV

Rate ≈ 1 / km^2 / sr / century above 10^{20} eV!

Large scale detector:
- 1600 Cherenkov tanks, covering 3000 km^2
- 24 Fluorescence Detector telescopes
Auger Cerenkov Stations

- Highly distributed Particle physics detector
- Autonomous systems at each detector
  - Communicate via wireless technology
  - Timing via GPS (~10ns)
  - Cannot trigger globally
  - Two FADC (gain factor of 8) at 40MHz into buffer on each tube

- Backgrounds
  - PMT noise few kHz/PMT
  - Cosmics ~ 3kHz/station
Auger Trigger

Four level trigger
Locally: L1 in hardware – 100Hz out
Locally: L2 in μ-controller – 20Hz
    Transmit 3Bytes to control center on L2A
Globally: L3 and L4 in processors at control center
    Data buffered locally to be retrievable after L3
    even for un-triggered station

L1 Algorithm
Multiple time slices over threshold (e.g. 2 counts in low FADC range) in a sliding window (e.g. 4 time bins out of 240)
    – Other algorithms look for single muons and Gamma Ray bursts
    – Initially developed ASIC solution for low cost and power
    – Decreasing FPGA costs: implemented in Altera ACEX EP1K100QI208-2, algorithm in VHDL.
    – Online and running (2008)

Send average of 500b/s from each ground station
Future Accelerators

What will trigger systems look like in the future?

- Accelerator energy continues to grow... however rate of change may be decreasing
- Processing power, network bandwidth and storage media are all growing faster than increases in luminosity
- Trend is toward fewer (zero?) hardware levels
- Future Machines
  - Linear Collider (500-1000 GeV)
  - Muon Collider?
  - VLHC pp at 40-200 TeV
  - EIC (eA)
Luminosity Frontier

Luminosity evolution of hadron colliders

- proton-proton (p-p) and proton-antiproton (p-\bar{p}) collisions
- ion-ion collisions (A-A)
- lepton-proton (e-p) and lepton-ion (e-A) collisions (e^- and e^+)
- spin-polarized beams

Graph showing peak luminosity per IP [$10^{30}$cm$^{-2}$s$^{-1}$] from 1970 to 2020 for various colliders:
- ISR p-p
- Tevatron I p-p
- Tevatron II p-p
- SPS p-\bar{p}
- HERA I e^- p
- HERA II e^+ p
- RHIC p-\bar{p}
- cRHIC e^- p^- A
- LHC p-p (design)
- LHC A-A (design)

Last update: 10 March 2008
**Linear Colliders**

<table>
<thead>
<tr>
<th></th>
<th>Tesla</th>
<th>NLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rep Rate (Hz)</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>Bunch Spacing (ns)</td>
<td>337</td>
<td>1.4</td>
</tr>
<tr>
<td>Bunch/Pulse</td>
<td>2820</td>
<td>190</td>
</tr>
<tr>
<td>Pulse length (ms)</td>
<td>950</td>
<td>0.266</td>
</tr>
<tr>
<td>Average xing rate (kHz)</td>
<td>14</td>
<td>23</td>
</tr>
</tbody>
</table>

Triggerless (hardware) design (?)

• Tesla conceptual detector: readout detector continuously to L3 farm
Parting Words...

• Trend in trigger design over the past 20 years has been towards greater complexity in hardware triggers.

• With the increased capabilities (and decreased cost) of Ethernet, PCs, and Network switches, the use of custom hardware is decreasing.
  – Corollary: HEP no longer is at cutting edge of electronics bandwidth.
  – Usually still necessary at L1, avoided at L2/3.

• The trend toward ASICs/custom hardware seems to have slowed.
  – Economical only for very high volume (rare on trigger).
  – Use for special radiation environment (only first data formation for trigger).
  – Not as flexible in addressing unforeseen needs/desires.
JL’s Rules of Triggering

• “You have to trigger fast.”
  – A late answer is a wrong answer

• “It’s no good being fast if you’re not accurate”
  – If you’re not efficient, what’s the point?
Queuing Theory

- Consider a system with:
  - exponential arrival times with average rate $\lambda$
  - exponential distribution of trigger service times with time constant $\mu$ (ratio $\rho = \lambda/\mu$)
  - A buffer depth $N$, where the system will produce dead time if the buffer becomes full

\[
\tau = \frac{(1-\rho)\rho^N}{(1-\rho^{N+1})} \quad \rho \neq 1
\]

\[
\tau = \frac{1}{N+1} \quad \rho = 1
\]

For $\rho=1$, if $N=1$ then deadtime = 50%. If $N=5$, the deadtime is reduced to 16%.
## Recent Collider Detectors

<table>
<thead>
<tr>
<th>Detector</th>
<th>Number of Channels</th>
<th>Silicon Part of Trigger?</th>
<th>Input Trigger Rate</th>
<th>Largest (Non) Physics Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEO III</td>
<td>400K</td>
<td>No</td>
<td>L1: 72 MHz, L2: 1 kHz, Tape: &lt;100 Hz</td>
<td>Electron pairs &amp; $\gamma\gamma$</td>
</tr>
<tr>
<td>Belle</td>
<td>150K</td>
<td>Not Yet</td>
<td>L1: 50 MHz, L2: 500 Hz, Tape: 100 Hz</td>
<td>Electron pairs &amp; $\gamma\gamma$, Beam-wall</td>
</tr>
<tr>
<td>BaBar</td>
<td>150K</td>
<td>No</td>
<td>L1: 25 MHz, L3: 2 kHz, Tape: 100 Hz</td>
<td>Electron Pairs &amp; $\gamma\gamma$, Beam-Wall</td>
</tr>
<tr>
<td>H1, ZEUS</td>
<td>500K</td>
<td>No</td>
<td>L1: 10 MHz, L2: 1 kHz, L3: 100 Hz, Tape: 2-4 Hz</td>
<td>Beam-gas</td>
</tr>
<tr>
<td>HERA-B</td>
<td>600K</td>
<td>Yes (L2)</td>
<td>L1: 10 MHz, L2: 50 kHz, L3: 500 Hz, L4: 50 Hz, Tape: 2 Hz</td>
<td>Beam-wire scattering Inelastics</td>
</tr>
<tr>
<td>Aleph, Opal, L3, Delphi</td>
<td>250-500k</td>
<td>No</td>
<td>L1: 45 kHz, Tape: 15 Hz</td>
<td>Beam-gas</td>
</tr>
<tr>
<td>CDF (Run 2), DØ (Run 2)</td>
<td>750K-1M</td>
<td>Yes (L2)</td>
<td>L1: 7 MHz, L2: 10-50 kHz, L3: 3-1 kHz, Tape: 50 Hz</td>
<td>QCD, pileup (multiple interactions)</td>
</tr>
</tbody>
</table>
## Planned Experiments

<table>
<thead>
<tr>
<th>Type</th>
<th>L1 In (MHz)</th>
<th>L1 Out (kHz)</th>
<th>L2 Out (kHz)</th>
<th>Ev Size (kB)</th>
<th>Bandwidth RO (GB/s)</th>
<th>L3 Out (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS pp</td>
<td>40</td>
<td>100</td>
<td>NA</td>
<td>1000</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>CMS pp</td>
<td>40</td>
<td>100</td>
<td>100</td>
<td>1000</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>LHCb pp</td>
<td>40</td>
<td>1000</td>
<td>1000</td>
<td>200</td>
<td>4</td>
<td>200</td>
</tr>
<tr>
<td>Minos ν oscill</td>
<td>19ns RF for 8μs spill, rep rate ~1s</td>
<td>40MB/s</td>
<td>few</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With increasing link and switch capabilities less selection in hardware
ATLAS L2: Regions of Interest

- L2 Trigger uses same data as goes to L3
- On L1 subsystems store regional information about decision
  - On L1A, pass to Region of interest builder in L2
  - Fetch complete detector data only for Regions of Interest (ROI). Data remains in buffers of readout system
  - Make fast decision in L2 Processor farm. Reduce rate by factor of 10
- ROI builder gathers packets from different parts of detector and align to same event. Then pass to farm.