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ABSTRACT

Two particle azimuthal correlation functions measured in ��� and �	�
�	�
collisions at

� ������

200 GeV at midrapidity with the central arms of the

PHENIX detector are analyzed in order to extract the properties of hadronic
jets produced in QCD vacuum and highly excited QCD media.

Already, the published results on hadron spectra at high transverse mo-

mentum (��� ) in ��� [13], ���	� [16] and �	����� [14] collisions at RHIC energies
gave definitive proof for the discovery of hadronic jet quenching.

We use the method of two particle azimuthal correlation functions to gain
more detailed information about this phenomenon, by extracting quantities
like the jet shape parameters ��� and ��� , the jet conditional yields (number

of associated hadrons per high ��� trigger hadron from jet fragmentation) and
the jet fragmentation function.

The analysis of ��� data starts with the measurement of the vacuum frag-
mentation function from which the ��� dependence of the mean fragmenta-
tion momentum fraction ����� is extracted. We obtain a constant value of ����� 

0.74  0.02 for ��� above 3 GeV/c. Soft (non-perturbative) parton fragmen-
tation becomes significant below 3 GeV/c and the slope of the fragmenta-

tion function is ��� dependent in this region. Gaussian fits to jet induced
azimuthal correlations are employed to measure the mean jet fragmentation
transverse momentum �"! �#�%$�!&� 
 359  11 (stat)  6 (syst) MeV/c and the mean

partonic transverse momentum �"!'���%$%!'� 
 964  49 (stat)  16 (syst) MeV/c.
The analysis of ������� data is based on azimuthal correlation functions

between charged hadrons in the 1.5-3 GeV/c and 3-5 GeV/c ��� regions in
five classes of collision centrality. The mean jet fragmentation transverse
momentum �"! �(�%$�!&� is centrality independent and consistent with the value

in ��� data mentioned above. Even though the statistical and systematical
errors associated with the extracted mean partonic transverse momentum�"!'���%$�!'� (multiplied by ����)+*-,/.0.�� ) are rather large, a strong broadening with the
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centrality is observed. This is an important finding because hadronic jet
quenching through energy loss (medium induced gluon radiation) is expected

to be accompanied by a broadening effect.
Another important finding is that the jet conditional yields in both the

near ( 1325476 ) and away ( 1325498 ) regions exhibit a slightly raising trend with

centrality. This was also expected to accompany the jet quenching found at
higher ��� based on simple energy conservation considerations.

This detailed study of hadronic jet properties is another piece of the Quark-
Gluon Plasma puzzle that RHIC is trying to solve.
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CHAPTER 1. Introduction

1.1 Quark Gluon Plasma

The building blocks of the universe as we see it now are protons, neutrons,

and electrons; the first two belong to the large family of hadrons. All hadrons
are held together by one of the four fundamental forces in nature - the strong
force. For this reason, understanding its properties has become one of the

major quests of contemporary physics.
Although there are multiple other theoretical approaches (string theory

being a notable one), the Standard Model with its component Quantum
Chromo Dynamics (QCD) has been proven to be the most successful in
explaining the wealth of experimental data accumulated over the last three

decades in various fields like particle physics, nuclear physics and astro-
physics. QCD describes hadrons as colorless combinations of fundamental

particles called quarks bound together by the strong force, which is mediated
by gauge bosons known as gluons.

One particular feature of QCD is that not only the quarks carry color

charge, but also the gluons; this allows them to interact with each other and
generate additional gluons. As a consequence, the strength of the interaction

quickly increases with distance or, equivalently, decreases with 4-momentum
transfer X J : Y[Z�\ X J"] 
 Y^\`_ J ]aRb Y^\A_?J ]dcec=f J-g#hi J-j kml \ Fon�pq p ] (1.1)

Note that Y[Z
\ X JSr 6 ] r 6 (’asymptotic freedom’).
Hence, two classes of processes mediated by the strong force arise:

s high- X J processes (above UtFvu�wyx�I J ), also called hard QCD processes,
are characterized by Y[Z
\ X J ]{z a

which allows calculations to be per-

formed within the perturbative framework;
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s low- X J processes (below URF|u�wyx�I J ), also called soft QCD processes, for
which analytical calculations are much more difficult.

Many of the QCD phenomena related to the confinement of quarks in
hadrons, generation of hadronic masses by dynamical spontaneous breaking
of chiral symmetry, and other fundamental concepts of the Standard Model

belong to the class of soft QCD processes. In this regime, perturbation meth-
ods cannot be employed.

Nonetheless, during the last years, the method of lattice QCD simulations
[40] has gained a lot of momentum with the increase in computing power and
development of new techniques. For the first time, realistic first-principle

QCD calculations are performed in the soft QCD regime.
Lattice simulations predict that, at distance scales comparable with the

hadronic size ( } a�~��
), quarks interact with an effective potential that goes

approximately linearly with the distance:

I��-� \ Fr+���=� ] }�� \ � ]�� � F � YCZu �9������� F ���� \ � ]d� (1.2)

where
����� a T � is the Debye screening length. Also, above a critical tempera-

ture of about
�?� } a�� 6�F a�� 6�LOx�I , the system becomes unbound - � \ �P����� ] }P6 .

Hence, a hadronic system heated above this temperature would “melt“ into

a soup of freely roaming quarks and gluons. Such a state of matter that
reached equilibrium has been dubbed the Quark Gluon Plasma (QGP). Also,
around the same critical temperature as for the quark deconfinement phase

transition, lattice calculations predict another phase transition - the chiral
symmetry restoration - to a QCD state made of massless quarks.

The experimental search for all the above soft QCD phenomena, and most
notably for the QGP, has become the main subject of Relativistic Heavy
Ion Collisions (RHIC). Nuclei are hadronic systems which, when collided

at sufficient energy, are expected to produce the temperature and density
conditions favorable for such phase transitions.

However, since quarks and gluons cannot escape freely from a QGP, it
cannot be observed directly; rather, “signatures“ of the transition from a
hadronic system to a QGP (and back) are looked for through the large amount

of particle debris of the collision. Some of them are: hadronic jet quenching,� T�� (charmonium) suppression, dilepton production, strangeness enhance-
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ment, collective flow, direct photon production, Hanbury-Brown-Twiss (HBT)
effect. Because of the complexity of the phenomena happening in a heavy ion

collision, only a complete study of all these signatures can give a detailed
description of the state of matter formed. For a brief description of them, see
[27].

The work presented in this thesis is related to one of the proposed signa-
tures of QGP formation - hadronic jet quenching.

1.2 Short Introduction into the Physics of Hadronic Jets

The observation of hadronic jets was one of the main experimental results
leading to the development of QCD. This section briefly reminds us what are
the basic concepts of hadronic jet physics and how they were introduced in

the 70s and 80s.
By the mid 60s, experimental results of hadronic inclusive spectra were

mostly at low ��� ( � a w�x�IST�  ), for processes initiated by photons, leptons or
hadrons. In this kinematical region, they had an exponential shape ¡�� c£¢ T��#� c 4x f%¤¦¥�§ , independent of

� �
or ��¨ . Also, hadrons emerged with uniform angular

distributions. Hence, it was no surprise that statistical models worked fairly
well.

1.2.1 The Parton Model and High-��� Single Inclusive Spectra

In 1968, Bjorken discovered that the Deeply Inelastic Scattering (DIS)
structure function scales [28], i.e. does not depend on the momentum transferX J and the virtual photon energy © , but rather on their ratio:

ª J \ X J�« © ] 
 ª J \ @ ]"« @{¬ X JU�LP© (1.3)

This led him to the introduction of the parton model for protons (hadrons):
the proton is composed of point-like particles called ”partons”.

ª J \ @ ] gives

the probability for a constituent parton to carry a fraction @ of the hadron
momentum.

Based on the parton model, Berman, Bjorken and Kogut (BBK) [29] predict

that:
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s the high-��� hadronic cross section becomes power law, greatly exceed-
ing the statistical exponential cross section:

¡ � c£¢�#� c 

� 8 Y J� g� F \ @ i « @�J ] (1.4)

where @ i ¬­F¯®��T�®� « @�J°¬­F ®± T�®� are the two partons’ @ momentum fractions.

They predicted the index ² 
 �
since partons interacted electromagneti-

cally in their model (via single photon exchange).

s ”final state hadrons emerge into corelike distributions along the virtual

photon direction” or the scattered parton direction producing the al-
ready well known hadronic jets. They introduce the fragmentation func-
tion w \ @ ]�« @³¬9��´�µ·¶0*-:�g�T�� ¥ µ·*-)¸:<g , which is

� �
(or, X J ) -independent and uni-

versal (independent of the parton’s production process): ”the existence
of w \ @ ] suggests an equality between the number distribution of the final

observed hadrons in x b � r D bH¹ and x�º b x f r D b»¹ ”.

Experiments at CERN-ISR in 1972-1973, like BS [1] and ABCS [8], mea-

sured high-��� ( � U�w�x�IST�  ) pion production and found that, indeed, the low-��� exponential x f%¤¦¥ § cross section turns into a power law that scales with@��¼¬½U����?T � � . However, the rates were much higher than those predicted by

BBK suggesting that partons interact via the strong force and not the elec-
tromagnetic force. Also, the high-��� cross section did have the form (1.4),

but with ²¾}À¿ (more precisely, ¿�ÁÂU �  P6�ÁÃ6 � ) and not ² 
 �
. The left panel of

Fig.(1.1) shows a manifest @�� -scaling of the � b � r 8WV b¾¹ cross section at
four different collision energies with an index ² 
 ¿ .

Calahan et al.pointed out in 1975 that the index n in (1.4) is not a new
scaling of the cross section, being dependent on

� �
and @�� [31]:

¡ � cÄ¢�#� c 

a

� gdÅÂÆ §�Ç È É�Ê� F \ @�� ] 
 a� � g�ÅÃÆ §%Ç È ÉAÊ G \ @�� ] (1.5)

CCOR experiments at the same CERN-ISR in 1978 [2] established that,
indeed, ²Ë} �

at higher-��� : ¡�� cÄ¢ T��#� cSÌ � f%Í=Î i E V Î Ï� \ a FÐ@ ] i J Î i E V Î ¤ for ��� � � wyx�IRT�  and� uËÑ � � ÑÓÒ�u�w�x�I . Right panel of Fig.(1.1) shows a systematic measurement
of the power law index n for various @�� and

� �
values: it starts around ¿MFHÔ

at @��¯}P6�Á a and decreases to
�

at @��G}P6�Á � ; it also decreases with
� �

.
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Figure 1.1 Left: � b � r 8WV bP¹
cross section at Õ�Ö�× 4ØÔ�6�Ù and� �	
 u a « � � « � u « Ò�u�w�x�I from [8]; it scales with @�� and has

a power index ² 
 ¿ ; Right: dependency of the index n
on @�� and

� �
from [2].

The first modern QCD calculations for high-��� single hadron inclusive
cross sections, including ² \ @�� « � � ] and ���³Q
 6 (see next section), were done in

1978 by Owens et al.[32]. Leading order (LO) vector (
� 
 a

) gluon exchange
generate a power law index n


 �
, hence n is expected to become 4 for hadron

spectra from fragmentation of infinite momentum partons; however, higher
order corrections are significant even at very large @
� and

� �
and generate

steeper spectra (n
� �

).

The universality and X J -independence of the fragmentation function has
also been tested during same period by comparing the measured fragmenta-

tion function in ��� collision with measurements in x=� and ©d� collisions. Such
a compilation from [33] is presented in the left panel of Fig.(1.2).

1.2.2 ��� Effect, ��� Scaling and High-��� Correlations

However, calculations using the parton model or leading order QCD did
not contain any transverse momentum imbalance ��� of the outgoing par-

tons due to initial state radiation (gluon emission before the hard scattering
process).
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Figure 1.2 Left: collection of parton fragmentation functions from
[33] measured in ��� and ©d� collisions; Right: depen-
dence of �Ú��� � on

� �
from same reference.

The CCHK experiment [7] discovered in 1977 hadronic jet acoplanarity:

high-��� hadrons from jet fragmentation had a considerable average trans-
verse momentum component �"! �
:�;�)Ä!'� out of the plane defined by the beam

axis and another high-��� hadron from the fragmentation of the back-to-back
jet (we will define all the jet kinematical parameters in Section 2.1). They
proposed that this was due to transverse momentum of partons inside the

hadron (” ��� effect”).
The ��� phenomenology was subsequently developed by Feynman, Field

and Fox in [30]. They attributed it to two components: an ”intrinsic trans-
verse momentum” component from confinement inside the hadron which is
a constant and to a NLO component due to hard gluon emission which varies

with @ and X J . They also gave an approximate formula for the dependence of�"! ��:�;�)Ä!&� on ��� which, with the standard notations in practice now, reads:

��! ��:�;�)Ä!'� J 
 Ud@ JB �-����� J b \ aRb @ JB ] �Û�(�?� J#« @�BÜ¬ÓF�Ý��� � Ý���%)+*-,Â.� J�%)+*-,/. (1.6)

where ���%)+*-,/. is the ”trigger” - highest ��� - hadron in the event and ��� is the
transverse momentum of the fragment with respect to the parton direction

(jet axis). We will come back to this equation in Section 2.2. Fig.(1.3) shows
the measured �"! ��:�;�)Ä!'� dependence on the fragmentation momentum fraction
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Figure 1.3 Dijet acoplanarity: ��:<;") dependence on the fragmenta-
tion momentum fraction @
B for several ��� regions from
[5].

from [5]. According to Eq.(1.6), the intercept of the �"! �
:�;�)Ä!&� J dependence on�A@�BC� J gives the ��� value, while the slope of this dependence gives the ��� value.
The CCOR experiment soon used this dependency to measure the

� �
and ���

dependence of ��� and ��� [5]. They observed a slow increase of ��� with
� �

and ���%)+*-,/. and an approximate scaling of ��� with
� �

and ���%)+*-,Â. : all hadrons
have �(��} � 6�6�LOx�I , independent of the collision energy or parton’s momentum.

This was related to another experimental observation: the mean transverse
momentum of hadrons in ��� collisions is �¸����� Ì u � 6�LOx�IRT�  and depends very

weakly on the energy of the collision as shown in the right panel of Fig.(1.2).
A recent compilation of ��� measurements in various hard processes (Drell-

Yan, jet-jet or direct photon-jet, etc.) is presented in [34].

Measurements in ��� , 8�� , and Þ
� [9] have shown that ��� grows with the
thickness of the nuclear medium as � i<ß c . This is attributed to the Cronin

effect (multiple soft scattering) which will be introduced in the next Section.
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1.3 Quenching of Hadronic Jets in Quark Gluon Plasma

Section 1.1 introduced our goal - the study of QGP -, and section 1.2
introduced our tool - hadronic jets. Now we will present briefly how they are

connected and what we already discovered at RHIC about jets in heavy ion
collisions.

1.3.1 Theory of Jet Quenching and Broadening in QGP

Hadronic jet quenching via gluon radiation by high momentum partons

propagating through a quark-gluon plasma was proposed as a signature in
1982 by Bjorken [35] in a preprint entitled ”Energy Loss of Energetic Par-
tons in Quark-Gluon Plasma: Possible Extinction of High ��� Jets in Hadron-

Hadron Collisions”. He also mentions the possibility of the extreme case of
QGP signature events with hard collisions such that one jet is escaping rela-
tively unaffected while the other is fully absorbed.

The first extensive calculations of the energy loss by partons in a QGP
were performed in the early 90s by Gyulassy, Wang, and collaborators [36]

and Baier, Dokshitzer, Mueller and collaborators [38]. They showed that
the average energy loss per unit length ��¡àT���@ grows linearly with the total
length of the medium and its gluon density. This produces a suppression of

the high-��� spectra in heavy ion collisions that increases with the size of the
interaction region (collision centrality). They also established the relationship

between the energy loss ��¡�T���@ of the parton and its transverse momentum
broadening 13� J� due to multiple scatterings. Jet broadening (increase of the
width of the transverse momentum distribution of fragments with respect to

its axis), enhanced acoplanarity and energy imbalance of back-to-back jets
are also among the possible manifestations of these effects.

An energetic parton produced in a hard collision interacts with the medium
by emitting a gluon which travels with a mean free path

� � a T _ , which is
the range of screened multiple gluon interactions. The medium dependence

of this interaction is incorporated in the transport coefficient:

®á 4 _ J�â4Oã^äå� J á � � á J� � ¢� J=á � 4
� 8 J£æ �æ J� F a Y É ã � @
w \ @ « ®á�ç ] (1.7)

where L is the medium thickness, ã its density, and @
w \ @ « X J ] the gluon struc-
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ture function. All the important quantities described above are related to ®á :
s differential energy loss: F ��¡��@ 
 Y É ®á�ç (1.8)

s ��� broadening: �è� J� � 
 ®ádç (1.9)

s gluon saturation momentum scale (see below):

X J É 
 U�K�é�®á (1.10)

In the case of an expanding plasma the energy loss is expected to be at

least twice as big compared to the case of a static plasma.

1.3.2 Jet Quenching Discovery at RHIC

One of the first important RHIC results was the discovery of high-��� hadron
suppression [14] [15]. It was quantified using the nuclear modification factor:

K�é�ê \ ��� ] ¬ � J æ é�êWT���������ë� é�ê�� J ¢ ¥·¥ T������
��ë (1.11)

where
� é�ê 
 � æ � :-ìíì � T ¢ ,/g�î�ì¥0¥ is the nuclear thickness function and � æ � :-ìÃì � is

the mean number of binary collisions (estimated with a Glauber model). If
the nuclear collision is an incoherent superposition of binary pp collisions

(negligible nuclear effects), then Kté�ê 
 a
. So, by definition, Kïé�ê measures

the modification of the hadronic ��� spectra due to any nuclear effects in ��ð
collisions. A strong suppression ( Kté%;"é�;�}ñ6�Á/U for ��� � � w�x�IST�  ) has been ob-

served in central 0-10% �	����� collisions at RHIC, as shown in the left panel of
Fig.(1.4); it gradually sets on from peripheral collisions, where binary scaling

( K�é%;(é%;t} a
) is found, to central collisions.

However, this was not yet definitive proof of jet quenching since there are
many other effects than final state energy loss that could produce a nuclear

modification of high-��� hadronic spectra:

s Gluon Saturation Effects in the initial state of the collision [42] - at low@ the gluon wave functions grow until they become comparable with
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Figure 1.4 Jet Quenching at RHIC: Left Panel - the nuclear mod-
ification factor Kïé�é of 8 V spectra in central 0-10% and
peripheral 80-92% �	�
�	� collisions exhibits a strong
suppression; Right Panel - the nuclear modification
factor K�¶0é�; of 8 V spectra in minimum bias ����� colli-
sions exhibits a Cronin enhancement.

the size of the nucleus and start to overlap with each other. When this
happens (at the gluon saturation momentum scale given by Eq.(1.10)),

large coherence effects set on, with deep consequences on the partonic
interactions. Most notably, U r U parton scattering is no longer the

leading process, but U r a
gluon fusion ( ò b ò r ò ) becomes dominant.

High-��� hadronic spectra are predicted to be suppressed in such cases.

s Cronin Effect in the initial state of the collision [10] - multiple soft scat-

tering before the hard scattering increase the transverse momentum of
the parton, leading to an enhancement of the hadron spectra at high-��� ;
it leads to and enhancement of high ��� hadronic spectra proportional to�	ó Å ¥ §�Ê , with Y^\ ��� � U�wyx�IRT�  ] � a

:

¡ � ¢ ¥ é� c � 
 ¡ � ¢ ¥0¥� c � � ó Å ¥ §�Ê (1.12)

The Cronin effect also produces a ��� increase with the nuclear mass A,

as mentioned in the previous Section. This effect also happens in the
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final state of the collision if it is cold nuclear matter(like in ��� collisions).

s Gluon Radiation Effect (energy loss) in the final state of the nuclear col-

lision - described in the previous section.

There is a simple way to disentangle experimentally final and initial state
nuclear effects on the spectra: perform the same measurement (same colli-

sion energy, centrality, and ��� region) in ���	� collisions. All the initial state
effects listed above will be present, but no final state effect. Measurements

[16] showed that the central ����� spectrum is enhanced ( KM¶0é�;�} a Á/U in 0-20%
centrality), while the peripheral one is in agreement with binary scaling. The
right panel of Fig.(1.4) shows the nuclear modification factor of 8[V spectra in

minimum bias ����� collisions (as a systematic check, for both electromagnetic
calorimeters in PHENIX). This is solid proof that the high-��� suppression in

central �	����� collisions is a final state effect, and hence a proof of jet quench-
ing at RHIC.

Finally, the @�� dependence of the high-��� hadronic spectra was extracted

by the PHENIX collaboration [15]. As expected, peripheral collision 8CV spectra
at both

� ��ô[ô�

130 and 200 GeV scale with @�� , suggesting that they indeed

come from fragmentation of hard scattered partons. More interestingly, even
the most central collision spectra were also found to scale with @
� with the
same power index ² \ @�� « � ��ô[ô ] 
 Ò�ÁÃu� O6�ÁÃÒ in the 6�ÁÃ6�U � Ñ­@��èÑ½6�ÁÂ6�Ò region, as

shown in Fig.(1.5). In this kinematical region, partonic energy loss in the
QGP preserves @�� scaling, a fact related to the apparent independency of Kté�é
on ��� .

1.4 Thesis Organization

We present the study of hadronic jets in ��� and �	�
�	� collisions at
� ��ô�ôH


U�6�6�wyx�I based on the two-particle azimuthal correlation method. We extract

more detailed information about their properties in vacuum and hot QCD
matter (QGP). A comparison with the results for cold nuclear matter ( �����
collisions) is also done.

Chapter 2 gives a detailed description of the sources of azimuthal cor-
relations in high energy collisions. First, we define all the quantities used

to describe jets: shape parameters (�#� , ��� ), conditional yields, fragmentation
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Figure 1.5 @�� scaling of 8�V spectra at RHIC: the �������P8WV spec-
tra scale with @�� and have the same power law index²è}�Ò�ÁÃu for both collision energies (130 and 200 GeV)
and for all centralities.
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function (z and @
B distributions). Then we derive the basic equations that
relate these quantities to the azimuthal correlation functions. In the last

section, we develop the formalism of azimuthal correlation functions with
multiple sources.

Chapter 3 contains a brief description of the PHENIX central arms de-

tectors used in this analysis. We will describe the methods used to derive
the physical quantities (event centrality, vertex, and trigger; charged hadron

track kinematics, identification, and quality; electromagnetic cluster energy,
position, and identification.)

Chapter 4 details the data analysis methods: data selection, analysis tech-

nique, and various corrections are presented. The definition and normaliza-
tion of azimuthal correlation functions are presented. Also, we will discuss

in detail the techniques used to extract jet physical quantities from the cor-
relation functions.

Chapter 5 presents the results: the vacuum (��� ) fragmentation function,

the jet shape parameters in both ��� and �	�
�	� collisions, and the centrality
dependence of �	����� conditional yields.

Finally, chapter 6 discusses the above results.
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CHAPTER 2. Hadronic Jets and Other Sources of

Two-Particle Azimuthal Correlations

2.1 Definitions of Jet Kinematical Parameters

We define here the kinematical parameters used to describe a dijet event
(two roughly back-to-back hadronic jets generated by the fragmentation of
two partons from a hard scattering process) and their relationship with pa-

rameters of a two-hadron azimuthal correlation function (CF). Figure (2.1)
shows the topology of such an event. The ”trigger” hadron has a high trans-

verse momentum ��� Ç )+*-,Â.·. and the ”associated” hadron has a lower ��� value; on
average, the trigger carries a large fraction of its parent parton momentum
( }P6�ÁÃ¿ ) and also deviates very little from its direction.

Fragmentation Momentum Fraction z is the ratio between the component
of fragment’s ��� along the direction of its parent parton and parton’s ����� :

�y¬ Ý��� � Ý������ J��� (2.1)

However, since we usually do not have direct access to parton kinematic
variables, experimental equivalent quantities are defined with respect to

the trigger hadron: @�B5¬õF�Ý��� � Ý����)+*�,/.0.� J�%)+*-,/.0. (2.2)

where the ”-” sign is used to make @�B positively defined for hadrons from
back-to-back jets.

Fragmentation Transverse Momentum �#�%$ (1-D component) is the compo-
nent of fragment’s ��� orthogonal to the direction of its parent parton:

�(�%$ö¬v��� ��÷ ² \ 2{F»2
� ] (2.3)
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where 2 is the azimuthal angle of the fragment and 2?� of the parton.
Since � describes the longitudinal component of the fragmentation and�(�%$ the orthogonal one, � J� 
 � J�%$ b � J � J��� (2.4)

Parton Transverse Momentum ���%$ (1-D component) is the component of
parton’s momentum orthogonal on its propagation direction; it has a

random orientation (zero mean) and produces the axis acoplanarity and
energy imbalance of the dijets (jets originating from the same hard scat-
tering process). As mentioned in the first chapter, there are three com-

ponents to ���%$ : vacuum (VAC) (with its own two subcomponents - con-
finement and NLO), initial state (IS) (generated by the Cronin effect), and

final state (FS) (generated by interaction with the QGP via gluon radia-
tion). By measuring it in various collision types, we can extract all these
components: �"!'���%$�!&� Å ¥0¥ Ê ¬­�"!'����$�!'�=ø�é�Ö (2.5)

�"!'����$�!'� Å ¥ é Ê ¬ù�"!&���%$�!&�úø�é�Ö3û��"!&���%$�!&�úü Z (2.6)

�"!'����$�!'� Å/é�é Ê ¬­��!&���%$�!&�=ø�é�ÖoûP�"!'����$�!'�úü Z ûP��!&���%$%!'�úý Z (2.7)

Hadron Momentum out of Trigger Plane ��:�;�) is the momentum component

of the associated hadron out of the plane formed by the trigger hadron
momentum and the beam axis. It is depicted by the thick black arrow

in Figure (2.1) and depends on both �#�%$ and ����$ .
Throughout this work we will use the Gaussian approximation for the jet

azimuthal profile with the understanding that it underpredicts the real dis-

tribution at large relative azimuthal angles. We will test this approximation
in the case of jets in ��� collisions.

If w \ @ «Äþ�] is a symmetric( ¢ Æ 
 ¢ $ ) 2-D Gaussian, the following equations

between the 2D rms, 1D rms and mean of 1D absolute coordinate hold:ÿ � � J � 
 � U ÿ �A@ J � 
 � 8 �"! @ !&� (2.8)

where
� ¬ � @ J b þ J . Note that mean of 1D coordinate is null �`@��G¬ 6 . All

processes that induce a ��� kick on the parton have a random orientation in
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Figure 2.1 Topology of a dijet event (see text)

the plane orthogonal to the parton’s propagation direction, hence ���%Æ and ���%$
have symmetric distributions. The same is true for ��� .

A large fraction of this chapter deals with the relationship between the jet
parameters and the parameters of the two-hadron azimuthal correlation of a
jet source. The typical shape of such a correlation function, as can be seen in

Fig.(C.1), comprises a near-angle gaussian (centered at !'132 ! 
 6 ) described by
its width ¢ ô and area N ô and an away-angle gaussian (centered at ! 1o2 ! 
 8 )

also described by its width ¢ é and area N?é . Note that two-hadron correlation
functions in heavy ion collisions have another component - collective flow -
that will be dealt with separately in Section 2.4.

Finally, two-hadron correlation functions can be mapped out as a func-
tion of both hadrons’ momenta. We will refer to correlations of hadrons with

momenta in the same interval ( �­����)+*�,/.0. � 
 �­��� �
) as fixed (or symmetric)

correlation functions, and to correlations of hadrons with momenta in dif-
ferent intervals ( �����%)+*-,/.0. � � � ��� �

) as assorted (or asymmetric) correlation

functions. In the later, it is usual to fix the trigger hadron and scan the ��� of
the associated hadron.
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2.2 Derivation of the Equations for Jet Shape Parameters

2.2.1 Extraction of ��! ���%$�!&�
From Eq.(2.3), we can write:

�"! �(��$�!'� }­�¸���?����� l �"!&23F 2��úîA)=!'� (2.9)

where we neglected the covariance between hadron’s momentum and az-
imuthal angle. This is know to break at low ��� (comparable to ��� ) due to

the Seagull effect which truncates the large relative azimuthal angles (see
Appendix B).

The standard deviation of two-particle relative azimuthal distribution com-

ing from the fragmentation of a parton is

¢ Jô ¬ � \ 2 i F 2�J ]·J � 
 � \ú\ 2 i F»2��úîA) ] F \ 2
J FH2��·î<) ]ú]·J �
 � \ 2 i F 2��úî<) ]·J � b � \ 2
J FH2��úîA) ]·J �
 8 U � �"!'2 i F 2��úî<)ú!&� J b �"!&2�J F 2��úîA)=!&� J � (2.10)

where we used Eq.(2.8) and assumed statistical independent production of
the two fragments ( � \ 2 i F 2��úî<) ] \ 2
J F 2��úîA) ] �S¬�6 ). In the case of symmetric (fixed)
correlations, the two fragments have the same azimuthal distributions and

¢ ôH
 � 8 �"!&23FH2��·î<)Ä!'� (2.11)

so, the formula for symmetric (fixed) correlations is:

��! �(�%$�!'� 
 �>���?���	� l ¢ ô� 8 (2.12)

For asymmetric (assorted) correlations the angular dispersion is

¢ ôH
�
 8 U
�

� ���	� ��� l J �"! �(�%$�!&��>��� i � b ����� ��� l J ��! �(�%$�!&��>����J�� (2.13)

where we used the scaling property of �#� . By inverting (2.13) and assuming
that ����� �	� l \�� � ò ] } � � ò (the small angle, or high ��� , approximation) one can
extract
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�"! �(�%$�!&� }�� U8 ¢ ô �>��� i ���>����J£�ÿ �>��� i � J b �¸����J�� J (2.14)

Notes:s The scaling of ��� with ��� can also be tested using assorted correlations:

fixed correlations are employed in a given ”reference” ��� bin to measure
its �"! �(�%$�!'� using Eq.(2.12), then assorted correlations are employed with
one hadron kept fixed in this reference bin and the other hadron scan-

ning the entire ��� spectrum; this way, in Eq.(2.13), one �"! �#�%$�!&� is known
and fixed allowing the extraction of the other one without any scaling

assumption.s �(� scaling, in view of Eq.(2.12), tells us that the lower the ��� of a frag-

ment, the broader its emission angle, such that ��� � 1o2|}9 ���² � ± ; there is
however an upper cutoff due to the Seagull effect (see Appendix B).

2.2.2 �"! ��:�;�)Ä!&� Formula and Extraction of ��!&����$�!'�
In this section we will derive an equation for �"! �
:�;�)Ä!'� similar with Eq.(1.6)

obtained by Feynman, Field and Fox [30] and used in the CCOR experiment
[5], but taking into account some factors explicitly neglected in [30].

Let us first examine the case of two hadrons from the fragmentation of
two hard-scattered partons with zero fragmentation transverse momentum�"! �(��$�!'� as shown in Fig.(2.2).

jet 1

jet 2

|>out<|pTtriggp

Tp

2| >Ty2*<|k

Figure 2.2 Topology of a dijet event with ���?¬P6 for both the trigger
and the associated hadrons.

From Eq.(2.2) and Fig.(2.2) the �"! ��:�;�)Ä!&� formula reads:
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�"! ��:<;")=!&� J 
 Ud@ JB �����%$(� J ����)+*-,Â.·.(� Ja F U��-����$�� J ����)+*-,/.0.(� J T��>���%)+*-,/.0.(� J (2.15)

A comparison with Eq.(1.6) shows that the fraction in the right hand side
is neglected. A much simpler formula can be obtained however if the @?B
variable is replaced by

@�´t¬ �>���?��¸���%)+*-,/.0.(� (2.16)

Then the formula for �"! ��:�;�)=!'� can be written as

��! ��:�;�)Ä!'� J 
 Ud@ J´ ����)+*-,Â.·.(� J �"!&���%$�!&� J (2.17)

where we used the fact that �"! �����úî<) i !&� 
 ��! �����úîA)¸J�!'� . Note that this is true only
on average ( ��� smearing also produces parton momentum imbalance in each
event; still, due to its random angular distribution, it does not change the

mean of the parton momentum distribution).

Let us examine the case when the �"! �#�%$%!&� � 0 for trigger particle and ��! ���%$�!&� =0
for associated particle as in Fig.(2.3). The magnitude of @ i corresponds to

jet

jet

|>out<|p

Ttriggp Tp| >Ty<|j
1x

2x

Figure 2.3 Topology of a dijet event with �#�SQ
 6 only for the trigger
hadron.

�"! ��:�;�)Ä!&� from Fig. 2.2. The �"! �(��$�!'� kick on the trigger particle generates an ad-
ditional component @
J . The �"! ��:�;�)Ä!&� value can be obtained from the orthogonal
projection of @ i ûv@�J to Ý���%)+*-,/.0. . One can see that

@ JJ�>���?� J F³@ J i 
 �"! �(�%$�!&� J�¸���%)+*-,/.0.(� J F �"! �(�%$�!&� J (2.18)
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and

�"! ��:<;")=!&� J 
 \ @ J i b @ JJ ] �>���%)+*-,Â.·.(� J Fè��! �(�%$�!&� J�>����)+*�,/.0.(� J 
 Ud@ J´ �<��)+*-,/.0.�� J �"!'���%$�!'� J b @ J´ �"! �(�%$�!&� J (2.19)

An approximation, used in the first equality, is that we neglected the term@ i � @�J because its statistical mean corresponds to the correlation between

the acoplanarity vector ( @ i 
 �"! ��:<;")=!&� ) and the transverse fragmentation vector
( @�J�4 �"! �(�%$�!&� ), which we suppose independent. Another approximation, used

in the second equality, is that U���! ����$�!'� J z �¸���%)+*-,/.0.(� J , which is always the case
in our analysis.

In the final step the �"! ���%$%!'� � 0 of the associated particle is taken into ac-
count (see Fig. 2.4). Here @ c (the ��! ��:�;�)Ä!'� J value from (2.19)) gets additional

jet

jet

|>out<|p

Ttriggp Tp| >Ty<|j

3x

4x 5x

Figure 2.4 Topology of a dijet event with ���RQ
 6 for the both
hadrons.

component @ Ï which correspond to the projection of �"! �#�%$�!&� � 0 from the asso-
ciated particle to the Ý��:�;�) direction.

If we neglect the acoplanarity between Ý@ Í and Ý��:�;�) , then we get the final
formula for �"! ��:�;�)Ä!'� :

�"! ��:�;�)Ä!&� J 
 U�@ J´ ����� J)+*-,Â.·. �"!'����$�!'� J b � aRb @ J´ � �"! �(�%$%!'� J (2.20)

Compared to Eq.(1.6), there are two differences: �"!'���%$�!&� gets multiplied by����)+*-,Â.·.(� and @�B is replaced by @�´ .
If 132 is the relative azimuthal angle between the trigger hadron and an
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associated hadron from the opposite jet of the dijet, then

�"! ��:�;�)Ä!&� 
 F��>���?���	� l �"! 1o2 !&� 
 F��>���?���	� l � U8 ¢ é (2.21)

where ¢ é is the width of the away side Gaussian. The final equation for �"!&����$�!'�
is:

�"!&���%$�!&� 
 a� Ud@�´%����)+*-,Â.·.(�
�

� �>���
� J ��� l J � U8 ¢ é{F \ aSb @ J´ ] �"! �(�%$%!'� J (2.22)

Note that ��!&���%$�!'� depends not only on ¢ é and ¢ ô (through �"! �(�%$%!'� ), but also

on ����)+*�,/.0.(� , a quantity which has to be calculated from the fragmentation func-
tion. Also, the �"!&����$�!'� formula for fixed (symmetric) correlations is easily ob-
tained from Eq.(2.22) by setting @�´ï¬ a

.

Note also that in the small angle approximation ( ��� l @ } @ ), by using
Eq.(2.14) we get the usual formula:

�"!'���%$�!&� } a� 8 ����)+*-,/.0.(� �¸���%)+*-,/.0.(� ÿ ¢ Jé F ¢ Jô (2.23)

or, ÿ �-� J� � }ù�>�����·î<)¦� ÿ ¢ Jé F ¢ Jô (2.24)

Finally, it was J. Rak who first realized the missing ����)+*-,/.0.�� factor in Feyn-

man, Field and Fox formula Eq.(1.6). We point out here that all the previous
measurements of

ÿ �-� J� � based on two hadron correlations (like the CCOR
measurements [5]) contain this factor and should be corrected for it.

2.3 Jet Conditional Yields. Jet Fragmentation Function.

The probability that a certain event B occurs given that another event A
has occurred is called a conditional probability � \ ðG! � ] and is given by

� \ ð|! � ] 
 � \ ���Gð ]� \ � ] (2.25)

where � \ ���Ëð ] is the probability of both A and B occurring, and � \ � ] is the

probability of A occurring without reference to B.
In two-particle correlation analysis, we define in the same way the near/away

conditional yields as the number of associated hadrons in the near/away
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region per trigger hadron:

² ô Ç éG¬ æ ¥ µ0,/* Éô Ç éæ )+*-,/.0. 

aæ )+*-,/.0. N

ô Ç éN æ ¥ µ0,/* É (2.26)

where æ ¥ µ0,/* Éô Ç é are the number of pairs in the near/away region, and æ ¥ µ·,/* É is
the total number of pairs entering in the correlation function. In Section 4.2
we will define the correlation function such that the ratio of the near/away

Gaussian areas N ô Ç é and its total area N will be equal to the ratio of the
number of pairs in these regions.

The � distribution of hadrons from parton fragmentation is called the par-
ton fragmentation function. It has been introduced in Section 1.2 and we
also mentioned that @
B is used instead of � in many experiments. We ex-

tract it by measuring the �`@�BC� dependence of the away conditional yield ²�é
in assorted correlations with the trigger hadron fixed at some high ��� and
scanning with the associated hadron lower ��� values. The trigger approxi-

mates well the transverse momentum and direction of the parton, hence the
distribution of the number of associated hadrons in @�B will give the frag-

mentation function. Note that doing this with the near conditional yield ² ô
imposes a trigger bias on the fragmentation function. Also note that applying
this procedure in heavy ion collisions for various centralities measures the

modification of the parton fragmentation function in QCD media.

The inverse slope of an exponential fit of the fragmentation function mea-
sured as described above is equal to �`@�BC� . The rest of this section presents
an iterative method for the extraction of ����� from �A@�BC� and the measured 8WV
spectra.

The high-��� hadron spectrum from parton fragmentation can be written

as a convolution of the fragmentation function � \ � ] and final state parton
spectrum

~ � \ ����� ] : � ¢��������� 
 ä iÆ § � \ � ] ~ � � ���� � �%�� J (2.27)

where @��G¬�U"���?T � ��ô�ô .

Due to the universality and X J -independence of the fragmentation func-
tion, one can use the form found in previous experiments: � \ � ] } x f%¤! .
For the hadronic ��� spectrum we use a fit to the data, like the Hagedorn



23

parametrization. Then, we assume that the partonic ��� spectrum
~ � \ ����� ]

has the same form (parametrization) and vary its parameters under the con-

straint given by Eq.(2.27) until the hadronic spectrum is recovered. This way
we extract

~ � \ ����� ] .
Note that for ��� � u�w�x�IST�  , when the hadronic spectrum becomes power

law
a T"����� ¢ T��#��� 
#" T \ � V b ��� ] g , the partonic spectrum is also power law with a

power index ²{F U .
Since �<��� 
%$ iÆ § ��� \ � ] ~ � \ ����T�� ] � f J �%�$ iÆ § � \ � ] ~ � \ ���?T�� ] � f J �%� (2.28)

using the relationship �`@
BW�#����)+*-,Â.·.�� 
 �<��� , we get

�A@�BC� � $ iÆ §'&)(+*-,., ��x f� ß	/  	0 ~ � \ ���?T�� ] � f J ���$ iÆ §'&)(+*-,., x f� ß	/  10 ~ � \ ���?T�� ] � f J ��� 
 ����� (2.29)

We finally solve Eq.(2.29) numerically for ����� for each trigger momentum���%)+*-,/.0. .
Note that we can use the ”inclusive” ����� extracted as above to correct only

the �������"!&���%$%!'� from fixed (symmetric) correlation functions. In assorted (asym-
metric) correlation functions, the different kinematical restrictions imposed

on the trigger-hadron pair generate a ”conditional” fragmentation function
with a different ����� . Appendix A presents in detail this issue.

2.4 Collective Quadrupole Azimuthal Correlations.

The previous sections of this chapter dealt in detail with the various pa-
rameters of the correlation functions generated by jets.

As mentioned already, in heavy ion collisions, there is another source of

two-hadron azimuthal correlations: collective flow. The spatial azimuthal
anisotropy in the initial state (the ”almond” shape of the interaction region) is

transformed by the dynamics of the interaction into momentum anisotropy in
the final state. This is due to the long range, collective correlations present in
the bulk QCD matter formed in such collisions. The azimuthal distribution

of the hadrons formed can be described by a Fourier decomposition around
the reaction plane direction 243�5 (the projection of the impact parameter Ý6 in
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the transversal plane):

� æ�%2 
 ²Ud887 aRb�9 i �;: � \ 2oF�2<3�5 ] b U 9 J �=: � \ U \ 2ÐF>2<3�5 ]ú]@? (2.30)

where ² is the total number of hadrons. The terms of order ² � u of the
expansion have been neglected. The expansion coefficients are: directed flow
coefficient

9 i and elliptic flow coefficient
9 J . In the particular case of mid-

rapidity collisions at RHIC, directed flow is negligible compared to elliptic

flow (
9 i \ ë }P6 ] }�6 ) [26] so

� æ�%2 \ ë3}P6 ] } ²U�887 aSb U 9 J �=: � \ U \ 2ÐF�2<3�5 ]=]@? (2.31)

The pair relative azimuthal distribution can be obtained from Eq.(2.31) by
convoluting it with itself:

� J æ i J�%2 i �%2�J 
 ä ��2<3�5Ud8 � æ i�%2 i �
æ J�%2�J 
 ² i ²�J\ Ud8 ] J 7 aSb U 9�Å i ÊJ 9�Å/J ÊJ �;: � \ U \ 2 i F 2�J ]=]!? (2.32)

So the typical elliptic flow correlation function will have a �=: � \ U�132 ] shape.
The measured elliptic flow coefficient

9 J at RHIC [17] agrees very well with

hydrodynamical calculations in the low ��� ( �7U�wyx�IRT�  ) region. In the high ���
region (

� U�w�x�IST�  ), 9 J is approximately independent of ��� deviating system-
atically from any hydrodynamical model. This is why the historical name of

collective ”flow” coefficient for
9 J is misleading in the context of high ��� cor-

relations and we will refer to it from now on as the collective ”quadrupole”

coefficient.

2.5 Correlation Function with a Jet Source and a
Collective Quadrupole Source

In the previous section we argued that azimuthal correlations in heavy
ion collisions have two sources - dijets and collective. The overall azimuthal
correlation function with multiple sources is not a linear superposition of

individual correlation functions from each source - potentially, large compo-
nents arise from the interference of these sources.

In this section, we will develop a model for the correlation function with a
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dijet source and a collective quadrupole source.

In order to describe the azimuthal distribution of hadrons from a jet
source, the correlation between the jet emission angle 2BA�î<) and the reaction
plane of the collision 2<3�5 is introduced by modulating the angular fragmen-

tation function w \ 2¯FC2DA�îA) ] (which we will suppose normalized to unity) with
their difference:

� æ�%2 \ 2<3�5 « 24A�î<) ] 
 ²?w \ 2ÐF�24A�î<) ] 7 aRb U(�#J �=: � \ U \ 2EA�îA)
F>2<3�5 ]ú]@? (2.33)

where �#J is the average effective quadrupole strength of this correlation.
Since the jet emission in the transverse plane is random, we can integrate

over 24A�î<) : � æ�%2 \ 2<3�5 ] 
 ²Ud8 7 aSb U��#J � ò�J �=: � \ U \ 2oF�2<3�5 ]ú]@? (2.34)

where ò�JR¬ ä�w \ @ ] �;: � \ Ud@ ] ��@ (2.35)

is the second cosine Fourier moment of function G.

From Eq.(2.31) and Eq.(2.34) we get the following azimuthal hadron dis-
tribution: � æ�%2 \ 2<3�5 ] 
 ²U�8 7 aRb U�I�J �=: � \ U \ 2oF�2<3�5 ]ú]@? (2.36)

where I�JS¬ ² Å)F£ìÃ:HG Ê² 9 J b ² ÅI�·î<) Ê² �#JÄò�J (2.37)

² Å)F£ìÃ:.G Ê being the total number of hadrons from the collective source and ² Å �úî<) Ê
the total number of hadrons from the jet source, ² ÅJF£ìí:HG Ê b ² Å �úîA) Ê 
 ² .

Having the forms of the single hadron azimuthal distributions from both
sources - Eq.(2.31) for the collective source and Eq.(2.34) for the jet source -

we can obtain the hadron pair relative azimuthal distributions by convolution

� JÄæ i J�%2 i �%2�J 

a
Ud8 äå��2<3�5 � æ i�%2 i \ 2<3�5 ]�� � æ J�%2�J \ 2<3�5 ] (2.38)

and, from it, the relative azimuthal angle correlation function (normalized to
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unity): " \ 132 ] ¬ Ud8² i ²�J ä J-jV �%2 i ä J-jV �%2
JBK \ 1o2ÐF \ 2 i F 2
J ]=] � J£æ i J�%2 i �%2
J (2.39)

Both hadrons from collective source - corresponds to the convolution of
Eq.(2.31) with itself and gives:

" �`� 132 ] 
 ² Å)F�ìí:HG Êi ² ÅJF£ìí:HG ÊJ² i ²�J 7 aRb U 9�Å i ÊJ 9�Å/J ÊJ �;: � \ U�132 ]@? (2.40)

One hadron from collective source, the other from jet source - corresponds
to the convolution of Eqs.(2.31) and (2.34) and gives

" � � \ 132 ] 
 ² Å)F£ìÃ:HG Êi ² ÅI�·î<) ÊJ² i ²�J 7 aRb U 9�Å i ÊJ � Å/J ÊJ ò Å/J ÊJ �;: � \ U�1o2 ]!? (2.41)

Both hadrons from two different jets - corresponds to the convolution of
Eq.(2.34) with itself and gives:

" �1LM� p \ 132 ] 
 ² ÅI�·î<) Êi ² Å �úîA) ÊJ² i ²?J 7 aRb U�� Å i ÊJ ò Å i ÊJ � ÅÂJ ÊJ ò ÅÂJ ÊJ �;: � \ U�132 ]N? (2.42)

Both hadrons from the same jet (a monojet) - corresponds to the convo-
lution of the angular fragmentation function w \ 2 FO2PA�îA) ] with itself, if we
assume independent fragmentation, and gives:

"RQ :�g#:S�·î<) \ 132 ] 
 Ud8�² Å Q :�g�:S�úîA) Êi J² i ²�J w \ 132 ] (2.43)

where w \ 132 ] ¬ $ ��24A�î<)`w \ 2 i FT24A�îA) ] w \ 2�J�FT24A�îA) ] is a Gaussian like the single
azimuthal distribution w \ 2tFU2DA�î<) ] , but with a width larger by

� U ( ¢ J ¥ µ0*-) 
� U ¢ i ¥ µ0*-) ).
Both hadrons from two back-to-back jets (a dijet) - corresponds to the con-

volution of Eq.(2.33) for a jet with direction 2PA�îA) with the same form for
a back-to-back jet with the direction

2WVA�î<) 
 24A�îA)?F �èF¼8 (2.44)

where � is the dijet acoplanarity. If we denote by � i J \ � ] ¬ ��² i J"T���� the
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hadron pair acoplanarity distribution, we have:

� J£æ i J�%2 i ��2�J 
 ä �%�8� i J \ � ] ä ��2<3�5Ud8 ä ��24A�î<)Ud8 � ë�² Å/¶e,-�·î<) Êi J
w \ 2 i F�24A�î<) ] 7 aRb U�� Å i ÊJ �=: � \ U \ 24A�î<)
F�2<3�5 ]=]@?w \ 2
J F�2 VA�î<) ] 7 aRb U�� Å/J ÊJ �=: � \ U \ 2 V A�î<) F�2<3�5 ]=]@? (2.45)

where ë is a normalization constant and � , 2DA�î<) , and 2 V A�îA) are related

through Eq.(2.44). The integrals over 243�5 and 24A�îA) are:

ä ��2<3�5 7 aRb U�� Å i ÊJ �;: � \ U \ 24A�î<)
F�2<3�5 ]ú]!? 7 aRb U�� Å/J ÊJ �=: � \ U \ 2WVA�î<) F>2<3�5 ]=]@?
 U�8 7 aRb U�� Å i ÊJ � Å/J ÊJ �=: � \ U�� ]!? (2.46)

ä ��24A�î<)Aw \ 2 i F�24A�î<) ] w \ 2
J b � b 8GF�24A�î<) ] 
 w \ 132ÐF \ � b 8 ]=] (2.47)

where w \ 132 ] is again a 2-dimensional Gaussian, so it has the width

larger by
� U compared to the 1-dimensional Gaussian w \ 2ËFX2PA�î<) ] . By

replacing these integrals in Eq.(2.45), we get:

� JÄæ i J�%2 i �%2
J 
 ² Å/¶e,-�·î<) Êi JU�8 ä ���t¡ \ � ] w \ 132ÐF \ � b 8 ]=] (2.48)

where we defined:

¡ \ � ] ¬Oë�� i J \ � ] 7 a b U�� Å i ÊJ � Å/J ÊJ �;: � \ U�� ]!? (2.49)

and the normalization constant ë is chosen such that $ �%�t¡ \ � ] ¬ a
.

Finally, from Eq.(2.48) and Eq.(2.39), we get the correlation function for
this last type of hadron pairs:

" ¶e,-�·î<) \ 132 ] 
 Ud8�² ÅÂ¶0,I�úî<) Êi J² i ²?J \ ¡ZY w ] \ 132ÐF³8 ] (2.50)

where by ¡[Y3w we denoted the convolution with respect to the dijet
acoplanarity angle � of the angular fragmentation function w \ 132 ] and
the acoplanarity function ¡ \ � ] .
The treatment presented here for the correlation of hadron pairs from

dijets (back-to-back jets) was developed by P. Stankus [20].
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We are ready to add up the contributions from all pair types described
above to the azimuthal correlation function:" \ 132 ] 
 ² Å)F�ìí:HG Êi ² ÅJF£ìí:HG ÊJ² i ²�J 7 aSb U 9 Å i ÊJ 9 Å/J ÊJ �;: � \ U�132 ]@?

b ² ÅJF£ìí:HG Êi ² ÅI�·î<) ÊJ² i ²?J 7 aRb U 9�Å i ÊJ � ÅÂJ ÊJ ò ÅÂJ ÊJ �=: � \ U�132 ]!?
b ² ÅI�·î<) Êi ² Å)F£ìÃ:.G ÊJ² i ²?J 7 aRb U 9�ÅÂJ ÊJ � Å i ÊJ ò Å i ÊJ �=: � \ U�132 ]!?
b ² ÅI�·î<) Êi ² Å �úîA) ÊJ² i ²?J 7 aRb U�� Å i ÊJ ò Å i ÊJ � ÅÂJ ÊJ ò ÅÂJ ÊJ �=: � \ U�132 ]@?
b U�8�² Å Q :<g#:S�·î<) Êi J² i ²?J w \ 132 ]
b U�8�² ÅÂ¶e,-�úîA) Êi J² i ²?J \ ¡ZYöw ] \ 132ÐF³8 ] (2.51)

After some regrouping of terms and using the simple identities ²�, 
 ² Å)F£ìÃ:.G Ê, b
² Å �úîA) Ê, \ ÷�
 a « U ] , we get get the final formula:" \ 1o2 ] 
 aRb U�I Å i ÊJ I ÅÂJ ÊJ �;: � \ U�132 ]b Ud8�² Å Q :�g#:\�úî<) Êi J² i ²?J w \ 132 ] b Ud8�² ÅÂ¶e,-�úîA) Êi J² i ²?J \ ¡ZYöw ] \ 132ÐF³8 ] (2.52)

where I�J is defined in Eq.(2.37) and ¡ \ � ] is defined in Eq.(2.49).

Comments:s The correlation between the reaction plane 2P3�5 and jet axis 24A�î<) , as
introduced in this model by Eq.(2.33), has the net effect of an increase

in the magnitude of the collective quadrupole coefficient.s The effect of the dijet acoplanarity � on the away two hadron correlation

consists of a change (broadening) of its Gaussian shape. The underlying
physics for the acoplanarity � in this model is the ��� acquired by the

parton in the initial and/or the final state.s In a constant area normalization of the correlation function ( N³¬ $ ��1o2 " \ 132 ] ¬Ud8 ), Eq.(2.52) implies that the ratio between the near/away Gaussian
areas is N ô Ç éN 
 ² ô Ç éi J² i ²?J (2.53)
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which is equivalent to Eq.(2.26) for conditional yields.

2.6 Other Sources of Azimuthal Correlations

In this chapter, we presented the main two sources of physical azimuthal

correlations: dijets, described by one Gaussian in the ”near” relative angle
region ( !'132 !�}P6 ) and one Gaussian in the ”away” relative angle region ( ! 132 !�}8 ), and collective correlations (predominantly quadrupole at ë }�6 ), described
by a cosine modulation of n times the relative angle of amplitude

9 g (n

 U

for quadrupole). However, other types of azimuthal correlations are present

and we will list them below. They are usually regarded as background and
eliminated via various methods.

Resonance Decay Correlations Resonance decays, like ã r 8�º b 8 f , ] ZV r8Wº b 8 f , and ^ r ] f b � , generate near angle correlations. If these decays
happen within

a F a Á ��� from the collision vertex (the radial size of the

magnetic field in the PHENIX spectrometer is U � ), the products will be
bent strongly by the magnetic field since the average ��� of the daughters
is quite low (of the order 6�Á � FH6�ÁÂ¿�wyx�IRT�  ). However, depending on the de-

cay length of these resonances, there could be a small fraction of decay
products that see only a small magnetic region of the spectrometer; they

will therefore be mistakenly reconstructed as high momentum hadrons.
This is an important background in the near relative angle region ( 1o2¯}6 ) of azimuthal correlations functions of charged hadrons at low and

moderate ��� ( �¾U�w�x�IST�  ).
Nonetheless, we can reliably estimate its effects. The width of this corre-

lation depends only on the kinematics of the decay (particle masses and
momenta) which is known; the overall effect turns out to be a narrowing
of the near angle gaussian. Moreover, correlations from jet fragmenta-

tion has little charge dependence, while resonance decay correlations
produce only opposite charge hadrons. Considering these two facts, a
significant difference between the width of the near angle correlation

of same charge hadrons and that of opposite charge hadrons is a good
indication of resonance decay contamination.

Conversion Electrons Correlations Photons from 8[V decays are produced
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copiously over a broad ��� region. They interact with the detector mate-
rial and convert to electron pairs ( Þ r x�º�x f ). This results in a kind of

background very similar with the one produced by resonance decays:
contamination of near angle charged hadron correlation function.
It is more abundant than the first type simply because there are many

more 8�V s than ã s, ] ZV s, or ^ s, but also because there are dense compo-
nents of the detector outside the magnetic field where conversions take

place producing fake high momentum tracks as described above. Most
notably, in the PHENIX detector, the entrance metallic frame of the drift
chamber is the most important source of this kind of background.

Apart from the usual estimation method (charge dependence of near
relative angle width), in this case we have a powerful rejection method:

charged tracks that leave any signal (fire a photomultiplier tube) in
the Ring Imaging Cherenkov (RICH) detector are discarded. The RICH
is a very efficient detector, specially built for electron identification in

PHENIX, which is actually used in this analysis to veto them.

Momentum Conservation Correlations Overall momentum conservation for

the entire event was proven [39] to generate a
9 i like collective correla-

tion. Soft hadron production has an exponential spectrum that dom-
inates at low-��� ; however, when a high-��� hadron (in the tail of the

exponential) is produced in a collision, its momentum is balanced by an
excess in the production of low-��� hadrons in the opposite side. The two
hadron correlation induced by momentum conservation has the typical

form: " 
 F U Ý��� i � Ý����J²?µ·ìíì��¼� J� � µ·ìíì (2.54)

and the relative azimuthal angle distribution of hadron pairs is given by

� J æ i J�%2 i �%2�J }ÓF a8 ²
Q î�µ É²?µ·ìÃì �

ÅI�·î<) Ê� �¼��� � Q î�µ É�Ú� J� � µ·ìÃì � �;: � \ 1o2 ] (2.55)

Note that this type of collective correlation is significant only if the trig-

ger hadron is at high-��� and the associated hadron at low-��� (gener-
ally, bellow 1GeV/c); ² Q î<µ É (the multiplicity in the associated ��� bin)

decreases exponentially with ��� , while ²?µ·ìíì (the integrated multiplicity
over the entire event) is a constant. Note also that it does not happen if
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the high-��� trigger hadron comes from jet fragmentation since this jet is
already balanced in momentum by its back-to-back partner jet.

Residual (Multiplicity Fluctuation) Correlations There is a trivial type of
residual correlation that arise from centrality selection [20], due to mul-
tiplicity fluctuation within a given fixed centrality interval. Suppose that

spectra in ��� collisions are independent of æ ¥ µ0*-) (which is proportional
to the multiplicity). Then,

� c æ�#� c \ æ ¥ µ0*-) ] 
 � æ ¥ µ0*-) ª \ Ý� ] (2.56)

� ¤ æ i J��� c i ��� cJ \ æ ¥ µ0*-) ] 
 � 6 æ J¥ µ0*-) ª \ Ý� i ] ª \ Ý��J ] (2.57)

where
ª \ Ý� ] is the normalized spectral shape. If � \ æ ¥ µ0*-) ] is the normalized

probability distribution of the number of participants, we ca build its
correlation function:" \ Ý� i « Ý��J ] 
 _ ô�`Na (�& � \ æ ¥ µ0*-) ] � ¤ æ i J"T��#� c i �#� cJ_ ô `Na (�& � \ æ ¥ µ0*-) ] � c æ i T��#� c i � _ ô `Ha (+& � \ æ ¥ µ0*-) ] � c æ J�T���� cJ
 _ ô�`Na (�& � \ æ ¥ µ0*-) ] æGJ¥ µ·*-)� _ ô `Na (�& � \ æ ¥ µ0*-) ] æ ¥ µ·*-) � 
 aRbcb ¢ \ æ ¥ µ0*-) ]� æ ¥ µ0*-) �ed J (2.58)

so, the net effect is an increase of the overall flat background from un-

correlated pairs. The so-called subtraction methods (that calculate and
subtract this background to obtain a � æ i J�T���132 distribution) must cor-
rect for this effect, especially when they use rather large centrality bins

(as it can be seen from Eq.(2.58), this residual correlation goes away for
very fine centrality binning).

Since the effect on a correlation function is only on the overall multi-
plicative constant, it can be eliminated through a particular choice of

normalization that fixes it, like the constant area normalization used in
our analysis (see Section 4.2.1).

Detector (Efficiency Fluctuation) Correlations The shape of two particle
azimuthal correlations can be changed by fluctuations of detection ef-
ficiency. This type of detector induced deformations of the correlation



32

functions are corrected by using the event mixing method. See Section
4.2.2 for details.
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CHAPTER 3. PHENIX Central Arm Detectors

3.1 Detector Overview

The PHENIX detector is formed by 11 subsystems grouped in four spec-

trometer arms and three global detectors. Fig.(3.1) shows a beam view and a
side view of the detector.

Global Detectors are positioned around the beam pipe at the interaction
point (the Multiplicity Vertex Detector - MVD) or at large rapidities (the

Beam-Beam Counter - BBC and the Zero Degree Calorimeter - ZDC) and
have full azimuthal coverage. They are used in measuring global quanti-

ties (vertex position, collision time, reaction plane orientation, centrality
and multiplicity) and provide the minimum bias level-1 trigger.

Central Spectrometer Arms are positioned at mid-rapidity ( ! 1 ëC!��¾6�ÁÂu � ) and
each covers Ô�6�Ù in the azimuthal plane. They track (using the Drift

Chambers - DC, Pad Chambers - PC and Time Expansion Chamber -
TEC) and identify (using the Time Of Flight - TOF and the Ring Imag-

ing Cherenkov - RICH detectors) charged hadrons and electrons. The
outer layers are two electromagnetic calorimeters (the Lead Scintillator
- PbSc and Lead Glass - PbGl clorimeters) used in photon and electron

detection.

Forward Spectrometer Arms have the
a Á a�� � ! 1 ëC!C� U�ÁÂU � \ Nf��� ± D ]"« U�Á ��� \ æ � � ± D ]

rapidity coverage and full azimuthal coverage. They track (using the

Muon Tracking Stations - MuTr) and identify (using the Muon Identifier
Panels - MuID) muons.

The PHENIX convention for the coordinate system has the origin at the
middle point between the BBCs, the � axis along the beam axis pointing

towards the north muon arm, and the \ @ «=þ�] plane in the transversal plane
with the @ axis pointing horizontally towards the west arm.
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In the rest of this chapter, we will describe only the detectors used in this
analysis and the way they are employed in extracting physical quantities.

For an extended description of the PHENIX subsystems, electronics, and
online/offline analysis software, see the special NIM issue on RHIC and its
detectors [23].

3.2 Global Detectors

The two Beam-Beam Counters (BBCs) are composed of 64 identical detec-
tor elements placed around the beam pipe (1cm away from it) at u3Ñ ! ëC!%Ñ u�ÁÃÔ
(1.4m from collision point) and have full azimuthal coverage. They measure
charged hadrons emitted from the collision at large rapidity. The detector
element is a Cherenkov counter consisting of a 3cm long, hexagonal shaped,

Quartz radiator and a 1” diameter photomultiplier tube with 12 stage mesh
dynodes. The BBCs are used to:

s measure the vertex position along the beam direction with a resolution
of 0.6cm: �'g0)+Æ 
 ! � i F � J�!'T�U�  , where

� i Ç J is the average time of charged
particles counted in the North/South BBCs.

s give the start time for time-of-flight measurements with a resolution of
about 40ps:

� V 
 \ � i b � J ] T�U .
s reconstruct the reaction plane orientation in heavy ion collisions; be-

cause of the large rapidity position, non-collective effects are very small.

s measure the centrality of the collisions (together with the ZDC).

s provide the minimum bias (Level-1) trigger (see description later in this
chapter).

The two Zero Degree Calorimeters (ZDCs) are small transverse area
hadron calorimeters located downstream of the DX dipole magnets at about

18m from the interaction point. They measure the neutral energy (count the
number of ”spectator” neutrons) within a 2mrad cone about the beam direc-
tion (charged particles are swept away by the DX magnet). They are used

to:
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s measure the vertex position along the beam direction with a resolution
of 3cm: �'g0)+Æ 
 ! � i F � J�!'T�U�  , where

� i Ç J is the average time of neutrons

counted in the North/South ZDCs.

s give the start time for time-of-flight measurements with a resolution of
about 100ps:

� V 
 \ � i b � J ] T�U .
s reconstruct the reaction plane orientation in heavy ion collisions; same

rapidity argument as for BBCs; also, using spectators of the collision

provides bias free measurement.

s measure the centrality of the collisions (together with the BBC).

s monitor the luminosity; during the Au-Au running the ZDC coincidence

rate had an effective cross section of 10.4 barns (with an uncertainty of
about 5%).

s provide the minimum bias (Level-1) trigger (see description below).

PHENIX Level-1 Triggers use online information from fast subsystems to
select interesting events. The Minimum Bias trigger (MB) uses BBC and ZDC

primitives to select events with !'�hg0)+Æ�! � u�6�  � , at least two PMTs hit in each
BBC arm (North and South), and at lest one neutron detected in each ZDC

arm (North and South); the MB trigger efficiency with respect to inelastic�����	� collisions is Ô�U� U %. In the central arms, the ERT trigger is used at
Level-1 to enhance the fraction of events with high-��� hadrons: it requests

a lower threshold discrimination on sums of the analog signals from non-
overlapping 2x2 groups of adjacent towers in the electromagnetic calorime-

ters, equivalent to an energy deposition of about 800MeV. Other Level-1 trig-
gers were used in order to enhance the fraction of events with leptonic (elec-
trons or muons) signals.

Centrality Determination is done in the offline analysis using the cor-
relation between the BBC charge sum and ZDC total deposited energy as

shown in Fig.(3.2): the more central the collision, the less ”spectator” neu-
trons reach the ZDC and the more charged hadrons are emitted from the
collision towards the BBC. From such a plot we can find the fraction of the

total �	����� inelastic cross section produced in a particular event (the cen-
trality class of that event) by using the so called ”clock” method as shown
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in the upper panel of Fig.(3.2). The lower panel of this figure shows the
charged hadron multiplicity distribution and how different centrality classes

contribute to it (more central events have more charged hadrons).
Then Glauber calculations are used to extract physical quantities like the

number of collisions ( æ � :-ìíì ) and the number of participants ( æ ¥ µ0*-) ). A Glauber

model [41] describes nuclear collisions based on the collision geometry (in the
absence of any nuclear medium effects) and the elementary total nucleon-

nucleon inelastic cross section (from which the nucleon mean free path is
obtained).

3.3 Charged Hadron Tracking Detectors

The central spectrometer arms measure the transverse momentum (�
� )
and emission direction ( 2 and Õ ) of charged particles produced in each colli-
sion by tracking them in the central arm magnetic field: the global detectors

are used to measure the emission �hg0)+Æ coordinate (displaced vertices are ne-
glected: @ig0)+Æ ¬ þ g0)+Æ ¬­6 ), the tracking chambers are used to measure the exit
(x,y,z) coordinates and direction vector from the magnetic field, and a detailed

knowledge of the magnetic field map is subsequently used to reconstruct the
trajectory and kinematics of charged particles.

The central magnet is energized by two pairs of concentric coils that gen-
erate an axially symmetric field along the z axis such that charged particles
are bent in the transversal ( @ þ ) plane. The field strength is about 0.48T at� 
 6 and has an approximately Gaussian dependence on the radial dis-
tance. A significant z component develops towards the edge of the magnetic

field region (
� 4�U � « �y4P¿�6�  � ), with an overall focusing effect. We should note

that the innermost part of the first tracking chamber (the Drift Chamber)
has a residual magnetic field. Fig.(3.3) shows the PHENIX central and muon

magnets.
The Drift Chambers (DC) are placed between 2 and 2.5 m in radial dis-

tance from the interaction point and occupy 1.8 m in the z direction and aÔ�6�Ù sector in 2 . A DC consists of 40 planes of sensing wires divided in 80 drift
cells, arranged in 6 layers - X1, U1, V1, X2, U2, V2 in increasing radial order.

The X layers have 12 sense (anode) wires each, oriented parallel to the � axis
for precise tracking in the transversal \ @ þ�] plane. The U and V layers have
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4 sense (anode) wires each, with  MÒ�Ù stereo angles with respect to the � axis
for the precise measurement of the z coordinate of the track, in conjuncture

with PC1 hit information. DC is intended to provide high resolution ��� mea-
surements and participate in the pattern recognition by providing tracking
information that is used to link tracks in the various PHENIX central detector

subsystems together.
In order to perform these two functions DC provides the following perfor-

mance parameters:

s single wire spatial resolution better than 0.15 mm

s single wire two track separation better than 1.5 mm

s spatial resolution in Z direction better than 2 mm

s single wire efficiency better than 95%

The Pad Chambers (PC) are thin proportional chambers with one plane of
anode wires in a gas volume within two cathode planes. The two PCs used
in this analysis (we do not use PC2 because it is installed only in the west

central arm) have the following parameters:

Table 3.1 Pad Chamber Parameters; \ 9 i « 9 J ] correspond to values
in the transversal plane (

9 i ) and in the � direction (
9 J )

Radius Pad Size Single Hit Res Double Hit Res Rad Length
PC1 2.45m (0.84,0.85)   � J (2.5,1.7)mm (2.8,2.4)mm 1.2%

¹ V
PC3 4.90m (1.60,1.67)   � J (4.6,3.6)mm (5.3,5.0)mm 2.4%

¹ V
The PCs measure 3-dimensional hit points of charged hadrons with very

good resolution and efficiency (
� Ô�Ô %). PC1 is used together with the DC in

charged particle tracking (see bellow); the generated tracks are matched to

PC3 hits in order to reduce the combinatorial background.
The Ring Imaging Cherenkov Detectors (RICH) are made from a big ves-

sel (40
� c volume) filled with radiator

"kj J gas that emits Cherenkov photons

for electrons above 4 U�6�L x�IST�  and charged pions above 4 � w�x�IST�  . In the
back of the vessel, two large spherical mirrors (20

� J reflecting area) focus

the Cherenkov light onto two arrays of Photo-Multiplier Tubes (PMTs) with
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peak quantum efficiency of 27% and timing resolution of 250ps. The mean
number of photo-electrons per ring is 10.8 and the ring radius is about 11cm.

The x�Td8 separation is at a
a 6 Ï level for single tracks.

The RICH is a detector specially built for electron identification in the cen-
tral arms. Since the main source of physical background in our analysis are

conversion electrons (see comments in Section 2.6), we use it to veto electron
tracks. More precisely, we require that there are no fired PMTs associated

with our tracks.

The DC-PC1 charged particle tracking in PHENIX is based on a Hough

transform technique, which is a general technique for translating a list of
points into lines (tracks) by using a special parameter space. For example,

one point in the (slope, intercept) space corresponds to a line; therefore, all
the points which lie in a line will produce a peak in this Hough space.

Hence, the charged particle tracking model (trajectory reconstruction) is

developed as follows:

1. transform DC hits in the X layers (on average 12) into lines - a \ @ «=þ�]
point and a direction vector with their errors.

2. reconstruct tracks in the \ @ «=þ�] plane by mapping the above lines in the

Hough space defined by azimuth angle ( 2 ) and inclination angle ( Y ) with
respect to some reference circle, which we placed at R=220cm between

the X1 and X2 wire layers, as shown Fig.(3.4). Peaks in a histogram of2 versus Y for all X1-X2 lines combinations correspond to DC tracks.

3. associate X hits with the reconstructed track simply by looping over the
hits and determining the closest hit to each track within each plane.

Any track sharing a majority of its hits with other tracks is removed
from the track list.

4. use PC1 hits, BBC vertex position �'g·)+Æ , and UV hits to track also in� . First, search for PC1 candidate hits within  yU�  � from the DC track

in the transversal plane determined above. Then, since tracks bend
very little in � (barring residual effects at the edge of the magnetic field
region), straight lines between �hg0)+Æ and candidate PC1 � give the track

candidate � information. Finally, from all combinations, the one with
the most UV hits associated in the DC is declared the correct track.
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Figure 3.4 Charged Particle Tracking in DC: hits in the X1 and
X2 layers are used to reconstruct the charged parti-
cle track through a Hough transformation in the \AY « 2 ]
space.

The track model produces an overall quality parameter for the track, de-
pending on how many X, UV, and PC1 hits are associated with it and on

the reliability of this association. For example, a candidate PC1 hit can have
a good number of UV hits associated, but they can also be associated with
candidate PC1 hits for other tracks, so the association is ambiguous; this

would reduce the quality associated to the track.
Once we have the track, we use our knowledge of the magnetic field map

to reconstruct the kinematics of the charged particle at the vertex (trans-
verse momentum and emission direction): a four dimensional field integral
grid

~ \ � « Õ « � « � ] (where p is the momentum, Õ is the polar angle at the vertex,

and r is the radial distance) is generated for the entire extent of the central
arms by swimming charged particles through the magnetic field map from

survey measurements and numerically integrate at each grid point to obtain~ \ � « Õ « � « � ] . The momentum resolution of the PHENIX central arm spectrome-
ters is K£�
T"� Ì 6�Á � % û a % � � .

Also, the above DC-PC1 track is projected to all the outer detectors in the
central arms. Then, the closest hit to the projection is found and the 2 and �



43

residuals: 132G¬�2�´£,/)
F 2 ¥ *e:S� « 1 ��¬P�#´�,Â)?F»� ¥ *e:\� (3.1)

are calculated. The means ( 2 and � ) and widths ( ¢ml and ¢  ) of the Gaussian
distributions of these residuals are parameterized as a function of ��� and
experimental run number. Finally, a matching cut of ² ¢ means that for each

track we require:

\ 132ÐF 2 \ ��� ]=]0J T ¢ Jl \ ��� ] b \ 1 �MF � \ ��� ]ú]·J T ¢ J \ ��� ] �v² J (3.2)

where ��� is the transverse momentum of the track.

3.4 Electromagnetic Calorimeters

The Electromagnetic Calorimeters (EMCal) measure with very good res-

olution the 3 dimensional hit position and energy of electromagnetic showers
(electrons and photons). Hadronic showers (mesons and baryons) are also

detected with significantly lower efficiency and resolution. The EMCal also
provides particle identification - shower shape and time of flight are used
to separate the following classes of particles: electrons/photons, charged

mesons, and protons/neutrons. The west central arm has four sectors of
lead scintillator calorimeter, while the east central arm has two sectors of
lead scintillator calorimeter and two sectors of lead glass scintillator.

The lead-scintillator (PbSc) calorimeter is a honeycomb type of sampling
detector consisting of 15552 towers (alternating tiles of lead and scintillator)

and covers an area of approximately 48
� J . The main characteristics are:

s light yield of about 12,500photons/GeV of deposited electromagnetic
energy.

s energy resolution ¢ \ ¡ ] T�¡ 
 ¿�Á a % T ÿ ¡ 7 wyx�I ? û¾U�Á a %.

s position resolution ¢ Æ \ ¡ « Õ ] 
 ¢ V \ ¡ ] û ç *eµú¶n��� l Õ , where Õ is the incidence

angle, ç *eµú¶ is the radiation length ( 4 a ¿ for electromagnetic showers and4 a
for hadronic showers), and ¢ V \ ¡ ] 7 �{� ? 
 a Á ��� û � Á � T ÿ ¡ 7 wyx�I ? is the

position resolution at normal incidence.
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s timing resolution for an energy deposition
� � 6�6�LOx�I of about 120ps for

electrons(photons) and protons, and of 270ps for charged pions (which

have larger shower fluctuations).

s 8 V mass resolution after shower shape and time of flight cuts of 15MeV.

The lead-glass (PbGl) calorimeter is a Cherenkov type detector consisting

of 9216 modules and covers an area of approximately 16
� J . The main

characteristics are:

s energy resolution ¢ \ ¡ ] T�¡ 
 � ÁÃÔ % T ÿ ¡ 7 wyx�I ? ûå6�ÁÃ¿ %.

s position resolution ¢ Æ \ ¡ ] 7 �{� ? 
 ¿�Á � T ÿ ¡ 7 w�x�I ? ûå6�Á/U .s timing resolution ¢ ) \ ¡ ] 7 ² � ? 
 u�Á ��� T ÿ � 6�6�¡ 7 wyx�I ? û�6�ÁÃ6 ��� similar for electrons
and charged pions.

s 8 V mass resolution after shower shape and time of flight cuts of 13MeV.

Time of flight (tof)
�

measurements are done by using the BBC collision
time as start signal and the EMCal hit time as stop signal. For hadronic

showers, a matching cut with the projection of the closest track is applied to
determine the momentum � and path length ç (see track model and matching

cut description at the end of Section 3.3), and from all these quantities we
can determine the mass of the charged hadron:

L J 
 � J b � J   Jç J F a d (3.3)

Electromagnetic and Hadronic Shower Shape measurements: since elec-

tromagnetic ( Þ « x E ) and hadronic ( 8 E « � E « � « � « ² « ² ) particles produce quite dif-
ferent patterns of energy sharing (showers) between calorimeter towers, sec-

ond moments of these showers are used to differentiate between them. More
specifically, one uses an analytical parametrization of the energy sharing and
its fluctuations in measurements of shower shapes produced for electron test

beams; a shower shape o J is defined:

o J ¬ _ , \ ¡ ¥ *-î�¶e, � )¸î�¶, FH¡ Q î�µ É ;�*eî<¶, ] J¢ J, (3.4)
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where ¡ Q î�µ É ;�*eî<¶, is the measured energy deposited in the
÷ )¸´ tower of the shower

and ¡ ¥ *eî<¶e, � )¸î�¶, is the predicted deposited energy in the
÷ )¸´ tower, from the above

parametrization, for a given total energy of the shower of ¡	)¸:<)ï¬ _ , ¡ Q î<µ É ;"*-î�¶,
and position of the tower. Hence, o J defined as above characterizes how ”elec-
tromagnetic” is the shape of a shower. Fluctuations are also parameterized

in this model and the o J distribution is very close to the theoretical one and
nearly independent of energy and impact angle of the electron. A o J � u
corresponds to 90% electron efficiency - see the cluster o J distribution of 2
GeV/c test beams of electrons and charged pions in Fig. 7 (page 532) of the
PHENIX calorimeter section of the quoted NIM issue [23].
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CHAPTER 4. Data Analysis

In this chapter, we will present the details of the data analysis: the se-
lection of events and particle pairs, the construction of azimuthal correla-

tion functions (CF) from these pairs, and the extraction and correction of the
physical parameters from CFs. All the principles and equations that form the
foundation of our approach have been detailed in Chapter 2, so this chapter

will elaborate on the technical methods used to apply them.
The same analysis is performed for ��� and �	����� collisions. When differ-

ences appear, we will specify for which type of event that particular part of
the analysis applies.

4.1 Data Selection and Quality Analysis

This section deals with the selection of the data that is appropriate for
our physics goals. First, we present the quality analysis performed in order
to choose experimental runs with a good performance of the PHENIX sub-

systems relevant for this analysis. Then, we discuss the event selection and
the possibility of trigger biases in the ��� analysis. The last two subsections
describe single particle and particle pair selection.

4.1.1 Run and Event Selection

All the results presented in this work are based on the analysis of ��� and�����	� collisions at
� ��ô�ôè
 U�6�6 GeV, collected during the PHENIX Run-2 data

taking period.
The run quality analysis (QA) criteria that have been used for the selec-

tion of good runs are:

s detector QA: is based on run-by-run information about the perfor-

mance of each subsystem, stored in the PHENIX online database as
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a quality flag that we use to select good runs.s physics QA: the variation of several global physics quantities with run

number is studied and runs with deviations larger than 3 standard devi-
ations from the mean are discarded. The quantities being watched are:
mean number of charged particle tracks, mean ��� of charged particle

tracks, matching to PC3 hits, energy over momentum ratio of electron
candidates, proton mass with the TOF detector.

Specific QA for the correlation analysis has been performed also. The
method was to split runs into 5000 event segments and assess the degree of

difference between their mixed event 132 distributions based on a o J analy-
sis. A large o J T�²�� ~ implies that the detector performance changed during that
run in such a way that the basic quantity of our analysis ( 132 ) was affected.

Only a very small number (two) of additional ”bad” runs were found using
this method.

The event selections used are:s minimum bias triggers; in ��� collisions we use ERT triggers also (see
below).s ! �;g·)+Æ�!��åu�6�  �

������� correlation functions are classified into the following six centrality

classes of the collision: (1) 0-5%, (2) 5-15%, (3) 15-25%, (4) 25-40%, (5) 40-
60%, (6) 60-92%. The PHENIX minimum bias Level-1 trigger is sensitive toÔ�U� 7U % of the inelastic ������� cross section. See Section 3.2 for details on

centrality determination.

Apart from minimum bias trigger data, in ��� analysis we have included
also ERT triggered events. See Section 3.2 for the description of PHENIX
Level-1 triggers. This can lead to various trigger biases, the most obvious

being a bias on the inclusive ��� -distribution: the �¸���?� value within a given��� -bin is different for different trigger types. This produces a narrowing of

the correlation functions because the trigger preferentially selects higher �
�
hadrons, which have tighter standard deviations in both near and away re-
gions ( ¢ ô Ç é decreases with �>���?� ).



48

  [GeV/c]Tp
0 1 2 3 4 5 6 7

M
in

B
ia

s
)

T
(d

N
/d

pE
R

T
L

o
w

T
h

re
s
h

)
T

(d
N

/d
p

1

2

3

  [GeV/c]Tp
0 1 2 3 4 5 6 7

M
in

B
ia

s
)

T
(d

N
/d

pE
R

T
H

ig
h

T
h

re
s
h

)
T

(d
N

/d
p

1

2

3

Figure 4.1 �>����� shift in ERT triggered ��� collisions. Upper Panel:
Ratio of ERT low threshold and Minimum Bias ��� dis-
tributions. Lower Panel: Ratio of ERT high threshold
and Minimum Bias ��� distributions.
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In order to quantify the �¸���?� shift, we plot the ratio of ��� distributions
in ERT and minimum bias triggered events, shown in Fig.(4.1.1), for both

versions of the ERT trigger: low threshold ( 4 u�6�6�L x�I ) and high threshold
( 4P¿�6�6�LOx�I ). The ratio of spectra were normalized at high ��� .

The �>���?� in a ��� -bin shifts proportionally to the variation in slope. This

happens in the region were the efficiency of the ERT trigger is not yet sat-
urated (the ratio of ��� distributions in ERT events and min bias events is

not flat). The ��� -distribution in ERT triggered events with low threshold has
a very small increase over min bias (basically, for all practical purposes,
this version of the ERT trigger can be treated as a minimum bias sample),

while that with high threshold has a larger increase (a factor of 3 over 3GeV).
However, since the ��� -distribution is steeply falling, even this larger relative

increase has still small impact on �>���?� . This is demonstrated in Table(4.1),
where the �>���?� value is shown for ��� bins below the saturation region and
different trigger types used in this analysis. The relative variation of �>����� is

less than 0.5%, which means that we can safely neglect ERT trigger biases.

Table 4.1 The mean ��� values for the 3 different trigger configura-
tions (minimum bias, ERT low threshold = 0.3 GeV and
ERT high threshold = 0.8 GeV) for the ��� bins below the
saturation region.

0.75 F 1. 1. F 1.5 1.5 F 2. 2. F 2.5 2.5 F 3. 3. F 4.
MinBias 0.862 1.200 1.705 2.209 2.707 3.371
ERTLow 0.863 1.201 1.705 2.210 2.710 3.373
ERTHigh 0.864 1.208 1.712 2.214 2.716 3.380

4.1.2 Single Particle Selection

For the selection of charged hadrons we used the following criteria:s 1.5 � ���W� 5 GeV/   in �����	� analysis in order to reduce the main back-

ground contributions (fake high-��� tracks from resonance decays at low��� , and conversion electrons at high ��� ). See discussion in Section 2.6.

s track model quality 31 or 63, which corresponds to the highest track
quality (all X1,X2,UV1,UV2 and PC1 hits are found and their associa-
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tion with the track is unique). See details about the tracking model in
Section 3.3.

s 2- ¢ radial matching cut in 132 and 1 � at PC3, as described by Eq.(3.2),
to reduce the combinatorial background.

s RICH veto (no RICH PMTs associated to the track) and !Ip � Ö !�Ñ ���   � (a

lot of conversion electrons are generated in the DC frame) in order to
reduce conversion electron background.

In order to estimate the combinatorial background, let us consider the fol-
lowing charged hadron minimum bias ��� spectra in the west central arm: (A)
after applying the cuts from the above list; (B) after applying the same cuts

from the above list, plus a PC2 2- ¢ radial matching cut; (C) after applying the
cuts from the above list, except that a ”flipped” PC3 2- ¢ radial matching cut

(see below) is used instead of the normal PC3 2- ¢ radial matching cut. Match-
ing with PC2 (which has similar characteristics with the outer pad chamber
that we use - PC3) gives us information about the effect of the matching cut

on ��� spectra. Matching with a flipped outer detector is a standard technique
to estimate combinatorial background: if a DC-PC1 track reconstructed in an

arm matches a hit in the PC3 from the other arm (geometrically flipped in the
software before the matching), then it can only be a random match. Then,
the ratio of the ��� spectra with matching to ”flipped” PC3 and the ��� spectra

with matching to ”normal” PC3 gives an estimate of the fraction of charged
hadron tracks with random (combinatorial) PC3 association.

In Fig.(4.2), we estimate the charged hadron combinatorial background
by plotting the (B)/(A) (squares) and (C)/(A) (circles) ratios of charged hadron��� spectra. We can see that the background contribution starts to become

important above 4 � w�x�IST�  .
For the selection of 8WV s we used following criteria:

s cluster energy
� � 6�6�LOx�I in order to avoid the Minimum Ionizing Peak

(MIP) contributions of charged hadrons.

s track veto: any cluster that matches a track within 2- ¢ is rejected.

s time of flight cut: ! � � ~ !�� a Á/U�² �



51

  [GeV/c]Tp
0 1 2 3 4 5 6 70

0.2

0.4

0.6

0.8

(Pc2&Pc3)/Pc3

(Pc3Flipped)/Pc3

Figure 4.2 Estimation of charged hadron combinatorial back-
ground through the effect of outer pad chamber as-
sociation on the ��� distribution (see text).

s shower shape cut: o J �¾u ; see Eq.(3.4) and comments for details.

s energy asymmetry cut for 8WV : Y ¬ !'¡<q i FM¡<q"J�!&T \ ¡4q i b ¡<q"J ] �å6�Á � . Simulations

of 8�V decays for ��� \ 8�V ] � 1GeV/c show that Y is flat up to 476�Á � , followed
by a strong decrease up to 1; on the other hand, combinatorial photon

pairs have a flat asymmetry distribution in the entire 6GÑ Y Ñ a
region,

so the above cut increases the 8CV signal over background ratio by about
20-30%.

4.1.3 Particle Pair Selection

In a high multiplicity environment many distortions can appear at small

relative distances or angles: hit merging happens due to detector resolution
when they are too close to each other, track splitting or duplication happens in
the track reconstruction software producing so-called ”ghost” tracks. A major

source of correlation distortions are track pairs that share track segments.
All these effects produce shape distortions of the correlation function at small

relative azimuthal angle.
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Figure 4.3 Drift Chamber ”Ghost” Tracks Cut: we compare the
measured (red) and mixed (blue) 132 � Ö (left panel) and1 � � Ö (right panel) distributions and cut out the regions
where they do not match.

We use a mixed event technique (see Section 4.2.2) to identify and reject

pairs of particles affected by such distortions. The method is: first apply
all the single-particle selections described in the previous section; then, for
each detector involved in the analysis (DC, PC1, PC3), compare the measured

and mixed event distributions of relative distance variables (specific to that
detector) of particle pairs:

s Ghost Track Cuts: ! 132 � Ö ! � � 6 � � � � and !'1 � � ÖR! � 6�Á/U�  � based on Fig.
4.3, where the measured (red) and mixed event (blue) distributions are

plotted for these drift chamber variables. The deviations at small 132 � Ö
and 1 � � Ö are produced by track duplication or splitting which artifi-

cially changes the number of tracks. The periodical ”bumps” in the1 � � Ö distribution are related to the granularity of the tracking chamber
along this coordinate, but they show up only for 132 � ÖÚ� � 6 � � � � , so this

cut eliminates them.

s PC Hit Resolution Cuts: 1 Kr5�Ö i � a 6�  � and 1 Ks5�Ö c � a��   � based on Fig.
4.4 - the ratio of measured and mixed distributions of in-plane radial

distance 1 K \ ¬ ÿ \ 1à@ ] J b \ 1 þ�] J b \ 1 � ] J ] of PC hits associated with track
pairs. The dip at small 1 K is produced by hit merging which artificially
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decreases the number of hits. Its size corresponds to the hit resolutions
in PC1( 4cm) and PC3( 8cm).
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Figure 4.4 Pad Chamber Resolution Pair Cuts: Ratio of measured
and mixed 13K distributions for Pad Chamber (PC) hits
associated with charged track pairs: Upper Left - PC1,
opposite charge. Upper Right - PC1, same charge.
Lower Left - PC3, opposite charge. Lower Right - PC3,
same charge.

Not all the features of these small distance distributions are completely

understood, however we always cut out the regions where the measured and
mixed event distributions do not match. Studies have shown that these two-
particle effects have a large impact on azimuthal correlation functions only at

low ��� and high centrality. The reason is that they are obviously dependent
on the multiplicity environment.
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Another two-particle cut that we apply each time pairs of identical hadrons
are used is the HBT cut: at low relative momenta, pairs of identical hadrons

are correlated due to the Handbury-Brown-Twiss (HBT) effect. These corre-
lations have been measured by PHENIX [12] and we eliminate their contri-
bution by requiring that the invariant X J of the pair is larger than 100MeV,

which is actually quite conservative. Since our analysis uses only ��� � 1.5GeV/c
particles, the impact of this type of correlations is negligible.

4.2 Azimuthal Correlation Functions

4.2.1 Definition and Normalization

The azimuthal correlation function (CF) is constructed, using the mixed

event technique, as follows:" \ 1o2�, ] ¬ æ Q î�µ É \ 132�, ]æ Q ,/Æ \ 132�, ] « a Ñ ÷ Ñ ækt ,/g É (4.1)

where æ Q î<µ É \ 132�, ] is the measured number of particle pairs in the
÷ )¸´ bin of

the relative azimuthal angle distribution and æ Q ,ÂÆ \ 132�, ] is the same quantity,
but for pairs of particles from different events. For details on how the mixed

event relative azimuthal angle distribution is constructed, see next section.
Obviously the number of entries of this distribution depends on the size of
the event pool for mixing, a non-physical quantity. This is why we need to

normalize a correlation function introduced as in Eq.(4.1).
As follows from the definition of the correlation function, if there is no

correlation, the values of
" \ 1o2�, ] are equal to unity for any relative angle

bin
÷
. Hence, for a

" ª
constructed in the F 87� 132 �ù8 range, the natural

normalization is that the integral should be

ä º jf j " \ 132 ] ��132 
 U�8 (4.2)

This is a constant area normalization and it eliminates the residual cor-

relations induced by multiplicity fluctuations in the centrality interval where
the two particle correlations are defined (see details in Section 2.6).
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In order to fulfill the normalization in Eq.(4.2), we define the CF as follows:" \ 132�, ] ¬ æ Q î�µ É \ 1o2�, ]æ Q ,/Æ \ 1o2�, ] � a_ , æ Q î�µ É \ 1o2�, ] T æ Q ,/Æ \ 1o2�, ] (4.3)

Obviously, when working with histograms, one has to bear in mind thatu , " \ 132�, ] 
 $ º jf j " \ 132 ] ��1326wv 
 ækt ,/g É (4.4)

where
6wv 
 Ud8CT ækt ,Âg É is the bin width and ækt ,/g É is the number of bins of the" ª

.
The general form of

" ª
s in the two source model developed in Section 2.5,

within the Gaussian jet profile approximation, can be expressed as" \ 1o2 ] 
 x \ a b U�I JJ �=: �
U�132 ]b N ô� Ud8 ¢ ô �"��� � F 132 JU ¢ Jô � b N?é� Ud8 ¢ é �"��� � F
\ 132  v8 ] JU ¢ Jé � (4.5)

where the effect of the dijet acoplanarity is incorporated in a broadening of
the away side correlation ( ¢ é � ¢ ô ), and the effect of the interference be-

tween the jet and collective sources is incorporated in a larger quadrupole
magnitude I�J . Of course, in ��� or � \ � ] �	� collisions there are no quadrupole
collective effects, so I
J^¬P6 .

By fitting Eq.(4.5) to a
" ª

one can extract the near/away conditional
yields from the Gaussian areas N ô Ç é and the total number of pairs ² Q î�µ É :

² ô Ç é 
 aæ )+*-,/.0. N
ô Ç éUd8 ² Q î<µ É « ² Q î<µ É ¬ u , æ Q î�µ É \ 1o2�, ] (4.6)

and the jet shape parameters �"! ���%$%!'� and �"!'���%$�!&� from the Gaussian widths¢ ô Ç é . Note that, since we are fitting histograms, the bin with has to be taken
into account, so N ô Ç é in Eq.(4.5) are actually

6yv � N ô Ç é .
The multiplier

x
is the fraction of the total

" ª
integral in the quadrupole

modulation. It is not a free parameter, being constrained by the normaliza-

tion condition in Eq.(4.2): x 
 a F N ô b N?éU�8 (4.7)
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4.2.2 Mixed Event Technique

In the previous section, we introduced the two particle azimuthal correla-
tion function (see Eq.(4.3)) using the mixing event technique.

By pairing particles from different events, the mixed event 132 distribution

contains all the detector induced azimuthal correlations, like the correlations
induced by efficiency fluctuations, but none of the physical ones. Therefore,
by dividing it out from the measured 132 distribution, which contains both the

physical and the detector induced correlations, we extract only the physical
correlations. Also, the mixed event distribution gives a good description of

the detector acceptance, so it corrects the shape of the correlation function
for acceptance effects. Note that it is only the shape that is corrected; pair
loss due to such effects must be corrected otherwise.

The actual technique of event mixing involves a rolling buffer of events
with fixed depth (based on the principle first event in - last event out). The

current event is the header of the buffer and its particles are correlated with
particles from the other events in the buffer. However, only one random par-
ticle is used from each event in order to avoid introducing U g�¶ order physical

correlations: each event has at least one underlying collective correlation -
flow. Hence, if one would correlate a particle from the header event with

multiple particles from another event, one would then pick up all underlying
collective correlations from that event.

The size of the mixing buffer (event pool) is bounded by two restrictions: it

has to be smaller than the typical time interval of detector efficiency fluctu-
ations (otherwise the average correlations induced by them would contribute

differently in the measured and mixed distributions, defeating the purpose
of the technique), and it has to be large enough such that the contribution of
the mixed distribution to the statistical errors of the correlation function to

be very small. Following these criteria, we used a depth of the mixing pool of
1000 events. This corresponds to at most 3 seconds of data taking, which is

well within the stability period of our detectors, and it assured a contribution
from mixed events to statistical errors of at most 9%.

The mixing pools are sorted by centrality and vertex position in the sense

that two events are allowed to mix (enter the same pool) only if their centrality
differs by at most 10% and their vertices differ by at most 3cm. This way,

detector effects, which are potentially multiplicity and vertex dependent, are



57

properly taken into account.

4.2.3 Fitting Methods for �����	� analysis

As described in Section 4.2.1, we construct two-particle correlation func-
tions (CFs) according to Eq.(4.3) and we fit them with Eq.(4.5) in order to
extract the four parameters we are interested in: ¢ ô Ç é and N ô Ç é . In ��� (and����� ) collisions, where I
JS¬P6 , this strategy works very well.

However, in �	����� collisions, the away (dijet) Gaussian broadens quickly

with centrality, making the fit more and more difficult. The reason is very
simple - the standard deviation of

aRb U�I JJ �;: � \ U�132 ] is:

¢ ø p 
 � 8 Ja U F I JJ }P6�ÁÃ¿tFH6�ÁÂÔ � � � (4.8)

depending on ��� and centrality. So, if any of the two Gaussians has a

width comparable with or larger than ¢ ø p , the fit would fail to resolve it from
the background quadrupole modulation. This never happens with the near
Gaussian because its width is always less than 6�Á � � � � in the ��� region we are

analyzing, but one can see even by visual inspection of the
" ª

s presented
in Fig.(E.1) that it does happen with the away Gaussian. The simple fit by

Eq.(4.5) without any constraint or external information causes a major part
of the quadrupole oscillation in the away region ( ! 1o2 ! � 8CT�U ) to be assigned to
the Gaussian.

Two types of approaches have been developed to address this problem:

Eliminate the quadrupole collective source by using the symmetry of the

quadrupole modulation \ 4 �=: � \ U�132 ]ú] around  ï8CT�U .
In one approach, called the normalization subtraction method, the

absolute value of the normalization
ª

is calculated externally and sub-
tracted from Eq.(4.5); then, the quadrupole correlation oscillates around
0 and has a null integral in both the near ( ! 1o2 !^�â8CT�U ) and the away

( ! 1o2 ! � 8CT�U ) regions, which allows the extraction of the jet integrals in
these regions (but not the real jet integrals as argued bellow). The two

issues with this approach are the sensitivity on the precise determina-
tion of

ª
and the fact that, in order to get the full jet yields from the
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above jet integrals, we also need some external information about the
jet widths: the broadening of the away Gaussian makes it ”leak” in the

near region.
In our approach, called the 8WT�U subtraction method, the away region
( ! 1o2 ! � 8CT�U ) of the CF is subtracted from the near region ( !'132 !���8CT�U ); see

details below. This is probably the cleanest method, but it requires very
good statistics, especially in the region of the CF around ! 1o2 !�} 8CT�U ; the

PHENIX detector does not have very good coverage in this region.

Use external information about the quadrupole collective source to fix I�J
in the fitting procedure; then, even if the away Gaussian has the same

shape (standard deviation) as the quadrupole modulation, the fit is suc-
cessful because it can disentangle them based on their relative ampli-

tudes.
In one approach, reaction plane analysis is used in various ways to getI�J information.

In our approach, the fit is performed in two stages - I
J is extracted in
the first stage under some assumption, and it is fixed in a fit without

assumptions in the second stage. The method will be detailed below.
In general, the major issue with this second type of approaches is the
sensitivity of the away Gaussian parameters on the I�J value used: a

small variation in I�J induces large variations in the extracted away
Gaussian parameters (the usual problem of extracting a small signal
on top of a large background by estimating the amount of background).

We will use two of the methods introduced above to attempt to disentangle
the away Gaussian from the quadrupole modulation.

The 8CT�U subtraction method
Speculating the symmetry of the quadrupole correlation around ! 132 ! 
8CT�U , we apply a simple transformation to the CFs: we fold the !'132 ! � 8CT�U re-

gions into the !'132 !��¾8CT�U region (such that the points at !'132 ! 
 8 correspond

to the point at 132 
 6 ) and subtract. Fig.(4.5) shows the resulting subtracted
two-particle correlation functions (SCFs) from ������� CFs of u Ñ»���%)+*-,Â.·.	Ñ � w�x�IST� 
trigger hadrons and

a Á � Ñ7��� Ñ u�w�x�IST�  associated hadrons for various cen-

tralities.



59

 [rad]φ∆
-1.5 -1 -0.5 0 0.5 1 1.5-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 [rad]φ∆
-1.5 -1 -0.5 0 0.5 1 1.5-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 [rad]φ∆
-1.5 -1 -0.5 0 0.5 1 1.5-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 [rad]φ∆
-1.5 -1 -0.5 0 0.5 1 1.5-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 [rad]φ∆
-1.5 -1 -0.5 0 0.5 1 1.5-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 [rad]φ∆
-1.5 -1 -0.5 0 0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

0.6

Figure 4.5 8CT�U Subtracted Correlation Functions ofa Á � Ñ ��� Ñ u�w�x�IST�  associated hadrons withu Ñ ���%)+*-,/.0.7Ñ � w�x�IST�  trigger hadrons for the follow-
ing centrality classes of the �����	� collision: top row
- 0-5% left and 5-15% right; middle row - 15-25%
left and 25-40% right; bottom row - 40-60% left and
60-90% right.
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Before going further, let us outline a few facts. First, these SCFs contain
only particle pairs from the jet source. Second, since ¢ é � ¢ ô , they will

have the typical shape of the difference between two Gaussians with different
widths and, therefore, the absence of a negative amplitude component is in
itself a signature of the away Gaussian suppression.

We can extract the jet parameters by fitting these SCFs with:

N " \ 132 ] 
 w \ 6 « ¢ ô ] FHw \ 6 « ¢ é ] b w \ b 8 « ¢ é ] b w \ F 8 « ¢ é ] (4.9)

where w \   « v ] is a Gaussian centered at   of width
v

. In this equation, we used
the fact that the near Gaussian is confined in the near region ( !'132 !�� 8CT�U ) and

the away Gaussian ”leaks” in the near region as centrality increases due to
its broadening. Note that the integral of the SCF is:

ä º j ß Jf j ß J N " \ 132 ] 
 ä j ß Jf j ß J " \ 132 ] F U ä jj ß J " \ 132 ] 
 N ô b \ a FHUd@ ] N?é (4.10)

where @{¬P¡ � ~zb 8U � U ¢ é d (4.11)

is the fraction of the away gaussian above 8CT�U . An alternative implementation
of the method involves using Eq.(4.10) as an additional constrain (left hand

side is measurable from the SCF) on the usual fit of the CF.
We presented this method here for future reference, because of its simplic-

ity and because we consider the SCFs interesting even without fits. Nonethe-

less, when fitting our current SCFs with Eq.(4.9), we get very large errors. The
reason, as mentioned already, is that the method relies on the data points

around ! 132 !�} 8CT�U and we do not have enough statistics there yet. So, we are
going to use another method, outlined below, to extract the jet parameters.

The method of minimum jet amplitude point (MJAP)
The method of minimum jet amplitude point (MJAP) is inspired from N.

Ajitanand’s ”ZYAM” (Zero Yield At Minimum) procedure [21], but it has a
different implementation.

The fitting procedure is a minimization in the 5-dimensional parameter
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space \ I�J « ¢ ô « ¢ é « N ô « N?é ] of:

o J ¬ u , \ " \ 132�, ] F " ª \ 132�, ]=] JK " \ 1o2�, ] J « a Ñ ÷ Ñ ækt ,/g É (4.12)

where
" \ 132�, ] is the value of the correlation function in the

÷ )¸´ bin, K " \ 132�, ] is
the error of this value, and

" ª \ 132
, ] is the value of the fit function given in

Eq.(4.5) at 132�, .
We start from the rough approximation that, at the point where the near

and away Gaussians meet (which is the 1o2 Q ,/g value at which the total jet

amplitude has its minimum), the dominant contribution into the correlation
function comes from the quadrupole source" ª \ 132 Q ,/g ] } ª \ a b U�I JJ �=: � \ U�1o2 Q ,Âg ]ú] b O \ 132 Q ,/g ] (4.13)

and we apply the following two-step procedure:

s Extraction of I�J using the assumption of minimum jet amplitude
point: in every step of the o J minimization procedure, we calculate the
current minimum value O \ 1o2 Q ,/g ] of the total jet (Gaussian) amplitude

( 132 Q ,/g is the point where this function has its minimum). This value is
then added in the o J formula given by Eq.(4.12):

" ª \ 132
, ] r " ª \ 132�, ] b
O \ 1o2 Q ,/g ] . Since there is no other free parameter which may compensate
for this additional offset (remember, in constant area normalization the
normalization

ª
is not a free parameter), the minimization algorithm will

find the location in the parameter space with the best o J value, where
O \ 1o2 Q ,/g ] is smaller than the experimental error bars.

s Free fit with I�J fixed: we fit the CF with Eq.(4.5) in which we fix theI�J parameter to the value obtained in previous step, and drop all the

assumptions made.

Extensive prior simulations (fits of Monte Carlo generated CFs with var-

ious shapes, one example being presented in Fig.(4.6)) have shown that the
first step of the method returns a very accurate value for the quadrupole am-
plitude I�J . The Gaussian parameters are returned accurately as long as their

widths are narrower than 4ñ6�Á � F�6�ÁÂ¿ � � � ; once a Gaussian becomes broader
than this, it is effectively truncated by the MJAP requirement. This is shown
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in Fig.(4.7): the I�J (and ¢ ô ) is returned correctly, no matter how broad is the
away Gaussian, but the away Gaussian width and area are returned system-

atically smaller that the input values when ¢ é � 6�Á � F�6�ÁÂ¿ � � � . As a matter of
fact, the outcome for ¢ é saturates around this value, no matter what input
value we use. Considering Eq.(4.8), it is not difficult to understand why.

Nonetheless, since I
J always come out correct from this first step, we fix
it in the second step, drop the MJAP assumption, and refit to get the jet

parameters.
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Figure 4.6 The Method of Minimum Jet Amplitude Point - Exam-
ple of Monte-Carlo generated correlation function with
its input and output parameters.
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4.3 Acceptance and Efficiency Corrections.

The mixed event technique corrects only the shape distortions of azimuthal
correlation functions due to detector efficiency and acceptance. This is enough

for the shape parameters I
J and ¢ ô Ç é , but not for the conditional yields ² ô Ç é
- we must include a correction factor to account for the loss of associated

hadrons Eq.(4.6). So the number of associated hadrons of transverse mo-
mentum ��� with a trigger particle of transverse momentum ���%)+*-,/.0. (the condi-
tional yield) in a collision with æ ¥ µ0*-) participants is calculated according:

² ô Ç é \ æ ¥ µ0*-) « ��� « ���%)+*-,/.0. ] 
 aæ )+*�,/.0. \ æ ¥ µ0*-) « ���%)+*-,Â.·. ] N
ô Ç éUd8 ² Q î<µ É ª � :�*-* \ ��� ]¡ ~�~ \ æ ¥ µ·*-) ] (4.14)

where the correction term factorizes into a ��� dependent correction functionª � :�*�* \ ��� ] due to acceptance loss of associated hadrons, and a multiplicity

( æ ¥ µ0*-) ) dependent associated hadron efficiency correction function ¡ ~�~ \ æ ¥ µ0*-) ] .
Notes on the validity of Eq.(4.14):s we supposed that the corrections for the associated and trigger hadron

factorize: ª � :�*-* \ ��� « ���%)+*-,/.0. ] } ª � :�*-* \ ��� ]�� ª � :�*-* \ ���%)+*-,/.0. ] (4.15)

This is not true for pairs that are very close in space (in high multiplicity

events), but we have excluded them by applying the pair cuts described
in Section 4.1.3.s the corrections for the trigger hadron

ª � :<*-* \ ���%)+*-,/.0. ] do not need to be in-
cluded since we compute yields per trigger hadron, so they cancel in the
ratio.

The approximation in Eq.(4.15) allows us to use the correction factors

extracted via simulations and charged hadron embedding techniques in the
analysis of single charged hadron spectra [22].s Single track ��� dependent correction (evaluated at �¸���?� of the associated

hadron):

ª � :�*-* \ ��� ] 
 �tT"��� b ð b " � ��� b � � � J�� 
 6�Á ����a U « ð 
 � ÁÃu�Ô�¿�U « "�
 F	6�ÁÂ6 � ¿�Ò « � 
 F	6�ÁÂ6�6�U�6 (4.16)
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s Single track multiplicity dependent correction: shown in the left panel
of Fig.(4.3).

¡ ~?~ \ æ ¥ µ0*-) ] 
 � b ð � æ ¥ µ·*�) b " � æ J¥ µ0*-)� 
 6�ÁÃÔ�Ô � « ð 
 F	u�Á ��� � a 6 f V Ï « " 
 F	u�ÁÃ6 � � a 6 f V@{ (4.17)

Note that it is ��� independent only for ��� � 1.5 GeV/  
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Figure 4.8 Single charged hadron multiplicity dependent
DC-PC1-PC3 efficiency (left panel) and the��� -correction function
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CHAPTER 5. Results

5.1 Jet Fragmentation Function in |}| Collisions

In order to extract the vacuum jet fragmentation function, we follow the

method outlined in Section 2.3: assorted (asymmetric) correlation functions
(
" ª

s), like the ones in Fig.(C.2) from Appendix C, are constructed as de-
scribed in Section 4.2.1. In particular, we use sets of assorted

" ª
s with

one hadron (called ”trigger”) fixed in a given ��� bin and the other hadron
(called ”associated”) scanning the entire accessible ��� region. From these" ª

s, we extract the dependency on @�B of the away conditional yield, as given
by Eq.(4.14), for various values of �>����)+*�,/.0.(� . This is presented in Fig.(5.1): the
dashed lines are exponential fits and the legend lists the resulting slopes for

all four ��� regions of the trigger hadron.
Note that the slope of the vacuum fragmentation function is independent

of �¸���%)+*-,/.0.(� for ����)+*�,/.0. � 3 GeV/c and equal to 4 �  è6�Á � . This value agrees with
measurements at lower collision energy (CCOR measurements) [3]. So, as
expected, the vacuum fragmentation function is X J and

� �
independent, as

long as ����)+*�,/.0. is above a certain threshold, which for
� � 


200 GeV is in the
region 2-3 GeV/c.

This is easy to understand if we consider the fact that the measured 8 V
spectrum in ��� collisions [13] has a power-law shape only for ��� � 3GeV/c.
The Hagedorn parametrization given in Eq.(5.2) is often used to fit both the

low ��� region and the high ��� region of the spectrum. So, ���C� 2-3GeV/c is the
region where the soft (non-perturbative) component of the jet fragmentation
starts to become significant and triggering on this type of fragments changes

the slope of the fragmentation function.

After extracting the @
B slope we use the iterative method presented in the
second part of Section 2.3, based on Eq.(2.29), to obtain the ��� dependence
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Figure 5.1 Jet fragmentation function in vacuum for various�>���%)+*-,/.0.(� . Dashed lines represent exponential fits and
the resulting slopes are given in the legend.

of ����� . This will allow us to extract �"!'���%$�!&� (which depends on ���#)+*�,/.0.(� ). The
method has two steps:

Extract the final parton spectrum by assuming
a T������ 
 Ò : We use both a

Wood-Saxon corrected power-law parametrization

� ¢�����#��� 
 � g V� g� � \ aRb x f Å ¥ § fd¥w~\� & Ê ßN� ] (5.1)

and a Hagedorn parametrization

� ¢�����#��� 
   � b � V� V ����� \ F � ��� ] b ��� d
g

(5.2)

of the 8�V spectrum, as shown in Fig.(5.2); they both give a good descrip-
tion, but we choose the first one as it describes slightly better the data

and generate a power index closer to the value of ² 
 ¿ , which is what a
power-law fit of the high ��� data (

� u GeV/c) gives.
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Figure 5.2 The 8 V ��� spectrum from [13] is fitted by the Hage-
dorn function (left panel) and the Wood-Saxon cor-
rected power law function (right panel).

Then, we assume the same shape (Wood-Saxon corrected power-law)

for the final parton spectrum
~ � \ ����� ] and we also use a slope of the

fragmentation function of
a T������ 
 Ò (which should be close to the correct

value because �<��� is
� �

independent) to invert Eq.(2.27) and get the
parameters describing the parton spectrum (red line in Fig.(5.3)): ² 

¿�ÁÃ6 �  6�ÁÃ6 � , � g V 
 a�a Á a  a ÁÂ6 , � � ;�) 
 U�Á � 6t 6�ÁÃ6 � GeV/c,

� 
 6�Á � Òï 6�ÁÃ6 a GeV/c.

Now, if we put this parton spectrum back into Eq.(2.28), we get the����� dependency on ��� signified by the line in Fig.(5.4); the shaded area

corresponds to a variation of input fragmentation function slope by 17%
(one unit).

Extract the ��� dependency of ���#)+*�,/.0.(� by solving analytically Eq.(2.29) for the���%)+*-,Â.·. values used in the correlation analysis with the parton spectrum
derived above. The black squares in Fig.(5.4) represent the results of

this procedure. Table 5.1 shows the final results; the error bars on����)+*�,/.0.(� are determined from the variation of �A@�BC� within its errors.
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Figure 5.3 Extraction of the parton spectrum (red line) from the
measured 8WV spectrum (empty circles). Note the shape
deviation below ���?4 2-3GeV/c.

This value of ����)+*-,/.0.(� \ ���%)+*-,/.0. ] will be used in the following section to obtain�"!'���%$�!'� from fixed
" ª

s. The ���#)+*�,/.0.#� derived above cannot be used for extracting�"!'���%$�!'� from assorted
" ª

s; the slope of a ”conditional” fragmentation function
should be used instead. We will talk more about this in Appendix A.

Table 5.1 ��� dependence of �A@
B�� and ����)+*-,Â.·.�����%)+*-,/.0. (GeV/c)
a T��`@
BC� ����)+*�,/.0.#�

2.0-2.5 -3.98  0.38 0.704  0.016
2.5-3.0 -4.39  0.26 0.729  0.018
3.0-4.0 -4.96  0.37 0.730  0.020
4.0-7.0 -4.91  0.68 0.749  0.019
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Figure 5.4 The ��� dependence of ����� : from
a T������ 
 Ò� a assumption

(line with shaded band corresponding to the variation
by one unit) and after iterative solution (filled squares).

5.2 Jet Shape Parameters

5.2.1 Jet Shape Parameters in ��� Collisions

We use the fixed (symmetric) azimuthal correlation functions in pp col-
lisions constructed as explained in Section 4.2.1 and presented in Fig.(C.1)

from Appendix C to extract the near and away Gaussian parameters. Table
5.2 shows these parameters for the five ��� bins used and some other rele-

vant parameters (number of pairs in the � æ i J�T��%2 i �%2
J distribution, the o J per
degree of freedom of the fit - ²?� ~ 
 U�Ô , and the ratio R of number of pairs in
the measured and mixed event 132 distributions).

We derived the jet shape parameters �"! ���%$�!&� and �����#�"!&���%$�!&� from the widths
presented in Table 5.2 and the equations derived in Section 2.2. Fig.(5.5)

shows the resulting �"! ���%$�!&� and �<���#�"!'���%$�!&� dependency on ��� . Points corre-
sponding to �>���?� � a Á � GeV/c, have not been used because of the resonance
decay contamination of the near-angle region; this will be detailed in Ap-



71

Table 5.2 Table with the fit results for D E F D E fixed correlations
in ��� collisions as a function of the �>���?� of the five ���
bins used.�>���?� 1.71 2.21 2.71 3.38 4.70æ ¥ µ0,/* É 13.1k 2352 555 381 128o J Td²�� ~ 1.40 1.67 0.87 0.76 0.31

R 0.9 � 1.1 � 1.6 � 2.7 � 8.7 �¢ ô (rad) 0.373  0.017 0.287  0.018 0.233  0.023 0.185  0.016 0.161  0.021¢ é (rad) 0.764  0.096 0.642  0.057 0.622  0.103 0.403  0.065 0.336  0.079

pendix D. This Appendix will also present a series of studies that have been
done in order to establish the presence of systematic effects or errors in these

results. Since no background or method related systematic effects turned up
to be significant, the only contribution to the systematic errors of �"! ����$�!'� and�"!'���%$�!'� is the measured momentum resolution: K£�
T"� 
 6�Á � % û a % � � .

Another important cross-check is the extraction of the same jet shape pa-
rameters from 8 V - D�E azimuthal correlation functions. They are constructed

and fitted the same way as D�E - D�E azimuthal correlation functions and a com-
parison of the resulting near/away angle widths, as presented in Fig.(5.6),

shows a good agreement between these two types of correlations. The num-
ber of 8�V s is smaller than that of charged hadrons, so the ��� reach is lower.

We should note here that, because of the low multiplicity environment in��� collisions, the 8WV candidates from the two photon invariant mass spectrum
are very clean for � j'�� � a

GeV/c (the background is less than 10% for the 8CV s
used in the above correlations). In order to achieve the same 8 V ”cleanness”
in central ������� collisions, we would have to go as high as � j'�� � � FvÒ GeV/c,
which was not statistically possible with Run-2 �	�
�	� data. Using ��� bins

where 8�V candidates have a large fraction of ”background” (photon pairs ac-
cidentally falling in the 8WV mass region) in correlation analysis is a difficult

task because these ”background” 8 V s are formed also by pairing photons
from the decay of different 8WV s. Hence, they would also present all the corre-
lations (collective and jet) of the ”real” 8CV s in that ��� bin, but corresponding

to various other lower ��� bins.
Finally, we get �"!'���%$%!'� by dividing �������"!&����$�!'� with the �<��� presented in the

previous section. Fig.(5.7) shows the �"!&���%$�!&� dependence on �>���?� .
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The corresponding standard deviations (
ÿ �Û� J� � and

ÿ ��� J� � ) can be easily
calculated using Eq.(2.8).
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Figure 5.5 Extraction of ��! ���%$�!'� = 359  11(stat)  6(syst) MeV/c and�����#��!&���%$�!&� = 673  48(stat)  16(syst) MeV/c. Upper left:
near-angle width vs ��� ; Lower left: away-angle width
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Table 5.3 Table with �"! ���%$%!&� and ��!&����$�!'� dependency on �¸���?� in ���
collisions. Statistical error first, systematical error sec-
ond.�>���?� 1.71 GeV/c 2.21 GeV/c 2.71 GeV/c�"! �(��$�!'� 0.357  0.016  0.009 0.356  0.022  0.010 0.357  0.035  0.012�"!'���%$�!'� 0.912  0.092  0.024 0.962  0.074  0.030 1.156  0.154  0.041�>���?� 3.38 GeV/c 4.70 GeV/c�"! �(��$�!'� 0.352  0.030  0.014 0.428  0.056  0.023�"!'���%$�!'� 0.915  0.136  0.038 1.033  0.235  0.057

A discussion of the Seagull effect and its influence on these results is
presented in Appendix B.

Fits with a constant (dashed lines in the figures mentioned above) give the

final results of:

�"! �(�%$�!&� = 359  11(stat)  6(syst) MeV/c�����#�"!'����$�!'� = 673  48(stat)  16(syst) MeV/c�"!&���%$�!&� = 964  49(stat)  16(syst) MeV/c

5.2.2 Jet Shape Parameters in �	����� Collisions

For reasons detailed in Section 4.2.3, the fitting method for �	����� corre-
lation functions is more convoluted than the one for ��� (or ����� ) correlation

functions. In particular, we used the method of minimum jet amplitude point
(MJAP) to fit

" ª
s of trigger hadrons with 3 Ñå���%)+*-,/.0.àÑ 5GeV/c and associated

hadrons with 1.5 Ñ³���ËÑ 3GeV/c, as presented in Appendix E.

More precisely, Fig.(E.1) shows the first step of this fit method, which is
used to obtain the magnitude I
J of the collective quadrupole correlation in

these
" ª

s. The centrality dependence of I�J is presented in Fig.(5.8) and in
Table 5.4. At this stage we expect that the away Gaussian width and the�������"!&���%$�!&� parameter calculated from it exhibit the same truncation effect seen

in simulations (see Fig.(4.7) and comments).
Before going to the second step, let us notice that the fit does not identify

any collective quadrupole or away Gaussian correlations in the most central
class (0-5%) - both I
J and N?é are returned null, as shown in the upper left
plot of Fig.(E.1), which means that an extreme broadening and/or a complete

suppression happens at this centrality. However, it is beyond the statistical
errors and the capability of our method to quantify these parameters. This
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Table 5.4 I�J from MJAP method

0-5% 5-15% 15-25% 25-40% 40-60% 60-90%I�J 0.00  0.03 0.07  0.03 0.14  0.02 0.17  0.02 0.22  0.02 0.21  0.07
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Figure 5.8 I�J dependency on centrality from MJAP method.

is why we dropped this centrality class from our final results and we show
them only in the plots for the first step and only for the near angle.

Keeping only the I�J from above, we go to the second step of the method,
as shown in Fig.(E.2). This provides us with the final results for the jet

shape parameters in ������� collisions. They are presented in Fig.(5.10). A
comparison with Fig.(5.9) shows that a certain amount of truncation was
indeed present in the first step.

We present the final result as �<���#�"!'���%$%!'� since extracting the fragmentation
function in �����	� (and ����� from it, as for ��� collisions) requires a higher ���
reach than the statistics of Run-2 allows. This remains one of the goals of
correlation analyses of future high luminosity PHENIX runs.

Even though the statistical and systematical errors are rather large, the

broadening effect seems strong. In order to quantify it, we subtract the�������"!&���%$�!&� value in ��� collisions from its four values in �	����� collisions which
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Figure 5.9 Jet shape parameters in ������� collisions from MJAP
method: ��! �(��$�!'� with filled circles, �����#�"!&���%$�!&� with filled
squares, and the two bands correspond to the respec-
tive values of �"! ���%$�!&� and �������"!&���%$�!&� in ��� collisions.

exhibit broadening (centrality 5-15%, 15-25%, 25-40%, and 40-60%) and
fit with a constant. The resulting overall magnitude of the broadening isK�����)+*-,/.0.(�#�"!'����$�!'� 
 6�ÁÂ¿ � Ôà 6�ÁÂU a ¿ \ � ± � ± ] b 6�ÁÂU � uoF 6�Á a U�¿ \ � þ � ± ] GeV/c; for the central

value, this represents a u�ÁÂ¿�Ô ¢ effect, or a 99.57% confidence level.

Table 5.5 Final jet shape parameters in �	�
�	� collisions. First er-
ror is statistical, last two errors are systematical.�"! �(�%$�!&� [GeV/c] �<���#�"!'���%$�!&� [GeV/c]

5-15% 0.475  0.050+0.024-0.173 1.609  0.564+0.254-0.140
15-25% 0.419  0.043+0.021-0.145 1.614  0.431+0.291-0.114
25-40% 0.444  0.046+0.022-0.158 1.503  0.357+0.219-0.143
40-60% 0.396  0.048+0.020-0.152 1.628  0.470+0.267-0.113
60-90% 0.310  0.046+0.016-0.095 0.766  0.240+0.053-0.252
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Figure 5.10 Final jet shape parameters in �����	� collisions: �"! �#�%$�!'�
with filled circles, �����#�"!&���%$�!&� with filled squares, and
the two bands correspond to the respective values of�"! �(�%$�!&� and �����#��!&����$�!'� in ��� collisions.
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5.3 Jet Conditional Yields in �U�W�U� Collisions

From the same
" ª

s presented in Appendix E, we also extract the near and
away Gaussian areas N ô Ç é . Then, using the method summarized by Eq.(4.14),

we calculate the near and away conditional yields.
Fig.(5.11) shows the conditional yields from the first step of the MJAP

procedure. Just as for the away widths, we expect the away conditional yield
to be truncated. Hence, we continue with the second step of the method, and
the resulting conditional yields are presented in Fig.(5.12). Indeed, a rising

trend with centrality can be observed in the second set of results.
For comparison, the ��� correlation analysis is repeated for the ��� bins

used in ������� analysis - (1.5-3) GeV/c for the associated hadron and (3-5)
GeV/c for the trigger hadron. The resulting near and away conditional yields
are shown in Fig.(5.12) with filled triangles.

Table 5.6 gives the final values for the conditional yields in �	����� colli-
sions, while Table 5.5 gives the final values for the jet shape parameters. The

first number is the value, the statistical error as reported by the fit comes
second, and the systematic errors are the last two numbers.

Table 5.6 Final conditional yields in �����	� collisions. First error is
statistical, last two errors are systematical.² ô ²?é

5-15% 0.206  0.028+0.010-0.042 0.163  0.057+0.008-0.033
15-25% 0.185  0.019+0.009-0.038 0.156  0.039+0.008-0.033
25-40% 0.190  0.020+0.010-0.041 0.156  0.039+0.008-0.033
40-60% 0.142  0.017+0.007-0.030 0.107  0.035+0.005-0.023
60-90% 0.147  0.014+0.007-0.031 0.109  0.021+0.005-0.024
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Figure 5.11 Near (filled circles) and away (filled squares) condi-
tional yields from MJAP method.
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CHAPTER 6. Conclusions

We argued that the analysis of two particle azimuthal correlation functions
is a method that can go further in the study of hadronic jet properties than

the hadronic spectra at high ��� . In particular, a more detailed study of the
hadronic jet quenching found in the nuclear modification of high-��� hadronic
spectra of central �	�
�	� collisions can be performed using this method.

We developed the formalism that relates a full set of jet quantities - the
shape parameters ( �"! ���%$�!&� and �"!&���%$�!&� ), the conditional yields ( ² ô Ç é ), and the

parton fragmentation function ( ��²�é�T���@�B with fixed trigger hadron) - to the
parameters extracted from fits of azimuthal correlation functions (Gaussian
widths and areas).

The first result from the analysis of ��� collisions is the parton fragmen-
tation function, built as the @
B distribution of hadrons associated with a

back-to-back trigger hadron of fixed transverse momentum. Exponential fits
of this distributions have a constant slope for ���%)+*-,Â.·. � u GeV/c and agree with
similar measurements performed at lower

� �
, which is what one expects

from the X J and
� �

independence of the parton fragmentation function. De-
viations from this behavior appear for ���%)+*-,/.0. �7UMF�u GeV/c, which is the soft��� region of the fragmentation at RHIC energies.

Since we realized that in all previous formulas for �"! �
:�;�)Ä!&� (originating from
the Feynman, Field and Fox formula (1.6)) there was a missing ����� term, we

developed an iterative method that employed the slope of the above fragmen-
tation function and PHENIX measurements of the 8CV spectrum in ��� collisions

to get the �<��� dependence on ��� needed for the extraction of �"!&���%$%!'� . In the hard
region of the fragmentation, we found a constant ����)+*-,Â.·.(� 
 0.74  0.02.

The last part of the ��� analysis used fixed azimuthal correlation functions

to obtain the jet shape parameters in the �>���?� region from 1.5 GeV/c to 5
GeV/c. The fragmentation transverse momentum ��! �#��$�!'� is ��� independent
and

� �
independent (based on comparisons with lower collision energy ex-
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periments); its value is �"! �#�%$�!&� 
 359  11(stat)  6(syst) MeV/c. The parton
transverse momentum �"!&����$�!'� does not have a significant ��� dependence in

the region studied and its value is ��!&���%$�!&� 
 964  49(stat)  16(syst) MeV/c.
Fig.(6.1) shows a comparison of our result with a compilation [34] of ��� mea-
surements in various processes (dilepton, diphoton, dijet); the results are

presented using an equivalent quantity, the total transverse momentum of
the parton pair: �>��� ¥ µ0,/*£� ¬ ÿ 8WT�U ÿ �-� J� � (6.1)

This measurement of ��� is an important addition to the
� �

scan of this
quantity, but also an essential ingredient in many theoretical calculations of

high-��� hadronic spectra in ��� , ��� and �	� collisions.
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Figure 6.1 Comparison with ��� world data on ��� . The PHENIX
data point is the filled square at

� �ï

200GeV.

Exactly the same analysis method has been used by the PHENIX collabo-
ration to extract the ��� dependence of �"!&���%$�!&� in ���	� collisions [24] at the same

collision energy. Fig.(6.2) compares the values found in ��� and ����� collisions.
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As mentioned before (see Section 1.3.2), a ��� enhancement in ��� collisions
over the value in ��� collisions is attributed to the Cronin effect (multiple soft

scattering). The present errors on this quantity do not allow a test of the
enhancement seen in Kï¶0é�; (see Fig.(1.4)).
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Figure 6.2 Comparison between ��� in ��� and ���	� collisions. Open
circles represent ��� values and filled circles ���	� values.

The presence of another source of two particle correlations in �����	� colli-
sions, the collective quadrupole correlations, raises a difficult technical prob-

lem in extracting the back-to-back (dijet) component of jet induced correla-
tions: due to its broadening and suppression in central collisions, its shape
closely resembles the one of collective quadrupole correlations (the Gaussian

width becomes larger or equal with the standard deviation of a �;: � \ U�132 ] mod-
ulation), making the simple fit fail. After we review various special methods

to deal with this problem, the practical application of two of them is pre-
sented. The 8WT�U subtraction method is used only to obtain the quadrupole
subtracted azimuthal correlation functions ( N " ª s), which we believe to be in-
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teresting even without any jet parameters extracted from them because they
are the only distributions that allow a visual inspection of the existence of

the dijet source. However, with the existing statistics in Run-2 �	����� data,
this method proves inefficient in extracting the dijet parameters with reason-
able precision. Hence, the method of minimum jet amplitude point (MJAP) is

finally used to do the analysis.
Azimuthal correlation functions of trigger hadrons with 3 Ñ³���%)+*-,/.0.�Ñ 5GeV/c

and associated hadrons with 1.5 Ñ ���õÑ 3GeV/c are fitted using the MJAP
method and the centrality ( æ ¥ µ·*�) ) dependence of the jet shape parameters
and jet conditional yields is obtained, as presented in Figs.(5.10) and (5.12).

Even though the current statistical and systematical errors are rather large,
we can observe several important trends in the data.

The fragmentation transverse momentum �"! �#�%$�!&� in ������� collisions is cen-
trality independent and agrees with the value from ��� collisions. This implies
that the measured fragmentation in ������� collisions happens in vacuum. On

the other hand, the parton transverse momentum �������"!&���%$�!'� (uncorrected for����� due to lack of knowledge about the parton fragmentation function in QCD
media) shows a strong enhancement with centrality. This implies a strong in-

teraction (accompanied by energy loss) of energetic partons with the hot, high
density QCD medium they travel through. The proposed scenario of skin jet

emission by a strongly interacting Quark Gluon Plasma explains these find-
ings. Near angle (around the trigger hadron) jet correlations are dominated
by jet fragments originating from hard scattering at the skin of the QGP,

since the others are quenched by the plasma and less likely to be detected.
In this sense, the centrality independence of �"! ���%$�!&� is a trigger bias. However,

once we trigger on a high-��� hadron and search for back-to-back associated
hadrons, we pick up those fragments from the fragmentation of partons that
travelled through the whole interacting region and hence interacted strongly

with the high gluon density plasma.
Another interesting finding lies in the fact that both the near and, even

more interestingly, the away conditional yields are increasing slightly with
centrality. However, higher ��� K	é�é measurements and away conditional
yields measured by the STAR collaboration [25] show a strong suppression

with centrality. If it is true that this suppression at higher ��� is due to energy
loss in the QGP, then it must be accompanied by a small enhancement at
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somewhat lower ��� based on simple energy conservation considerations. So,
as our results indicate, the strong suppression with centrality of the away

conditional yield at higher ��� is balanced by the small enhancement with
centrality of the away conditional yield at lower ��� .

With the present measurement precision, we can establish the only ex-

istence of such important phenomena, like the strong enhancement of the
acoplanarity of back-to-back jets with the centrality in ������� collision, but

we cannot make detailed comparisons with existing models of parton energy
loss. This will be done with the coming high luminosity run (Run-4 data
set) which is already ready to be analyzed at the time we are writing these

conclusions.
All these measurements provide more insight into the hadronic jet quench-

ing phenomenon. Together with other observations, like the binary scaling
of direct photon [18] and open charmed yields [19] in �	�
�	� collisions, they
prove the formation of an extremely dense QCD matter in central �	�
�	� col-

lisions. For example, the GLV (Gyulassy, Levai, Vitev) model of energy loss
uses an initial gluon density of ��²�T�� þ } a 6�6�6 and an initial energy density of� } a�� w�x�IST ~�� c to describe the observed Kïé�é [37], values which are well above

all the lattice QCD results for the quark deconfinement phase transition:� � } a wyx�IRT ~�� c .
Nonetheless, before we can claim to understand this new state of QCD

matter formed in our detectors, a consistent theoretical picture of its dynam-
ics must be found such that spectra, HBT, collective flow, baryon to meson

ratio, jet physics and other measurements are simultaneously described.
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APPENDIX A. Conditional Mean Fragmentation

Momentum Fraction

As mentioned already, the �<��� derived in Section 5.1 can be used to extract�"!'���%$�!'� only from fixed azimuthal correlation functions. In assorted correlation
functions, with one hadron kept at fixed ��� and the other one allowed to have
varying ��� , a different ����� has to be used instead. Basically, the �<��� ”inclusive”

formula given by Eq.(2.28) has to be replaced by a ”conditional” ����� formula.
The ���%) distribution of the trigger hadron conditioned on a given transverse

momentum ����µ of the associated hadron is

� J ¢�#���%)`�#����µ 
 ä È É ß J���I� Å ¥ §'&AÇ ¥ § a Ê ~ � \ ����� ] � � b ����µ����� d � � b ���%)����� d �#����������
 a
����) ä ¥ §;& ß ¥ § aÆ §'& a

��) ~ �<� ����)��)�� � \ ��) ] � b ����µ���%) ��) d ����) (A.1)

where �#)�¬v���%)<T"����� and @��%)W¬�U"���%)<T � � .
Then, the mean value of trigger hadron momentum fragmentation fraction

can be calculated in the same way as Eq.(2.28):

����)A� 
 $ ¥ §'& ß ¥ § aÆ §'& ~ � � ¥ §'& & � � \ ��) ] � � ¥ § a¥�§'& ��) � �%��)$ ¥ §'& ß ¥ § aÆ §'& i & ~ � � ¥ §'& & � � \ ��) ] � � ¥ § a¥ §'& ��) � ����) (A.2)

Extensive Monte-Carlo simulations were done to test these ����� formulas.

In particular, Fig.(A.1) shows ���#)+*-,/.0.�� and ���#µ É�É : � � dependence on ����µ É�É : � for fixed�>���%)+*-,Â.·.(� 
 3.4 GeV/c. The interesting feature is the variation of �<��)+*-,/.0.(� with����µ É�É : � . In the leading order, when the two jets in a dijet are balanced ( Ý���·î<) i 
Ý���·î<)¸J ), we expect �#)+*�,/.0. 4 �#µ É<É : � T�����µ É<É : � for fixed ����)+*�,/.0. . Next to leading order
corrections ( ��� effects), taken into account in our simulations, change these

relationships, but the general trends remain similar, as the figure shows.
Note, for example, that ����µ É�É : � � becomes equal to ���#)+*-,/.0.�� and consistent (within
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the approximations of the simulation) with the ”inclusive” ����� when ����µ É�É : �
crosses the fixed ���%)+*-,/.0. value.
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Figure A.1 Monte Carlo simulations of ���#)+*-,/.0.�� and ���#µ É�É : � � depen-
dency on ����µ É<É : � with ����)+*�,/.0. kept fixed in 3-4 GeV/c.
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APPENDIX B. The Seagull Effect

The Seagull effect [11] is a kinematical effect with simple consequences
on the fragmentation of a parton: since a vector’s component (���%$ ) cannot be

larger than vector’s magnitude (��� ), there is a truncation factor
~

such that�"! �(��$�!'�"� ~ � �¸����� . This fact will effectively reduce (truncate) the measured �"! ����$�!'�
by this factor

~
for fragments which have transverse momenta close to the

true �"! �(�%$�!&� .
This effect can be easily taken into account by using the following fit for-

mula for ��! �(�%$%!'� vs. �>����� :
�"! �h��$�!&� 
 
 8 U aæ ä º F �f F � �e�h�R! �h�R! x fD� p�p�� p (B.1)

where
~ V ¬ ~ �¼�i� � and æ ¬ $ º F �f F � �e�h� ����� \ F � p�J!� p ] is the normalization constant.

The fit parameters are the truncation factor
~

and the standard deviation of

the �"! �(�%$�!&� distribution ¢ .
We notice that the fit function describes accurately the data, as shown

in Fig.(B.1). We also note that only the first data point (which was dropped
anyway due to resonance decay contamination) is affected by the Seagull
effect; nonetheless, the resulting �"! �#�%$�!&� from the Seagull fit of all points agrees

very well with the �"! ����$�!'� from a fit with a constant above ��� � a Á � GeV/   .
Finally, the truncation factor discussed above is

~ 
 6�Á � Ô �  6�ÁÃ6�u�u . Inter-

estingly, it is } 6�Á � , corresponding to K�¬ � 1o2 J b 1 ë J 
 6�Á � � U � U 
 a
which is

the typical jet fragmentation cone; the two factors of
� U come about from the

fact that there are two fragments in the cone and from the similar opening

in 1 ë (we remind here that these �"! ����$�!'� values have been extracted from an
azimuthal correlation function).
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APPENDIX C. Correlation Functions in |}| Collisions

This Appendix contains plots with D E F D E correlation functions and their
fits in ��� collisions:

s Fig.(C.1) shows all the fixed (symmetric)
" ª

s in (1-1.5)GeV/c (upper
left), (1.5-2)GeV/c (upper right), (2-2.5)GeV/c (middle left), (2.5-3)GeV/c
(middle right), (3-4)GeV/c (lower left), and (4-7)GeV/c (lower right).

s Fig.(C.2) shows several examples of assorted (asymmetric)
" ª

s with the
trigger hadron in (4-7)GeV/c and the associated hadron in (3.5-4)GeV/c

(upper left), (3-3.5)GeV/c (upper right), (2.5-3)GeV/c (lower left) and (2
2.5)GeV/c (lower right). All

" ª
s are normalized to the number of entries

in the real 1o2 distribution.

s Fig.(C.3) shows @
B distributions in ��� collisions for various associated��� -bins and the trigger ��� -bin in (2.5,3.5)GeV/c. The solid lines corre-

spond to fits with Landau distribution.
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Figure C.1 D�E¯FHD�E fixed correlations and fits in ��� collisions in
(1-1.5)GeV/c (upper left), (1.5-2)GeV/c (upper right),
(2-2.5)GeV/c (middle left), (2.5-3)GeV/c (middle right),
(3-4)GeV/c (lower left), and (4-7)GeV/c (lower right).
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Figure C.2 D�E¯FHD�E assorted correlations and fits in ��� collisions
between trigger hadrons in (3-4)GeV/c and associated
hadrons in (1.5-2)GeV/c (upper left), (2-2.5)GeV/c
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Figure C.3 @�B distributions in ��� collisions for various associated��� -bins and the trigger ��� -bin in (2.5,3.5)GeV/c. The
solid lines correspond to fits with Landau distribution.
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APPENDIX D. Systematic Checks of |E| Results

In this Appendix we check the existence of systematic effects and errors
on the ��� jet shape parameters. First, we will asses the impact of the main

background correlations. After that, potential effects of the analysis method
will be studied. Finally, we will check the Gaussian jet profile assumption.
We call ”nominal” correlations or quantities those obtained under the stan-

dard cuts and methods outlined in Section 4.

D.1 The Systematic Effects of Background Correlations

This study is based on the dependence of near/away widths on the hadron

charge (see Fig.(D.1)). Apart from the ¢ ô value in the first ��� bin, they all
agree within one sigma. The probable source of deviations from a jet frag-

mentation behavior of the near-angle correlation at low ��� is the presence of
resonance decays (see Section 2.6).

To study this possibility, we assumed all tracks are charged pions and ob-

tained the invariant mass distribution by subtracting the same charge mass
distribution from the opposite charge mass distribution (see upper left panel
in Fig.(D.2)). A clear ] ZV mass peak is visible and the fit gives its position at

504  12MeV.
Furthermore, we obtained the invariant mass distributions for pairs of

hadrons entering into the first three ��� bins of our
" ª

s: this is presented in
the other three panels of Fig.(D.2) for pairs within the near-angle cone ( 1o2Ë�U ¢ ô î�µ0* ) that have ��� in (1,1.5)GeV/c, (1.5,2)GeV/c, and (2,2.5)GeV/c respec-

tively. One can observe that, indeed, for hadron pairs in 1-1.5 GeV/   there
is a mass excess (with a small ] ZV peak), while the other ��� bins are basically

flat.
Based on this study we decided to derive our final quantities ( �"! �#��$�!'�

and �����#�"!'���%$�!'� ) only for ��� � 1.5 GeV/   . We should note here that the Seagull
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effect also starts to affect the widths below 1.5 GeV/c (see Appendix B).
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Figure D.1 Charge dependence of the near angle (left panel) and
away angle (right panel) widths from fixed-��� corre-
lations: All Charge Correlations - triangles, Opposite
Charge Correlations - circles, Same Charge Correla-
tions - squares. Points are slightly shifted horizontally
for visualization.

D.2 The Systematic Effects of the Analysis Method

We vary the characteristics of pairs entering our correlation functions
(track cuts, pair cuts, histogram binning) and asses the effect on the quanti-

ties extracted by fitting them, in particular the near/away Gaussian widths.
The tables below show how they depend on the cuts and binning used to
construct the correlation functions: (A) nominal correlation, (B) correlation

of track pairs without Pc3 matching cut, (C) correlation of track pairs without
pair cuts (”ghost” and minimum radial distance at Pc1 and Pc3), (D) unsigned

correlations (between [0, 8 ]) with 18 bins (nominal correlations have 33 bins).
Case (B) accepts a sizable fraction (especially at lower ��� - about 15 � ) of

background tracks into the correlation function (see the pair multiplicities

quoted in parentheses in the first table for ”nominal” and ”no Pc3 cut” corre-
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Figure D.2 Upper Left: invariant mass of all track pairs - the ] ZV
mass peak is visible at 504  12MeV; Upper Right: in-
variant mass of track pairs within the near-angle cone
and with 1 � �i� � 1.5 GeV/   ; Lower Left: invariant
mass of track pairs within the near-angle cone and
with 1.5 ���i�v� 2 GeV/   ; Lower Right: invariant mass
of track pairs within the near-angle cone and with
2 �¼�i�Ü� 2.5 GeV/   .

lations). Correlations in cases (C) and (D) have similar pair multiplicities as

the nominal ones for these ��� bins.
All extracted widths are within one sigma of the nominal quoted value

(widths agree within the quoted errors) and there is no visible systematic

effect, therefore these become systematic checks of the current errors and
no systematic errors should be assigned. These data are plotted in Fig.(D.3).

D.3 Check of the Gaussian Jet Profile Assumption

As mentioned in Section 2.1, we always assumed that jets have a Gaus-
sian profile and approximated the standard deviations of jet 132 distributions
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Table D.1 Table with the near-angle widths extracted from
fixed-��� hadron-hadron D E FHD E correlations in differ-
ent analysis conditions (see text).��� \ wyx�IRT�  ] (A) (B) (C) (D)

1.5-2.0 0.374  0.017(13k) 0.358  0.017(15k) 0.373  0.017 0.363  0.018
2.0-2.5 0.289  0.019(2.4k) 0.307  0.021(2.6k) 0.297  0.019 0.289  0.018
2.5-3.0 0.234  0.023(555) 0.231  0.022(594) 0.246  0.023 0.259  0.022
3.0-4.0 0.185  0.017(381) 0.185  0.021(395) 0.191  0.016 0.187  0.017
4.0-7.0 0.152  0.022(128) 0.121  0.029(131) 0.122  0.016 0.158  0.024

Table D.2 Table with the away-angle widths extracted from
fixed-��� hadron-hadron D E FHD E correlations in differ-
ent analysis conditions (see text).��� \ wyx�IRT�  ] (A) (B) (C) (D)

1.5-2.0 0.758  0.091 0.750  0.085 0.782  0.095 0.771  0.095
2.0-2.5 0.637  0.057 0.700  0.064 0.660  0.062 0.621  0.062
2.5-3.0 0.616  0.100 0.541  0.089 0.599  0.100 0.493  0.067
3.0-4.0 0.403  0.063 0.365  0.059 0.376  0.059 0.389  0.047
4.0-7.0 0.305  0.081 0.264  0.101 0.288  0.070 0.339  0.076

with the widths of the Gaussian fits to these distributions in both near and
away regions. However, it is known that power-law tails are developed at
large 132 . We can asses the magnitude of these deviations by comparing

the standard deviations ( KMLPN ) of the near/away 132 distributions with the
widths of their Gaussian fits. Hence, we subtracted the fitted flat component

(
ª

) from each
" ª

in Fig.(C.1) and compute the standard deviation in both!'132 !�� 8CT�U and !'132 ! � 8CT�U regions. As an example, we show in Fig.(D.4) the" ª
for 2.0 � ���C� 2.5 GeV/   with the flat component subtracted; the dashed

lines show the near and away regions used in the KMLON calculation. As ex-
pected, there is a certain interval in each of the two regions that should be

used: it cannot be too small because it would truncate the distribution and
produce an smaller KMLON , but it also cannot be too large because it would
include a contribution from the flat transition region and produce a largerKMLPN . We present this for the mentioned

" ª
(Fig.(D.4)), by systematically

including more 132 bins into the calculation of the near and away KMLPN and
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Figure D.3 Systematics of the extracted near angle (left panel) and
away angle (right panel) widths from fixed-��� correla-
tions: Nominal Correlations - black triangles, Correla-
tions without Pc3 Cut - red circles, Correlations with-
out Pair Cuts - blue squares, Unsigned Correlations -
black open diamonds. Points are slightly shifted hori-
zontally for visualization.

watching the deviation of the KMLON from the gaussian width in terms of its

error ( \ ¢ FÚKMLPN ] T�K=� ) versus the size of the interval used for the KMLPN calcula-
tion in terms of the gaussian width ( �%² ± x � 9 ���·\ 132 ] T ¢ ), as shown in Tables D.3
and D.4.

The bottom line is that, for all
" ª

s in Fig.(C.1), the point where the
near/away distributions dissolve into the flat component (

" ª
becomes flat

- denoted by dashed red lines in Fig.(D.4)) corresponds to an interval of} � ¢ ô T � ¢ é ; if we use these
" \ 132 ] intervals, the resulting KMLPN always agrees

with its corresponding Gaussian width within better than one K'� .
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Table D.3 Example of near angle KMLPN calculation for the
" ª

for 2.0 � ���W� 2.5 GeV/   ; in this case, the fit result is¢  �K=� 
 6�ÁÂU�¿�Ô  å6�ÁÂ6 a Ô
Number Of Bins 4 6 8 10 12 14 16��² ± x � 9 ���·\ 132 ] T ¢ 2.64 3.96 5.28 6.59 7.91 9.23 10.55\ ¢ F³KMLPN ] T�K�� +3.42 +0.82 -0.72 -2.16 -3.60 -7.19 -4.77

RMS 0.224 0.273 0.302 0.330 0.357 0.425 0.379

Table D.4 Example of away angle KMLPN calculation for the
" ª

for 2.0 � ���W� 2.5 GeV/   ; in this case, the fit result is¢  �K=� 
 6�ÁÃÒ�u �  å6�ÁÂ6 ���
Number Of Bins 4 6 8 10 12 14 16��² ± x � 9 ���·\ 132 ] T ¢ 1.49 2.09 2.69 3.29 3.89 4.48 5.08\ ¢ F³KMLPN ] T�K�� +5.22 +3.36 +1.71 +1.50 +0.58 +0.34 +1.32

RMS 0.342 0.447 0.541 0.553 0.604 0.618 0.562
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Figure D.4 Example of KMLPN calculation:
" ª

for
2.0 � �i� � 2.5 GeV/   with the flat component sub-
tracted. Dashed lines show the near and away regions
used in the KMLPN calculation (see text).
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APPENDIX E. Correlation Functions in ���R��� Collisions

This Appendix contains plots with D E FHD E correlation functions of trig-
ger hadrons with 3 Ñ ���%)+*-,/.0.7Ñ 5GeV/c and associated hadrons with 1.5 Ñ���½Ñ 3GeV/c in �����	� collisions for the following centrality classes: 0-5%,
5-15%, 15-25%, 25-40%, 40-60%, 60-90%.

Fig.(E.1) shows the first step of the MJAP method (see Section 4.2.3) and

Fig.(E.2) shows the second step of this method applied to the same
" ª

s.
Note that the away angle parameters ¢ é and N?é are significantly higher

after the second step of the fit procedure when compared with their values
after the first step.
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Figure E.1 The first step of the MJAP fit of D E FHD E assorted corre-
lations in �����	� collisions between trigger hadrons in
(3-5)GeV/c and associated hadrons in (1.5-3)GeV/c.
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Figure E.2 The second step of the MJAP fit of D E F D E as-
sorted correlations in ������� collisions between trig-
ger hadrons in (3-5)GeV/c and associated hadrons in
(1.5-3)GeV/c.
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APPENDIX F. Systematic Errors of �U�W�U� Results

In this Appendix we estimate the size of the various sytematic errors of
the ������� jet parameters, as presented in Figs.(5.10) and (5.12).

The largest contribution comes from the MJAP fit method used to disen-
tangle the away Gaussian from the quadrupole modulation and, of course, it
will affect more the away Gaussian parameters.

The systematic errors have three components, which are added in quadra-
ture:s the largest contribution comes from the I�J variation within its errors.

This part of the systematic error is estimated by fixing I�J to I ×8A�é�5J bK�I ×8A�é�5J and I ×8A�é�5J F�K�I ×8A�é�5J (where by I ×8A�é�5J we mean the I�J values

resulting from the first step of the method and listed in Table 5.4) and
repeating the second step. This type of error ranges from 10% to 25%
and it is asymmetric - positive variations (above I ×8A�é�5J ) have larger im-

pact than negative variations (below I ×8A�é�5J ).s a symmetric systematic error due to momentum resolution ( K£�
T"� 
 6�Á � %bàa
% � ) which has values in the range 2% (peripheral) to 5% (central).s an overall symmetric 7% systematic error from the other sources. This

is the maximum amount of variation when we drop the matching with
PC3 of charged hadron tracks. Other variations of the

" ª
character-

istics (like the pair cuts) do not produce any significant change of the
results.

The tables included below show the variation of the near/away angle

widths and areas, as extracted by fitting the azimuthal correlation functions
with the MJAP values of I
J described above. The variations in the jet param-
eters (shape and conditional yields) listed as systematic errors in Tables 5.5

and 5.6 are calculated from these values by applying the specific formula for
each parameter.
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Table F.1 Near angle width variation with the amplitude of
the quadrupole modulation: I�J 
 I ×8A�é�5J in first
line, I�J 
 I ×8A�é�5J b K�I ×8A�é�5J in second line, andI�J 
 I ×8A�é�5J F�K�I ×8A�é�5J in third line.

60-90% 40-60% 25-40% 15-25% 5-15%
0.305  0.024 0.413  0.031 0.454  0.028 0.426  0.027 0.490  0.036
0.234  0.035 0.299  0.036 0.336  0.035 0.317  0.033 0.360  0.038
0.255  0.031 0.343  0.033 0.384  0.029 0.356  0.029 0.410  0.033

Table F.2 Away angle width variation with the amplitude of
the quadrupole modulation: I�J 
 I ×8A�é�5J in first
line, I�J 
 I ×8A�é�5J b K�I ×8A�é�5J in second line, andI�J 
 I ×8A�é�5J F�K�I ×8A�é�5J in third line.

60-90% 40-60% 25-40% 15-25% 5-15%
0.468  0.082 0.786  0.163 0.773  0.123 0.777  0.125 0.823  0.174
0.455  0.106 0.951  0.301 0.933  0.123 0.959  0.278 0.983  0.194
0.558  0.093 0.940  0.211 0.897  0.215 0.937  0.175 0.979  0.362
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Table F.3 Near angle area variation with the amplitude of
the quadrupole modulation: I�J 
 I ×8A�é�5J in first
line, I�J 
 I ×8A�é�5J b K�I ×8A�é�5J in second line, andI�J 
 I ×8A�é�5J F�K�I ×8A�é�5J in third line.

60-90% 40-60% 25-40% 15-25% 5-15%
4.642  0.369 2.404  0.238 1.723  0.151 1.101  0.094 0.915  0.102
3.842  0.350 1.994  0.230 1.423  0.129 0.919  0.090 0.765  0.089
4.679  0.377 2.456  0.258 1.770  0.151 1.164  0.103 0.973  0.109

Table F.4 Away angle area variation with the amplitude of
the quadrupole modulation: I�J 
 I ×8A�é�5J in first
line, I�J 
 I ×8A�é�5J b K�I ×8A�é�5J in second line, andI�J 
 I ×8A�é�5J F�K�I ×8A�é�5J in third line.

60-90% 40-60% 25-40% 15-25% 5-15%
3.443  0.559 1.808  0.493 1.402  0.292 0.935  0.193 0.725  0.211
2.843  0.501 1.498  0.470 1.162  0.255 0.775  0.130 0.605  0.192
3.472  0.578 1.862  0.515 1.460  0.314 0.991  0.206 0.788  0.230
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