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What does the future hold?

i

e

gﬂf&D ?ROBELS UNRAVEL THE
ECRET INNER WORKINGS OF
THE SQGp

Maybe Berndt, Xin-Nian, and Dave know
from their trip to China



SPHENIX is motivated by interest in dissecting
how the quark-gluon plasma works and
how its nature evolves with temperature

Is the QGP a perfect fluid with
no quasi-particles at any scale?
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Can even d+Au/p+Pb produce a nearly inviscid fluid?
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These developments in the past year underscore the
need for measurements to address
why and how perfect fluidity arises




Probing the Medium

Energy density, b = 9.3 fm t=4.530 fm/ﬁ).a
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When does the strongly coupled bulk (lower momentum IR)
transition to a weakly coupled probe (higher momentum UV)?




At what scale does bulk coupling relate to probe coupling?
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Small Shear Viscosity of a Quark-Gluon Plasma Implies Strong Jet Quenching
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At what scale does bulk coupling relate to probe coupling?

Charm Diffusion (D)
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How Much do Heavy Quarks Thermalize in a Heavy Ion
Collision?

Guy D. Moore

Derek Teaney




Charm and Beauty — sensitivity to earl
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Major Upgrade to PHENIX Proposed

Taking advantage of significant technology advances
(exciting synergies with LHC upgrades)
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http://arxiv.org/abs/arXiv:1207.6378




External review of sSPHENIX MIE, October 5—-6, 2012

Committee members: Miklos Gyulassy (Columbia), Xin-Nian Wang
(LBNL), Raju Venugopalan (BNL), John Harris (Yale), Jimmy Proudfoot
(Argonne), Mike Harrison (BNL), Bolek Wyslouch (MIT)

The Committee ... “strongly endorses the science case for
this program.”

- emphasize broad physics program of SPHENIX

- emphasize unigueness of the RHIC measurements
- more GEANT4 studies of full jet reconstruction

- test beam to validate EMCal/HCal design

- reduce technical risk on solenoid (biggest issue)



BaBar Solenoid

Excellent foundation for sPHENIX and ePHENIX:
inner radius 140 cm, length 385 cm), field 1.5 T

Just moving to SLAC station A
m Soon to Brookhaven
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Reduces technical risk associated with acquiring new
superconducting research magnets



1. ORDER NO.
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Same as block 4
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C/Q Mike Racine
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B. SHIPPING INSTRUCTIONS
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10. AFPROPRIATION SYMBOL AND TITLE

@W ; E . B. DATE transfer from DE-AC02-765F00515
- 1~ \\~\? |transfer to DE-AC02-08CH10886

c. er : E s ~— ' 1. ALLOTMENT 12, GOVERNMENT BAL NO.
e ) PROPERTY CRDERED
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AGENCY NOS. NO. # avafable, Matienoi Siock Number) UMAT | QUANTITY UMET TOTAL
{a)_ i) (d) fe} () 8}

Date of Mfr: 1996
(See attached list)

e}
Administrative Transfer
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es 1 12,000,000.00| § 12,000,000.00

Total Acquisition Cost  § 12,000,000.0



A broad physics program of the sQGP

 What are the inner workings of the sQGP?

* Are the key degrees of freedom quasi-particles?
excitations? other?

e full jet probes and high statistics dijets

* where does jet energy lost go?

e direct photons

* photon-jet, photon-hadron, jet-hadron correlations

* high statistics upsilons, high statistics open heavy
flavor



sPHENIX Rates: Jets, Dijets, y-Jet
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Jets Rates for Au+Au @ 100 GeV and Unique Flexibility of RHIC Enable Additional Lever Arm



RHIC Jet Discriminating Power
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Comprehensive picture across and QGP
spanned by RHIC and LHC needed

Lever Arm, Strongest Coupling Near T_?
What is the Underlying Physics (not just n/s value)?

Chris-Coleman Smith
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PHENIX 0 - 5%, Preliminary
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s 2
:l_.'. Simulation Results
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Good heavy quark jet rates

However, difficulty in tag jet

SPHENIX has great D meson
acceptance and DCA tag, but
loses S/B without Kaon ID.

Jet R,, high statistics...

Good first measurements
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Quarkonia Thermometer
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sPHENIX Upsilon Measurements

— Total | ° Y(29)
500 ﬂ . o Y(35)

Backgrounds: ‘
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Extremely exciting LHC Upsilon results
Key to map out temperature dependence

sPHENIX will have similar statistics to LHC
and > 7x STAR MTD measurement

Needs additional tracking + preshower 21



There are arguments that fully reconstructed jets are not in
the end the most sensitive to medium properties.

Single hadrons

Di-hadron correlations

Photon-hadron correlations

Multi-hadron correlations

Hadron-flow correlations (v,, v, v,, Vc)

Reco Jet spectrum

Reco Jet-hadron correlations

Reco-Jet — underlying event correlations (v,, v, vy, Vc)
Quarkonia — underlying event correlations

Quarkonia — Reco-Jet correlations

sPHENIX can do all that with 25 billion recorded events (no
trigger bias) with very large acceptance. And in p+p, p+A too.



My g-2 Analogy

Years ago when g-2 was proposing a factor of 10
improvement with more running at BNL, the BNL PAC noted
that the experiment would have uncertainties much smaller

than those from theory.

Bill Marciano confidently stated that given the time to build
and run the experiment, theory would be much lower.

Fermilab believed that
to be the case!




What is our theory projection?

Where do we really have a solid connection
between theory and experiment?

If things are not perturbatively describable, do
we “jump into a black hole”?



As high energy quarks or quark-antiquark pairs
traverse the QGP, what do they see?

Do the highest energy
jets at LHC see

point-like color charges?

Do the lowest energy
jets at RHIC scatter
from coherent fields or
only excite sound
waves?

pQCD
Scattering from
A Point-Like Bare
éﬁ “'#% Color Charges

What scale sets this transition?

Scattering
from Thermal

yﬂzf\ Mass Gluons?

What scale sets this transition?

pQCD Scattering Strong Coupling
From Quasiparticles No Quasiparticles
with size ~ ppepe |
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Constituent mass dependence of transport coefficients in a quark-gluon plasma

C. E. Coleman-Smith* and B. Miiller
Department of Physics, Duke University, Durham, NC' 27708-0305
(Dated: September 18, 2012)

http://arxiv.org/abs/arXiv:1209.3328
ghat = scattering of lead parton = radiation e-loss

— energy transferred to the QGP medium

Jet E; =30 GeV
T =350 MeV
o, =0.3
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Is there experimental evidence for influence of
strong Color E+M fields?

Is the perturbative ghat / ehat prescription appropriate at

the earliest times?
What is the influence of pre-equilibrium times?
How to connect these with experimental observables?




Qhat constraint... the past

Not the key observables, but pinning down the right picture

Very strong historical evidence for the power of energy
reach of observables... (both up and down)
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Lattice Revolution: Non-perturbative Connection

Quark Distribution

§ Exploratory study
& N=2+1+1 clover/HISQ lattices
M_=310 MeV, a = 0.12 fm (L = 2.88 fm)
& [sovector only (“disconnected” contribution suppressed)

2.0
? {Corrected to O(P;?)

1Gray band shows
lextrapolation of P;* terms

PREL NARY

1.5F

1No significant
1finite-momentum
4 effect seen

1.5
§ Renormalization needed

Huey-Wen Lin — QCD Evolution Workshop




Lattice Revolution: Non-perturbative Connection
- Revolution in Jet Quenching Theory (?) €
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http://arxiv.org/abs/arXiv:1303.0318

If they can calculate parton distribution functions and
helicity distribution functions on the lattice in 10 years,
what can be done for jet quenching observables?



ePHENIX — built on the sPHENIX foundation

1954 Japanese original, Dr. Yamane
estimates that Godzilla is 50 meters t




ePHENIX DIS on heavy nuclei.... Large range in struck

quark energy in nuclear rest frame and initial virtuality.
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Good to see virtuality evolution plot and prediction



Calculation done

as if scattering off 1.50 @ 00 mesons lower o)
intrinsic charm, so [ ¢ | 2 Ponstigneroneny
that scattered e e e e
electron gives v,

denominator for z.

1.30 | -Wang, pions (higher enengy)

1 -7 pion 1-o 00
1.1 D 1 sysiematc

| sysiematc
uncertainty ' *# uncertainty

Broken with
photon-gluon

0.90.

fusion. Is that still
worth measuring?
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Two action items:

1. Write some text regarding analogy of theory on h/s
(factor of 10 differences in 2009). Theory advances,
higher moments, ruling out some pictures...

2 LTy ~ oy
Glauber H 2 [|vq == | RHIC 200GeV, 30-40%
+ (cGC) —‘—J—_ - E STAR Chg. v, (2009) =

Vo = | filled: STAR prelim
Vo == | Open: PHENIX .
sl PHENIX v, WWND09 " P =
acey et al, PRL 092301 (2007)

=
BE
2.=
SE
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=
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6 3 10 12
http://arxiv.org/pdf/0907.4513v2.pdf 4r ﬂ/S

Now m/s pinned down to < £50%, thus indicating the tools
exist to attack the temperature dependence and more



Important experimental and theoretical developments

o Huowinen at al. (2001) Phys.Latt B503, 56
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from initial conditions.
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Higher moments constrain viscosity and fluctuating
initial conditions better, but temperature dependencs
of 7 is not yet determined.
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Important expenmental and theoratical devalopmenis
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Perhaps a version of
Xin-Nian’s figure with
a larger box from 5
years ago and today
would be a good
proximity...

Then argue that

progress for tools to
go to the next step...
Can we attach
evolution, my,
scattering from ?




2. Read Thorsten’s paper and get his code...

Biased Showers — a common conceptual Framework for the Interpretation of High Pr
Observables in Heavy-Ion Collisions

Thorsten Renk*
Department of Physics, P.O. Box 35, FI-{001} University of Jyviskyld, Finland and
Helsinki Institute of Physies, P.O. Box 64, FI-0001} University of Helsinki, Finland

Try thinking through connecting sPHENIX capabilities /
statistics with these different “bias is good” observables...

SPHENIX can dial the range between these extremes...
And sPHENIX has discovered color plots!



Summary

SPHENIX will have unprecedented
RHIC measurement capabilities

Very strong argument for key insights with
large collision energy span combined with LHC

(almost 100% parallel in previous examples)

How to gain fundamental new insights
from these hard probes?

How to translate that into precision constraints?

Open for discussion...



Extras...
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http://arxiv.org/abs/arXiv:1002.1165




(GeV/fm)

ST eB=m?, p=¢=0

Is there experimental evidence for influence of
strong E+M fields?
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