

Probing Gluon Polarization with J/Psi in Longitudinally Polarized pp Collisions

Ming X. Liu Los Alamos National Lab

The Challenge: the spin "crisis"

Understanding the nucleon sub-structure

$$\frac{1}{2} = \int_0^1 dx \Big[\frac{1}{2} \Delta \Sigma(x) + \Delta g(x) \Big] + L_Z$$
$$= \frac{1}{2} \Delta \Sigma + \Delta G + L_Z$$

Polarized PDFs

Asymmetry Analysis Collaboration M. Hirai, S. Kumano and N. Saito, PRD (2004)

Gluon polarization (ΔG) remains poorly constrained

SIDIS and Gluon Polarization Measurements

• Semi-inclusive DIS

- HERMES @ DESY
 - high- p_T hadron pairs
- SMC @ CERN
 - high- p_T hadron pairs
- COMPASS @ CERN
 - high- p_T hadron pairs
 - open charm (projection)

@RHIC-SPIN

Polarized hadron collisions

- double longitudinal spin asymmetry

- leading-order gluon interactions
 - direct-photon production
 - heavy-flavor production

Carliner

Q = a or b

Advantage of Heavy Quarks

- Sensitive to gluon polarization: $\Delta g(x)$
- Gluon Fusion dominates at LO

PHYTHA estimate:	GeV	Charm	Beauty
	200	95:5	85:15
$\sigma(gg \to QQ): \sigma(qq \to QQ)$	500	97:3	92:8

For open charm production

Gluon Fusion

 h_{A}

 h_{B}

 h_{A}

The PHENIX Muon Arms

 A_{μ} from $J/\psi \rightarrow \mu + \mu -$

- Analysis approach
 - Polarization=47% (average)
 - R is from BBC_in (GL1P)
 - N_Jpsi Yield

$$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} - \sigma^{+-}} = \frac{1}{P_B \cdot P_Y} \frac{N_{J/Psi}^{++} - R \cdot N_{J/Psi}^{+-}}{N_{J/Psi}^{++} + R \cdot N_{J/Psi}^{+-}}$$

J/psi Yield Measurements

- 1. Fill by fill {Charge(+-) charge(++,--)}
 - No need fill by fill muon efficiency correction
 - Have Open charm, DY and other background
 - Fix mass range to extract N_Jpsi
 - We used this one for the final results.
- 2. Gaussian+Exponential background
 - Used to estimate the background under J/Psi peak

Dimuon mass distributions

$$\frac{dN}{dM} = A \cdot e^{-K \cdot M} + N \cdot \frac{1}{2\pi\sqrt{\sigma}} e^{-\frac{(M - M_{J?psi})^2}{2\sigma^2}} + N' \cdot \frac{1}{2\pi\sqrt{\sigma}} e^{-\frac{(M - M_{Psi'})^2}{2\sigma^2}}$$
RSC Meeting 10/05/2005 M. LIU

N_J/Psi > 10 per fill

2 sigma cut:

2.80 < Mass < 3.44

 $N = 7373 \pm 86$

<*RL*> = 1.00892

A_{LL} (raw)= -0.007 ± 0.013

N Jpsi per fill

Signals

Raw Asymmetry Per Fill:

 $N_Jpsi > 10$

Two pT bins: 0.0-1.4 GeV and 1.4 - 10 GeV

2.80 < Mass < 3.44, 2 sigma cut $A_{LL}(raw) = +0.0011 \pm 0.0175$ $A_{LL}(raw) = -0.0145 \pm 0.0179$

Background

About Theoretical Calculations

Theoretical Calculations (cont.)

NLO NRQCD and PHENIX data

PHENIX, PRL 92, 051802 (2004)

Theoretical predictions of J/Ψ production at RHIC are in good agreement with the PHENIX data: COM process dominant

- PRD 68 (2003) 034003 G. Nayak, M. Liu, F. Cooper
- PRL 93 (2004) 171801 F. Cooper, M. Liu, G. Nayak

NRQCD Calculations of A_{LL}

• NRQCD LO (hep-ph/0509335 G. Nayak et al.)

Summary and Outlook

- First measurement of double spin asymmetry with J/Psi from longitudinally polarized p-p collisions
 - Almost pure gluon fusion
 - 10k J/psi, statistically limited
- Theoretical work in progress (G. Nayak et al)
 - No gluon polarization
 - Maximum(+,-) polarization
 - Excellent QCD test ground
- Open charm with prompt muons with a much larger statistics from run5