Nucleon-Structure Physics by Proton-Proton Collisions

Ming X. Liu Los Alamos National Laboratory QNP2018 Tsukuba, Japan

Nucleon Structure and Interaction

- A very rich dynamic environment, NOT a point particle
 - 3-D
 - scale-dependent
- Primary source of our knowledge about QCD and strong interaction phenomena

Physics of Nucleon Structures

- How hadrons formed and interact from the fundamental quarks and gluons?
 - Space and momentum distributions of quarks and gluons
 - Spin degree of freedom
 - Probe scale dependence, Q2
- Our tools
 - Lepton probes electrons, muons, neutrinos ...
 - DIS experiments, HERMIES, COMPASS, EIC...
 - Hadron probes proton, pion/Kaon...
 - RHIC, Fernilab, COMPASS ...
 - Lattice QCD, pQCD ...

Study Nucleon Structure in Hadron Collisions

Very massy p-p collisions could be simplified for hard-scattering processes, pQCD applicable

$$\sigma \sim f(x_1) \otimes f(x_2) \hat{\sigma}^{x_1 + x_2 \to h_1 + h_2 + X}$$

NIKA/SPD

Alexey Guskov, Fri.

• Spin puzzle

• RHIC – PHENIX, STAR

Selected Recent Highlights

- TMD phenomena
 - RHIC/STAR, PHENIX
 - CERN/COMPASS
 - Fermilab/SeaQuest

Itaru Nakagawa, Fri.

Ken Barish, Fri.

Marcia Quaresma, Wed.

Kei Nagai & Yoshiyuki Miyachi, Wed.

Part-I: Challenge of "Too Large"

Three Decades of the Proton Spin Puzzle

Spin Crisis: EMC, 1987

Early expectation: Large gluon polarization, Axial anomaly, Cheng & Li, PRL (1989) $\Delta \Sigma' = \Delta \Sigma - \frac{\alpha_s}{2\pi} \cdot \Delta G$ $\frac{\alpha_s}{2\pi} \cdot \Delta G = 0.3 \pm 0.1$

Development of RHIC-Spin program in 90's

Today:

 $\Delta G \sim 0.2$ (RHIC-Spin)

 $L^z \sim ?$ (RHIC, FNAL?)

	Quark Spin	Gluon Spin				
SLAC -> 2000	E80 – E155					
CERN ongoing	EMC, SMC	, COMPASS				
DESY ->2007	HERMES					
JLab ongoing	Hall A,B,C					
RHIC ongoing	(BRAHMS), (P	(BRAHMS), (PHENIX), STAR				
	SIDIS/DIS					
	Polarized p+p					

World First High-Energy Polarized Proton Collider at RHIC

Study Gluon Polarization at RHIC

 $A_{11} = (N^{++} - N^{+-})/(N^{++} + N^{+-})$

 $\Delta \sigma(pp \to \pi^0 X) \approx \Delta q(x_1) \otimes \Delta g(x_2) \otimes \Delta \hat{\sigma}^{qg \to qg}(\hat{s}) \otimes D_q^{\pi^0}(z) \dots$

Ming Liu, QNP2018

First Hint of Non-zero Gluon Polarization from RHIC 2009 Data Set

Run 2009 p+p@200GeV

Projected Impact of RHIC data on Gluon Polarization

Electroweak Probe for Sea Quarks at High Energy at RHIC

$$q(x_1) + \bar{q'}(x_2) \to W^{\pm} \to e^{\pm} + \nu(\bar{\nu})$$

$$A_{L}^{W^{+}} \approx \frac{-\Delta u(x_{1})\overline{d}(x_{2})(1-\cos\theta)^{2} + \Delta \overline{d}(x_{1})u(x_{2})(1+\cos\theta)^{2}}{u(x_{1})\overline{d}(x_{2})(1-\cos\theta)^{2} + \overline{d}(x_{1})u(x_{2})(1+\cos\theta)^{2}}$$
$$A_{L}^{W^{-}} \approx \frac{-\Delta d(x_{1})\overline{u}(x_{2})(1+\cos\theta)^{2} + \Delta \overline{u}(x_{1})d(x_{2})(1-\cos\theta)^{2}}{d(x_{1})\overline{u}(x_{2})(1+\cos\theta)^{2} + \overline{u}(x_{1})d(x_{2})(1-\cos\theta)^{2}}$$

First Direct Measurements of Flavor Identified Sea Quark Polarization

RHIC has unique access to flavor identified sea-quarks via real W^{+/-}

Physics with Transversely Polarized p+p Collisions at RHIC

Part-II: The Challenge of "Too Large"

• Large Transverse Single Spin Asymmetry (TSSA) in forward hadron production persists up to RHIC energy.

Probe the Underlying Physics via Hard Scatterings TMD vs Collinear Twist-3 Factorizations

(i) Sivers mechanism:

correlation proton spin & parton k_T

(ii) Collins mechanism:

Transversity × spin-dep fragmentation

Collinear Twist-3 (RHIC):

quark-gluon/gluon-gluon correlation

Access Sivers and Collins with Jet and Hadron Azimuthal Distributions in Transversely Polarized p+p Collisions

Ming Liu, QNP2018

Sivers Asymmetry

- non-Universality, process dependent
 - Sign change prediction
 - Drell-Yan and W/Z in p+p

Phys. Rev. Lett. 116, 132301 (2016) Comparison with Phys. Rev. Lett. 103, 172001

Drell-Yan from COMPASS Polarized Target

COMPASS Drell-Yan Run 2015 results

PRL 119, 112002 (2017)

PHYSICAL REVIEW LETTERS

week ending 15 SEPTEMBER 2017

First Measurement of Transverse-Spin-Dependent Azimuthal Asymmetries in the Drell-Yan Process

Ming Liu, QNP2018

Drell-Yan @SeaQuest Fixed Target

$$\frac{d^2\sigma}{dx_t dx_b} = \frac{4\pi\alpha^2}{9x_1 x_2 s} \sum e^2 [q_b(x_b)\overline{q_t}(x_t) + \overline{q_b}(x_b)q(x_t)]$$

$$\approx \frac{4\pi\alpha^2}{9x_1x_2s} \sum e^2 [q_b(x_b)\overline{q}_t(x_t)]$$

from target – a sea quark lab!

Flavor Asymmetry of Sea Quarks at Intermediate x

Projected Drell-Yan A_N

First Polarized p+A at RHIC

Run15 p+Au: a Surprise!

Unexpected pAu and pAl asymmetries observed compared to that of pp

Future at RHIC: PHENIX -> sPHENIX -> EIC@RHIC

Current PHENIX	Forward sPHENIX	An EIC detector			
 PHENIX completed 2016 16y+ work 100+M\$ investment 130+ published papers to date 	 Comprehensive central upgrade based on BaBar magnet fsPHENIX: forward tracking, HCal and muon ID Key study of transverse spin New collaboration/new ideas 	 Path of sPHENIX upgrade leads to a capable EIC detector Large coverage of tracking, calorimetry and PID New collaboration/new ideas 			
~2000 2017- RHIC: A+A, polarize	→2020 ~2 d p+p, polarized p+A	025 Time eRHIC: e+p, e+A			

Forward sPHENIX Projected Jet Sivers Asymmetries Test the universality of QCD description of TSSA: pp vs SIDIS

Summary

- QCD has been very successful in consistently interpreting and predicting high energy phenomena in
 - DIS vs p+p
 - Unified partonic description of nucleon structures and interactions
 - •
- Proton/Hadron collisions
 - Versatile physics program
 - Access a broad (x,Q²) range
- Will continue playing a key role in exploring the fundamental nature of nucleon structure and strong interactions
 - Need all three experimental tools to complete the program
 - p+p, DIS, e⁺e⁻

Complementary test and validation of QCD description of hard processes

backup

Anselmino et al 2016

RHIC pp500GeV: W^{+/-} A_N

$$\mathsf{A}_{\mathsf{N}}(\mathsf{W}^{+}) \simeq \left(\Delta^{N} f_{u/p^{\uparrow}} \otimes f_{\bar{d}/p} + \Delta^{N} f_{\bar{d}/p^{\uparrow}} \otimes f_{u/p}\right)$$

$$\mathsf{A}_{\mathsf{N}}(\mathsf{W}^{\text{-}}) \simeq \left(\Delta^{N} f_{\bar{u}/p^{\uparrow}} \otimes f_{d/p} + \Delta^{N} f_{d/p^{\uparrow}} \otimes f_{\bar{u}/p} \right)$$

RHIC data:

- A mix of valence and sea quark Sivers
- Quark flavor identified
- High Q²
- Statistically limited, ~0(10%)
- Possible large dbar Sivers contributions

E1039:

- $low Q^2$
- Good statistics, ~O(1%)

Unpolarized Sea Quark Distributions

$$R(x_F) \equiv rac{\sigma_{W^+}}{\sigma_{W^-}} =$$

 $\frac{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}{\bar{u}(x_1)d(x_2) + d(x_1)\bar{u}(x_2)}$

Sea quark flavor asymmetry and pion cloud model

Drell-Yan Sivers Asymmetries w/ QCD Evolution

Latest $W^{+/-} A_{L}$ from STAR and PHENIX

Projected RHIC $W^{\pm} \rightarrow l^{\pm}$ data Impact on Sea Quark Polarization Determination

• Expect significant improvement of flavor identified sea quark distributions

The RHIC Spin Program, arXiv: 1501.01220

sPHENIX at RHIC

- Large acceptance, high rate next generation experiment at RHIC
 - QGP and Cold QCD physics with,
 - Jets
 - Heavy quarkonia
 - Open heavy flavor
 - Study p+p, p+A and Au+Au collisions at top energy 200GeV
 - Central barrel: |eta|<1, 2pi coverage
 - EMCal & HCal
 - MVTX/INTT/TPC
 - Forward upgrade being developed
 - DAQ rate: 15kHz
- Project Status
 - Granted DOE CD-0, 10/2016
 - CD-1 reviewed, 8/2018
 - Construction: 2018-2022
 - Day-1 physics, ~1/2023

RHIC Multi-Year Plan: sPHENIX 2023-2027+ (Cold QCD plan under development now)

• Jets, hadrons and heavy flavor and more

	Year	Species	Energy [GeV]	Phys. Wks	Rec. Lum.	Samp. Lum.	Samp. Lum. All-Z
	Year-1	Au+Au	200	16.0	$7~{ m nb^{-1}}$	$8.7 \ \mathrm{nb^{-1}}$	$34 \ \mathrm{nb^{-1}}$
	Year-2	p+p	200	11.5		$48 \mathrm{~pb^{-1}}$	$267~{ m pb}^{-1}$
	Year-2	p+Au	200	11.5	—	$0.33 { m ~pb^{-1}}$	$1.46 {\rm ~pb^{-1}}$
	Year-3	Au+Au	200	23.5	$14 \mathrm{~nb^{-1}}$	$26 \ \mathrm{nb^{-1}}$	$88 \ { m nb^{-1}}$
	Year-4	p+p	200	23.5	—	$149~{ m pb}^{-1}$	$783~{ m pb}^{-1}$
11/15/18	Year-5	Au+Au	200	23.5	$14 \mathrm{~nb^{-1}}$	48 nb^{-1}	$92~{ m nb}^{-1}$

36

Detector components, sPHENIX and EIC detector

• sPHENIX

- HCal/Flux return
- Solenoid
- Central EMCal
- Silicon strip tracking
- TPC
- MVTX

- EIC detector
 - HCal/Flux return
 - Solenoid
 - Extended Central EMCal
 - Central hadron PID
 - TPC
 - MAPS
 - Forward and backward tracking
 - Forward and backward hadron PID
 - Backward crystal EMCal
 - Forward EMCal
 - Forward HCal

Proposed STAR Forward Upgrade

Access small-x Gluons

To install a Forward Calorimeter System (FCS)

in early 2020s:

- EMCal

ECAL $\approx 10\%/\sqrt{E}$

- Hcal

- HCAL $\approx 60\%/\sqrt{E}$
- Tracking, charge separation

Di-jet in the forward region (2.8<eta<3.7) Access gluon polarization at low x:

- X ~ 5x10^-3 (central + forward)
- X~ <1x 10^-3 (forward forward)

Toward a Unified Picture of Nucleon Structure

Wigner Distributions

Momentum and Spatial Tomography

Some data, recent progress

Good data, long history

History of RHIC Spin Runs

RHIC is capable of delivering the polarized p+p/A for precision spin physics

- A very challenging task to deliver polarized p+p, excellent performance from 2012+
- Outstanding Heavy Ion machine performance from the beginning
- Polarized p+p, p+Au and p+Al

Work Wide Collins – (x, Q^2)

IVIIIIS LIU, UNFZUIO

Physics with Longitudinally Polarized p+p Collisions

Latest Pol NNPDFPol Global Fit

-SI/DIS data -RHIC data

A New QCD Facility at M2 beam line of the SPS CERN (to be submitted in January 2019)

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

October 15, 2018

http://arxiv.org/abs/1808.00848

[hep-ex] 15 Oct 2018

Letter of Intent (Draft 2.0) A New QCD facility at the M2 beam line of the CERN SPS

Letter of Intent working group*

A NQF@M2 beam line of the SPS CERN

	Physics	Beam	Beam	Trigger	Beam		Earliest	Hardware
Program	Goals	Energy	Intensity	Rate	Туре	Target	start time,	additions
		[GeV]	[s ⁻¹]	[kHz]			duration	
muon-proton	Precision					high-		active TPC,
elastic	proton-radius	100	$4 \cdot 10^{6}$	100	μ^{\pm}	pressure	2022	SciFi trigger,
scattering	measurement					H2	1 year	silicon veto,
Hard								recoil silicon,
exclusive	GPD E	160	$2 \cdot 10^{7}$	10	μ^{\pm}	NH_3^{\uparrow}	2022	modified polarised
reactions							2 years	target magnet
Input for Dark	production	20-280	5 · 10 ⁵	25	р	LH2,	2022	liquid helium
Matter Search	cross section					LHe	1 month	target
			_					target spectrometer:
p-induced	Heavy quark	12, 20	$5 \cdot 10^{7}$	25	\overline{P}	LH2	2022	tracking,
spectroscopy	exotics						2 years	calorimetry
Drell-Yan	Pion PDFs	190	$7 \cdot 10^{7}$	25	π^{\pm}	C/W	2022	
							1-2 years	
Drell-Yan	Kaon PDFs &	~100	10 ⁸	25-50	K^{\pm}, \overline{p}	NH [↑] ₃ ,	2026	"active absorber",
(RF)	Nucleon TMDs					C/Ŵ	2-3 years	vertex detector
	Kaon polarisa-						non-exclusive	
Primakoff	bility & pion	~100	$5 \cdot 10^{6}$	> 10	<i>K</i> ⁻	Ni	2026	
(RF)	life time						1 year	
Prompt							non-exclusive	
Photons	Meson gluon	≥ 100	5 · 10 ⁶	10-100	K [±]	LH2,	2026	hodoscope
(RF)	PDFs				π^{\pm}	Ni	1-2 years	
K-induced	High-precision							
Spectroscopy	strange-meson	50-100	5 · 10 ⁶	25	K^{-}	LH2	2026	recoil TOF,
(RF)	spectrum						1 year	forward PID
	Spin Density							
Vector mesons	Matrix	50-100	5 · 10°	10-100	K^{\pm},π^{\pm}	from H	2026	
(RF)	Elements					to Pb	1 year	

Table 2: Requirements for future programmes at the M2 beam line after 2021. Muon beams are in blue, conventional hadron beams in green, and RF-separated hadron beams in red.

QCD facility – future fixed target experiment at M2 Spectrometer upgrades for Drell-Yan measurements with RF-separated beam

- Investigate the possibility to use W-Si detectors, a la PHENIX (NCC, MPC-EX)
- Dead zone with radius of 9 cm (12 cm) for angles below 90 mrad (120 mrad)
- Outter radius: 112 cm for angles up to 300 mrad

Initial detector consideration:

Combination of

- Baby-Mind detector
 - M. Antonova et al. arXiv:1704.08079
- W-Si detectors, a la BNL

AnDY Phenix MPCEX Phenix NCC

Do We Understand the Physics?

Large Transverse Single Spin Asymmetry (TSSA) in forward hadron production persists up to RHIC energy.

FNAL 200 GeV beam

RHIC 200 GeV CMS

π⁰ mesons

Collins

Sivers

Total energy

Initial state twist-3

Final state twist-3

| A^{CN|}=0.013) 7.0

٠

0

Hadron TSSA in Twist-3 Framework

Qiu & Sterman PRD 59 (1998)

$$\Delta \sigma_{A+B\to\pi}(\vec{s}_T) = \sum_{abc} \phi_{a/A}^{(3)}(x_1, x_2, \vec{s}_T) \otimes \phi_{b/B}(x') \otimes H_{a+b\to c}(\vec{s}_T) \otimes D_{c\to\pi}(z)$$

$$+\sum_{abc} \underline{\delta q_{a/A}^{(2)}(x,\vec{s}_T) \otimes \phi_{b/B}^{(3)}(x_1',x_2') \otimes H_{a+b\to c}''(\vec{s}_T) \otimes D_{c\to\pi}(z)}$$

$$+\sum_{abc} \underline{\delta q_{a/A}^{(2)}(x,\vec{s}_T) \otimes \phi_{b/B}(x') \otimes H'_{a+b\to c}(\vec{s}_T) \otimes D_{c\to\pi}^{(3)}(z_1,z_2)}$$

+higher power corrections,

1st term: twsit-3 correlation functions, "Sivers" 2nd term: twist-2 transversity * twist-3 from unpol beam (expected small) 3rd term: twist-2 transversity * twist-3 FF, "Collins"

Need new direct measurements of Sivers and Collins TSSA in p+p! Forward sPHENIX Upgrade Proposal

48

48