Drell-Yan Angular Distributions at Fermilab E906/SeaQuest

Bryan Ramson

University of Michigan, Ann Arbor

February 15, 2018

Bryan Ramson (University of Michigan, Ann Drell-Yan Angular Distributions at Fermilab E

February 15, 2018 1 / 33

The Drell-Yan Process

Drell-Yan angular distributions have information about parton dynamics:

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega} = \frac{3}{4\pi}\frac{1}{\lambda+3}\bigg[1+\lambda\cos^2(\theta)+\mu\sin(2\theta)\cos(\phi)+\frac{\nu}{2}\sin^2(\theta)\cos(2\phi)\bigg],$$

Where λ , μ , and ν are proportional to polarized hadronic tensor elements

If quarks and leptons are fermions:

$$1 - \lambda = 2\nu$$
 with $\lambda = 1$ & $\nu = 0$

Previous Drell-Yan Measurements

CERN-NA10, π^- +W,D @ 140, 194, and 286 GeV

 ν -modulation major driver of violation!

Previous Drell-Yan Measurements

Fermilab E615, π^{\pm} +W @ 80, 252 GeV

ν -modulation major driver of violation!

Bryan Ramson (University of Michigan, Ann Drell-Yan Angular Distributions at Fermilab E

Previous Drell-Yan Measurements

Fermilab E866, p+H,D @ 800 GeV

Suppressed *v*-modulation driver of violation!

TMD Distributions: Origin of Violation?

Transverse-Momentum-Dependent Distributions (TMDs) responsible for violation? If $Q_T \ll Q$:

How to Observe Drell-Yan?

The E906/SeaQuest spectrometer was designed to observe the Light Quark Flavor Asymmetry:

Charmonia are major sources of background!

E906/SeaQuest Service and Support

Hardware Contribution: E906/SeaQuest Beam Intensity Monitor Commissioning Tasks:

- Installed and tested iterative versions of chamber
- PMT voltage sag measurements
- Charge Integrating and Encoding (QIE) Sum-Checks

Wed Jun 14 10:00:47 2017 SeaQuest Spill Number: 1385729 Duty Factor @53MHz = 51.60% Turn13 = 3.0, Bunch13 = 84, NBSYD = 6.0 G2SEM = 5.27E+12, G2SEM/QIESum = 48.56

Led to pulse-by-pulse resolution (\sim 19ns) of proton intensity!

Bryan Ramson (University of Michigan, Ann <mark>Drell-Yan Angular Distributions at Fermilab E</mark>

E906/SeaQuest Service and Support

Hardware Contribution: E906/SeaQuest Nuclear Target

- Inherited Operational Lead in 2015
- Coordinated Various Maintenance Schedule Tasks

E906/SeaQuest Service and Support

Thesis: How to Extract Angular Modulations

This equation defines calculation of estimated DY yields from measured yields as a function of intensity, I(t) and dimuon observable, X:

$$\begin{split} N_{Est.}^{q\bar{q}\to l\bar{l}}(X) &= \int_{\mathcal{T}} \int_{10^3}^{10^5} \left[\frac{N_{Meas.}(\mathcal{I}(t),X)}{\Gamma(X) \cdot \epsilon(\mathcal{I}(t),X)} \right] d\mathcal{I}(t) dt \\ &\approx \sum_{\mathcal{T}} \sum_{10^3}^{10^5} \left[\frac{N_{Meas.}(\mathcal{I}(t),X)}{\Gamma(X) \cdot \epsilon(\mathcal{I}(t),X)} \right] \Delta \mathcal{I}(t) \Delta t \end{split}$$

- $\Gamma(X)$ are Acceptance Corrections
- $\epsilon(\mathcal{I}(t), X)$ are Efficiency Corrections
- $N_{Meas.}(\mathcal{I}(t), X)$ is the Measured Sample

Acceptance Corrections

$$\Gamma(X) = \frac{\sigma_{MC}^{Geom.}(X)}{\sigma_{MC}^{q\bar{q} \to l\bar{l}}(X)} \cdot \frac{\sigma_{MC}^{Trig.}(X)}{\sigma_{MC}^{Geom.}(X)} \cdot \frac{\sigma_{MC}^{Recon.}(X)}{\sigma_{MC}^{Trig.}(X)} = \frac{\sigma_{MC}^{Recon.}(X)}{\sigma_{MC}^{q\bar{q} \to l\bar{l}}(X)}$$

Equation was evaluated with guidance from collected data.

Important Highlights:

- Ab initio calculations of spectrometer geometric acceptance showed great agreement with simulated and collected data
- A beam-spectrometer offset was identified in the y-direction and corrected using minimum bias data
- Spectrometer acceptance and angular mixing motivated fiducial cuts in θ at $|\cos \theta| < 0.462$
- \bullet Dimuon trigger rejection factor $\sim 5.0 \times 10^{-7}$
- Res. : $\Delta heta = 0.023$ radians, $\Delta \phi = .146$ radians, $\Delta p_T = .402$ GeV/c

Acceptance Correction Factors

February 15, 2018 13 / 33

Extractions from MC

Azimuthal Moment:

 0.361 ± 0.015

 1.020 ± 0.0103 0.368 ± 0.015

Azimuthal moment extractions are within 2σ up to a thrown $\nu = .30$

 $3.404/8 \approx 0.425$

Bryan Ramson (University of Michigan, Ann <mark>Drell-Yan Angular Distributions at Fermilab E</mark>

.30

Intensity dependence can be corrected in dimuon pair reconstruction.

$$\epsilon(\mathcal{I}(t), X) = \epsilon_{\textit{Data}}^{\textit{Trig}}(\mathcal{I}(t), X) imes \epsilon_{\textit{Embed.}}^{\textit{Recon.}}(\mathcal{I}(t), X)$$

Trigger Efficiency:

 $\epsilon_{Data}^{Trig}(\mathcal{I}(t), X)$

Intensity dependent "Pseudo-Efficiency" evaluated using single muon (FPGA4) and minimum bias (NIM3) triggered data. Track Reconstruction Efficiency:

 $\epsilon_{Embed}^{Recon.}(\mathcal{I}(t),X)$

Intensity dependent reconstruction efficiency evaluated using simulation with embedded minimum bias (NIM3) triggered data

Trigger (Pseudo) Efficiency

Explicit Goal of Pseudo-Efficiency:

$$\frac{N(Muon(FPGA4), Y)}{N(eMuon(NIM3), Y)} \stackrel{?}{=} 1$$

where *eMuon* means emulated muon trigger applied to minimum bias (NIM3) data.

Singles trigger dependent on intensity and observable for angular variables and transverse momentum \implies Dimuon trigger is as well.

Track Reconstruction Efficiency

Dimuon reconstruction efficiency was evaluated by comparing simulation event reconstruction efficiency with and without embedded minimum bias data:

Event reconstruction as a function of intensity and dimuon observable X: $\frac{N(MC^{DY} + Min.Bias, \mathcal{I}, X)}{N(MC^{DY}, X)} < 1$

Event reconstruction efficiency due to tracker is manageable.

kTracker Reconstruction Efficiency, Collins-Soper e

Sample Curation

Analyzed Deuterium data from Roadset 67 < 50% of available data.

Calculated background percentage is 39.3% with $M_{\mu\bar{\mu}} > 4.2$ GeV

Azimuthal Extractions

Extraction Values

	$[\kappa] + [\nu \kappa] \cos 2\phi$ Extractions				
ſ	Sample Class	$\chi^2/n.d.f$	ν	[κ]	[<i>ν</i> κ]
ſ	Standard	$14.355/8 \approx 1.794$	0.194 ± 0.030	417.0 ± 8.24	80.8 ± 12.4
	I	$11.494/8 \approx 1.437$	0.203 ± 0.030	639.0 ± 12.7	130.0 ± 19.0
	Beam	$29.649/8 \approx 3.706$	0.195 ± 0.029	417.0 ± 8.08	81.5 ± 12.0
	I+Beam	$27.889/8 \approx 3.486$	0.204 ± 0.029	637.0 ± 12.4	130.0 ± 18.4
l	Background	$6.4192/8\approx 0.802$	0.286 ± 0.103	38.5 ± 2.57	11.0 ± 3.89

Yields: $\nu^{Sa.} = 0.204 \pm 0.029$ & $\nu^{Bg.} = 0.286 \pm 0.103$

Transverse Momentum calculated using same method, but no fit function to verify.

Average transverse momentum of the dataset is 0.87 \pm 0.50 GeV/c.

Result Calculation

Background substraction method done mathematically using PHENIX asymmetry models:

$$x^{DY} = \frac{x^{Sa} - rx^{Bg}}{1 - r}$$

with error propagation:

$$\sigma_{x^{DY}} = x^{DY} \sqrt{\frac{(1-r^2)\left[\left(rx^{Bg}\right)^2 \left[\left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_{x^{Bg}}}{x^{Bg}}\right)^2\right] + \sigma_{x^{Sa}}^2 \left(x^{Sa} - rx^{Bg}\right)\right]}{(x^{Sa} - rx^{Bg})^2 (1-r)^2}}$$

where

- x is the extracted parameter
- r is the background percentage
- Sa. is the extraction from the Deuterium target sample
- Bg. is the extraction from the background sample
- σ is the uncertainty

Final Result

Final Azimuthal Moment:

$$\nu = 0.151 \pm 0.088(stat.) \pm 0.346(syst.)$$

- With statistical uncertainty, Deuterium azimuthal extraction < 1.41 standard deviations from E866 values
- Systematic range is about the size of the difference between pion and proton induced Drell-Yan experiments
- Largest sources of uncertainty are intensity dependence and background contamination

Next Steps

This angular distributions analysis was current as of September 2017.

E906/SeaQuest has significantly progressed in 6 months:

- Trigger discrepancy identified and corrected in December (FPGA4 \sim 90% efficiency)!
- Two tracking revisions (now R008), significantly improving underlying track finding!
- Reduced χ^2 of most recent mass fits approaching unity!
- Converging models for background mixing!

Analysis Coordinator Announcement:

"We have understood the dimuons measured!"

Light Quark Flavor Asymmetry Publication on the Horizon!

Angular Analysis requires "pure" signal or high accuracy of reconstructed tracks

- Tight cuts on new tracking revision may yield enough statistics for a preliminary result
- Improved Background models may be useful for angular analysis
- Introduction of machine learning on GPUs (Tensorflow, CUDAS, PyKeras) may allow for background simulation and optimized signal cuts

Low hanging fruit includes Charmonium polarization...

Backup

Drell-Yan angular distributions have information about parton dynamics.

$$\frac{d\sigma}{d^4qd\Omega} = \frac{1}{32\pi^4} \left(\frac{\alpha}{Ms}\right)^2 [W_T(1+\cos^2\theta) + W_L(1-\cos^2\theta) + W_\Delta\sin 2\theta\cos\phi + W_{\Delta\Delta}\sin^2\theta\cos 2\phi],$$

Initial derivation depends only on dynamics of a two-to-two process mediated by a virtual photon.

$$\begin{split} W^{\mu\nu}(P,S) &= \int d^{4}x e^{ik \cdot x} \left\langle P, S | [J^{\mu}(x), J^{\nu}(0)] | P, S \right\rangle, \\ W_{T} &= \epsilon_{1}^{\mu}(q) W_{\mu\nu}(P,S) \epsilon_{1}^{*\nu}(q), \\ W_{L} &= \epsilon_{0}^{\mu}(q) W_{\mu\nu}(P,S) \epsilon_{0}^{*\nu}(q), \\ W_{\Delta} &= \frac{1}{\sqrt{2}} [\epsilon_{1}^{\mu}(q) W_{\mu\nu}(P,S) \epsilon_{0}^{*\nu}(q) + \epsilon_{0}^{\mu}(q) W_{\mu\nu}(P,S) \epsilon_{1}^{*\nu}(q)], \\ W_{\Delta\Delta} &= \epsilon_{1}^{\mu}(q) W_{\mu\nu}(P,S) \epsilon_{-1}^{*\nu}(q), \end{split}$$

l

Angular parameters are linear combinations of virtual photon structure functions:

$$\lambda = \frac{W_T - W_L}{W_T + W_L} \qquad \mu = \frac{W_\Delta}{W_T + W_L} \qquad \nu = \frac{W_{\Delta\Delta}}{W_T + W_L}$$

in the familiar equation:

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega} = \frac{3}{4\pi}\frac{1}{\lambda+3}\bigg[1+\lambda\cos^2(\theta)+\mu\sin(2\theta)\cos(\phi)+\frac{\nu}{2}\sin^2(\theta)\cos(2\phi)\bigg],$$

If two-to-two process involves fermions at the initial and final state:

$$W_L = 2W_{\Delta\Delta} \implies 1 - \lambda = 2\nu$$

with
$$\lambda = 1$$
 & $\nu = 0$

Trigger Efficiency

Pseudo-Efficiency evaluated by comparing relative rates of different samples. First evaluated by examining FPGA4 relative intensity dependence:

$$rac{\textit{N}(\textit{Muon}(\mathcal{I}_{\textit{bin}}), Y)}{\textit{N}(\textit{Muon}(\mathcal{I} < 10k), Y)} = 1$$

where Y is a single muon observable.

Left:
$$\mathcal{I} < 10k$$
, Right: $\frac{\mathcal{I}_{bin}}{\mathcal{I} < 10k}$

Relative intensity dependence in FPGA4 is negligible.

One-dimensional polar and azimuthal extractions with four different configurations:

- Standard No corrections, Kenichi's beam shift: $p_y \rightarrow p_y + 0.004 p_z$, cuts shifted by 1.7 cm.
- I Corrected Dimuon observable QIE intensity correction, bins of 10k ppp, Kenichi's beam shift, cuts shifted by 1.7 cm.
- Beam Shift Standard cuts, acceptance corrected beam shift, *no intensity* corrections, cuts without 1.7 cm shift
- I+Beam Corrected Dimuon observable QIE intensity correction, bins of 10k ppp, acceptance corrected beam shift, cuts without 1.7 cm shift.

Polar Extractions

 $5.576/4 \approx 1.394$ -0.069 ± 0.450 788.0 ± 20.8

Background $6.500/4 \approx 1.625$ 1.580 ± 2.030 41.0 ± 4.10

Yields: $\lambda^{Sa.} = -0.069 \pm 0.450$ & $\lambda^{Bg.} = 1.580 \pm 2.030$

I+Beam

 -54.2 ± 354.0

 65.0 ± 83.1

Assuming $r = 0.393 \pm 0.036$, calculated from the statistical uncertainty in the mass fit.

Polar Moment • $\lambda^{Sa.} = -0.069 \pm 0.450$ • $\lambda^{Bg.} = 1.580 \pm 2.030$ Yields $\lambda^{DY} = -1.13 \pm 1.19$

Azimuthal Moment

- $\nu^{Sa.} = 0.204 \pm 0.029$
- $\nu^{Bg.} = 0.286 \pm .103$

Yields $\nu^{DY}=0.151\pm0.088$

Considered systematic uncertainties are from extraction method, intensity dependence, beam shift, and background contamination estimation. $\sigma_r^{syst.} = .30$ from comparison to Jason's and Kenichi's fits.

Polar Systematic

- $\sigma^{syst.(ext.)}_{\lambda^{Sa./Bg.}} = 0.445$, from linear interpolation of simulation at $\nu = .151$
- $\sigma^{syst.(int.)}_{\lambda^{Sa./Bg.}} = 3.68$, from intensity variations
- $\sigma_{\lambda^{Sa./Bg.}}^{\rm syst.(shift.)} =$ 0.326, from shifted/unshifted differences

Yields
$$\sigma_{\lambda^{Sa./Bg.}}^{syst.} = 3.72 \implies \sigma_{\lambda^{Dy}}^{syst.} = 6.52$$

Azimuthal Moment

- $\sigma_{\nu^{Sa:/Bg.}}^{syst.(ext.)} = 0.01$, from interpolation to $\nu = .151$
- $\sigma_{\nu^{Sa./Bg.}}^{syst.(int.)} = 0.133$ from intensity variations
- $\sigma^{syst.(shift)}_{\nu^{Sa./Bg.}} = 0.001$ from beam shift

$$\begin{array}{l} \textbf{Yields} \ \sigma_{\nu}^{syst.} = .133 \implies \\ \sigma_{\nu}^{syst.} = 0.346 \end{array}$$

Bryan Ramson (University of Michigan, Ann Drell-Yan Angular Distributions at Fermilab E

Final Polar Moment $\lambda = -1.13 \pm 1.19(stat.) \pm 6.52(syst.)$

- With statistical uncertainty, Deuterium polar extraction is consistent with 0, likely a result of background contamination.
- Systematic range is > 3 times larger than physical range of variable, biggest source of uncertainty is intensity dependence (~ 1.8 times physical range of variable)