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The Drell-Yan Process

Drell-Yan angular distributions have information about parton dynamics:

1

σ

dσ

dΩ
=

3

4π

1

λ+ 3

[
1 + λ cos2(θ) + µ sin(2θ) cos(φ) +

ν

2
sin2(θ) cos(2φ)

]
,

Where λ, µ, and ν are proportional to polarized hadronic tensor elements

If quarks and leptons are fermions:

1− λ = 2ν with λ = 1 & ν = 0

Bryan Ramson (University of Michigan, Ann Arbor)Drell-Yan Angular Distributions at Fermilab E906/SeaQuestFebruary 15, 2018 2 / 33



Previous Drell-Yan Measurements

CERN-NA10, π−+W,D @ 140, 194, and 286 GeV

ν-modulation major driver of violation!
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Previous Drell-Yan Measurements

Fermilab E615, π±+W @ 80, 252 GeV

ν-modulation major driver of violation!
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Previous Drell-Yan Measurements

Fermilab E866, p+H,D @ 800 GeV

Suppressed ν-modulation driver of violation!
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TMD Distributions: Origin of Violation?

Transverse-Momentum-Dependent Distributions (TMDs) responsible for
violation? If QT � Q:
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Unpolarized Drell-Yan cross section contains Boer-Mulders:

σUU ∝ f1f1 + cos(2φ)h⊥1 h
⊥
1
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How to Observe Drell-Yan?

The E906/SeaQuest spectrometer was designed to observe the Light
Quark Flavor Asymmetry:

Charmonia are major sources of background!
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E906/SeaQuest Service and Support

Hardware Contribution: E906/SeaQuest Beam Intensity Monitor

Commissioning Tasks:

Installed and tested
iterative versions of
chamber

PMT voltage sag
measurements

Charge Integrating
and Encoding (QIE)
Sum-Checks

Led to pulse-by-pulse resolution (∼19ns) of proton intensity!
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E906/SeaQuest Service and Support

Hardware Contribution: E906/SeaQuest Nuclear Target
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E906/SeaQuest Service and Support

Software Contribution: Muon ID Tracker Module (SQERP)
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Thesis: How to Extract Angular Modulations

This equation defines calculation of estimated DY yields from measured
yields as a function of intensity, I(t) and dimuon observable, X:

Nqq̄→l l̄
Est. (X ) =

∫
T

∫ 105

103

[
NMeas.(I(t),X )

Γ(X ) · ε(I(t),X )

]
dI(t)dt

≈
∑
T

105∑
103

[
NMeas.(I(t),X )

Γ(X ) · ε(I(t),X )

]
∆I(t)∆t

Γ(X ) are Acceptance Corrections

ε(I(t),X ) are Efficiency Corrections

NMeas.(I(t),X ) is the Measured Sample
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Acceptance Corrections

Γ(X ) =
σGeom.MC (X )

σqq̄→l l̄
MC (X )

·
σTrig .MC (X )

σGeom.MC (X )
·
σRecon.MC (X )

σTrig .MC (X )
=
σRecon.MC (X )

σqq̄→l l̄
MC (X )

Equation was evaluated with guidance from collected data.

Important Highlights:

Ab initio calculations of spectrometer geometric acceptance showed
great agreement with simulated and collected data
A beam-spectrometer offset was identified in the y-direction and
corrected using minimum bias data
Spectrometer acceptance and angular mixing motivated fiducial cuts
in θ at | cos θ| < 0.462
Dimuon trigger rejection factor ∼ 5.0× 10−7

Res. : ∆θ = 0.023 radians, ∆φ = .146 radians, ∆pT = .402 GeV/c
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Acceptance Correction Factors

2D Angular Corrections:
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1D Angular Corrections:
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Extractions from MC

Azimuthal Moment:

Azimuthal moment extractions are within 2σ up to a thrown ν = .30
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Event Reconstruction Efficiency

Intensity dependence can be corrected in dimuon pair reconstruction.

ε(I(t),X ) = εTrigData(I(t),X )× εRecon.Embed .(I(t),X )

Trigger Efficiency:

εTrigData(I(t),X )

Intensity dependent
“Pseudo-Efficiency” evaluated
using single muon (FPGA4)
and minimum bias (NIM3)

triggered data.

Track Reconstruction
Efficiency:

εRecon.Embed(I(t),X )

Intensity dependent
reconstruction efficiency

evaluated using simulation
with embedded minimum bias

(NIM3) triggered data
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Trigger (Pseudo) Efficiency

Explicit Goal of Pseudo-Efficiency:

N(Muon(FPGA4),Y )

N(eMuon(NIM3),Y )
?
= 1

where eMuon means emulated muon
trigger applied to minimum bias
(NIM3) data.
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Singles trigger dependent on intensity and observable for angular
variables and transverse momentum =⇒ Dimuon trigger is as well.
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Track Reconstruction Efficiency

Dimuon reconstruction efficiency was evaluated by comparing simulation
event reconstruction efficiency with and without embedded minimum bias
data:

Event reconstruction as a
function of intensity and

dimuon observable X:

N(MCDY + Min.Bias, I,X )

N(MCDY ,X )
< 1

Event reconstruction efficiency due to tracker is manageable.
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Sample Curation

Analyzed Deuterium data from Roadset 67 < 50% of available data.
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Calculated background percentage is 39.3% with Mµµ̄ > 4.2 GeV
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Azimuthal Extractions

Azimuthal Moment
Extractions
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Yields: νSa. = 0.204± 0.029 & νBg . = 0.286± 0.103
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Transverse Momentum

Transverse Momentum calculated using same method, but no fit function
to verify.
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Average transverse momentum of the dataset is 0.87± 0.50 GeV/c.
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Result Calculation

Background substraction method done mathematically using PHENIX
asymmetry models:

xDY =
xSa − rxBg

1− r

with error propagation:

σxDY = xDY

√√√√√(1− r2)

[
(rxBg )2[

(
σr
r

)2
+
(σ

xBg

xBg

)2
] + σ2

xSa
(xSa − rxBg )

]
(xSa − rxBg )2(1− r)2

where

x is the extracted parameter

r is the background percentage

Sa. is the extraction from the Deuterium target sample

Bg . is the extraction from the background sample

σ is the uncertainty
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Final Result

Final Azimuthal Moment:

ν = 0.151± 0.088(stat.)± 0.346(syst.)

With statistical uncertainty, Deuterium azimuthal extraction < 1.41
standard deviations from E866 values

Systematic range is about the size of the difference between pion and
proton induced Drell-Yan experiments

Largest sources of uncertainty are intensity dependence and
background contamination

Bryan Ramson (University of Michigan, Ann Arbor)Drell-Yan Angular Distributions at Fermilab E906/SeaQuestFebruary 15, 2018 22 / 33



Next Steps

This angular distributions analysis was current as of September 2017.

E906/SeaQuest has significantly progressed in 6 months:

Trigger discrepancy identified and corrected in December (FPGA4
∼ 90% efficiency)!

Two tracking revisions (now R008), significantly improving underlying
track finding!

Reduced χ2 of most recent mass fits approaching unity!

Converging models for background mixing!

Analysis Coordinator Announcement:

“We have understood the dimuons measured!”

Light Quark Flavor Asymmetry Publication on the Horizon!
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How to Improve Angular Analysis?

Angular Analysis requires “pure” signal or high accuracy of reconstructed
tracks

Tight cuts on new tracking revision may yield enough statistics for a
preliminary result

Improved Background models may be useful for angular analysis

Introduction of machine learning on GPUs (Tensorflow, CUDAS,
PyKeras) may allow for background simulation and optimized signal
cuts

Low hanging fruit includes Charmonium polarization...
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Backup
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Angular Distributions Explained

Drell-Yan angular distributions have information about parton dynamics.

dσ

d4qdΩ
=

1

32π4

(
α

Ms

)2

[WT (1 + cos2 θ) + WL(1− cos2 θ)

+ W∆ sin 2θ cosφ+ W∆∆ sin2 θ cos 2φ],

Initial derivation depends only on dynamics of a two-to-two process
mediated by a virtual photon.

W µν(P, S) =

∫
d4xe ik·x 〈P,S |[Jµ(x), Jν(0)]|P,S〉 ,

WT =εµ1 (q)Wµν(P,S)ε∗ν1 (q),

WL =εµ0 (q)Wµν(P,S)ε∗ν0 (q),

W∆ =
1√
2

[εµ1 (q)Wµν(P,S)ε∗ν0 (q) + εµ0 (q)Wµν(P, S)ε∗ν1 (q)],

W∆∆ =εµ1 (q)Wµν(P,S)ε∗ν−1(q),
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Angular Distributions Explained (Cont.)

Angular parameters are linear combinations of virtual photon structure
functions:

λ =
WT −WL

WT + WL
µ =

W∆

WT + WL
ν =

W∆∆

WT + WL

in the familiar equation:

1

σ

dσ

dΩ
=

3

4π

1

λ+ 3

[
1 + λ cos2(θ) + µ sin(2θ) cos(φ) +

ν

2
sin2(θ) cos(2φ)

]
,

If two-to-two process involves fermions at the initial and final state:

WL = 2W∆∆ =⇒ 1− λ = 2ν

with λ = 1 & ν = 0
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Trigger Efficiency

Pseudo-Efficiency evaluated by
comparing relative rates of

different samples. First
evaluated by examining
FPGA4 relative intensity

dependence:

N(Muon(Ibin),Y )

N(Muon(I < 10k),Y )
= 1

where Y is a single muon
observable.

Left: I < 10k , Right: Ibin
I<10k

Relative intensity dependence in FPGA4 is negligible.
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Extractions

One-dimensional polar and azimuthal extractions with four different
configurations:

Standard - No corrections, Kenichi’s beam shift: py → py + 0.004pz ,
cuts shifted by 1.7 cm.

I Corrected - Dimuon observable QIE intensity correction, bins of 10k
ppp, Kenichi’s beam shift, cuts shifted by 1.7 cm.

Beam Shift - Standard cuts, acceptance corrected beam shift, no
intensity corrections, cuts without 1.7 cm shift

I+Beam Corrected - Dimuon observable QIE intensity correction, bins
of 10k ppp, acceptance corrected beam shift, cuts without 1.7 cm
shift.
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Polar Extractions

Polar Moment Extractions
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Yields: λSa. = −0.069± 0.450 & λBg . = 1.580± 2.030
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Background Subtraction and Statistical Uncertainty

Assuming r = 0.393± 0.036, calculated from the statistical uncertainty in
the mass fit.

Polar Moment

λSa. = −0.069± 0.450

λBg . = 1.580± 2.030

Yields λDY = −1.13± 1.19

Azimuthal Moment

νSa. = 0.204± 0.029

νBg . = 0.286± .103

Yields νDY = 0.151± 0.088
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Systematic Uncertainties

Considered systematic uncertainties are from extraction method, intensity
dependence, beam shift, and background contamination estimation.

σsyst.r = .30 from comparison to Jason’s and Kenichi’s fits.

Polar Systematic

σ
syst.(ext.)

λSa./Bg.
= 0.445, from

linear interpolation of
simulation at ν = .151

σ
syst.(int.)

λSa./Bg.
= 3.68, from

intensity variations

σ
syst.(shift.)

λSa./Bg.
= 0.326, from

shifted/unshifted differences

Yields σsyst.
λSa./Bg.

= 3.72 =⇒
σsyst.
λDY

= 6.52

Azimuthal Moment

σ
syst.(ext.)

νSa./Bg.
= 0.01, from

interpolation to ν = .151

σ
syst.(int.)

νSa./Bg.
= 0.133 from

intensity variations

σ
syst.(shift)

νSa./Bg.
= 0.001 from

beam shift

Yields σsyst.
νSa./Bg.

= .133 =⇒
σsyst.
νDY

= 0.346
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Final Polar Moment Extraction

Final Polar Moment λ = −1.13± 1.19(stat.)± 6.52(syst.)

With statistical uncertainty, Deuterium polar extraction is consistent
with 0, likely a result of background contamination.

Systematic range is > 3 times larger than physical range of variable,
biggest source of uncertainty is intensity dependence (∼ 1.8 times
physical range of variable)
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