

The High Energy Nuclear Physics group at Los Alamos National Lab

Cesar Luiz da Silva Los Alamos National Lab

Aug 20th, 2018

PHYSICS PUNCHLINES

THOMPSON'S ATOMIC MODEL

QUANTUM ELECTRODYNAMICS

Well understood ground for chemistry and material science during XX century.

- What is the dynamics of partons (quarks and gluons) inside the nucleon ?
- How parton structure change when the nucleon is inside nucleus ?
- Is there any new physics when gluon density reach saturation ?
- Complex multi-body problem governed by non-abelian quantum field.

^{8/19}ANSWERS MAY DEFINE NULEAR PHYSICS IN 21th CENTURY ⁵

Where the proton spin comes from ?

8/19/2018 Still an open question. WE DON'T UNDERSTAND THE PROTON !!!

INTERNAL TRANSVERSITY OF THE PROTON

Indication of parton rotations inside the nucleon (not the language that spin folks appreciate) We don't know if transversity comes from initial parton (**Sivers effect**) or when it fragments (**Collins effect**).

Drell-Yan process (directly from sea-quarks and no fragmentation) is a direct probe for Sivers effect.⁷

QCD in Nucleus

Multiple interactions

- Measure how QCD factorizes in nuclear medium.
- Understand nuclear effects on QCD probes:
 ^{8/19/2018} jets, heavy quarks, quarkonia, photons, Drell-Yan

Are Nuclear Physicists Well Paid for This ?

- Good control, well know source
- Medium to probe (patient) is still
- Patient is the same for many events

QGP TOMOGRAPHY

- Good control, well known source ?
- Medium to probe expands almost at the speed of light
- Medium geometry change every event

Measuring QGP Temperature with Quarkonia

But, besides the need to understand initial-state effects, we need to understand competing final-state effects. Coalescence,

Coalescence, Regeneration

Measuring QGP Density, Interaction length and Difusion with Heavy Quarks

Modification on the momentum and angular distributions of quarks (light and heavy) probe the characteristics of the QGP.

Meson decays: large statistics, probes macroscopic and microscopic scale but needs to consider fragmentation in the medium Jets: almost direct access to initial quark kinematics, probes microscopic scale, low statistics

OLD AND RECENT ACCOMPLISHMENTS

Accomplishments with PHENIX

CURRENT COMMITMENTS

Deliver Physics Results from Available Data

- Next 4-years DOE National Lab review next spring
 - We will be asked about E906 and PHENIX results
- LANL ECR review on September 10th
 - I will be asked a LHCb result
- Any physics results on the Dark Photon ER this year

FNAL/E1039

- Deliver a 4% precision Drell-Yan SSA result in the next 3 years
 - Preparation of the polarized target, NMR system
 - SeaQuest repair and commissioning
 - Stable and quality data acquisition
 - simulation, analysis ready for prompt deliver of the results

RHIC/sPHENIX

- Deliver the nuclear modification of b-jets and B-meson flow in Au+Au collisions by 2027
 - MVTX R&D + Assembly + Commissioning + Operation
 - Robust and sophisticated data analysis

CERN/LHCb

- Determine the transition between dilute and saturate gluon regimes using direct photons and Drell-Yan by 2023
 - Data analysis of 2016 pPb data
 - Develop a high-level trigger for isolated photons in preparation for 2022 pPb run
 - Implementation of nuclear effects in PYTHIA
 - 8/19/20 R&D for a magnet station tracker

OTHER DEVELOPMENTS

- If we find time, funding and workforce available we can plan future activities or extend our physics scope
 - Electron-Ion Collider
 - Dark photon
 - Fixed target in LHCb
 - Applications
- The capacity to pursue new ideas and look for the future is one of our assets
- But keep in mind our commitments, if we don't deliver we don't get funding in the future

GROUP FOR 2019

	Heavy Ion	Medium Energy	DOE/NP ECR(LHCb)	Nuclear Phys. LDRD (MVTX)	Other Non-NP	Total NP FTE
Staff						
C. da Silva	0.4	0.05	0.5	0.05	0	1.0
M. Durham	0.3	0.1	0.1	0.0	0.5	0.5
New Staff	0	1.0	0	0.0	0	1.0
X. Li	0.5	0.2	0.1	0.1	0.1	0.9
K. Liu	0.2	0.8	0	0.0	0.0	1.0
M. Liu	0.5	0.2	0	0.3	0.0	1.0
E. Guardincerri	0	0.5	0	0	0.5	0.5
C. O'Shaughnessy	0	0	0	0.2	0.8	0.2
G. Kunde	0	0	0.1	0	0	0.1
New Engineer	0.2	0	0.05	0.0	0.75	0.25
Temporary	0	0	0	0	0	0
D. Lee (affiliate)	0	0	0	0.10	0	0.1
D. McGlinchey (PD)	0.5	0	0	0.0	0.5	0.5
A. Tkatchev (Eng.)	0	0	0.05	0.5	0.45	0.55
H. van Hecke (aff.)	0.0	0.1	0.05	0.1	0	0.25
S. Uemura (PD)	0	0.4	0	0.6	0.0	1.0

GROUP FOR 2019 (continuation)

	Heavy Ion	Medium Energy	DOE/NP ECR(LHCb)	Nuclear Phys. LDRD (MVTX)	Other Non-NP	Total NP FTE
M. Yurov (PD)	0	1.0	0	0	0	1.0
M. Jen (PD)	0	1.0	0	0	0	1.0
Y. Morales (PD)	0	0.0	0	1.0	0	1.0
A. Khativada (PD)	1.0	0.0	0	0	0	1.0
New postdoc I	1.0	0	0	0	0	1.0
New postdoc II	1.0	0	0	0	0	1.0
New postdoc III	1.0	0	0	0	0	1.0
New postdoc iV	0.0	0	1.0	0	0	1.0
A. Wicks (grad.st)	1.0	0	0	0.0	0	1.0
B. Garcia (posbac)	0.7	0	0	0.3	0	1.0
Total	8.3	5.35	1.95	3.25	3.1	18.85

- 20 people already involved in the HENP team.
- 5 more to come after hiring process
- Expected to have ~19 FTE in the team starting in 2019