

LA-UR-17-20253

Approved for public release; distribution is unlimited.

Title:	Ultrafast imaging technology: from visible light to high-energy X-ray photons
Author(s):	Wang, Zhehui
Intended for:	ET CMOS conference, 2017-05-28 (Warsaw, Poland) P/T collloquium talk
Issued:	2017-01-13 (Draft)

Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. viewpoint of a publication or guarantee its technical correctness.

Ultrafast imaging technology

From visible light to high-energy X-ray Photons

Zhehui (Jeff) Wang

P-25, LANL

P/T colloquium, Jan. 19, 2017

Dynamic, fast ©interesting

UNCLASSIFIED

LANL Jan 2017 Z. Wang Slide 1

Outline

Introduction

- Historical highlights of high-speed photography/imaging
- Recent advances in ultrafast imaging technology

New ingredients for ultrafast imaging

- photons + <u>cameras</u> + <u>data</u>
- LANL interest → MaRIE & others (LCLS, APS, etc)

Towards gigahertz HE x-ray imaging

- Software: Data challenge (acquisition, storage, transport, processing)
- Hardware: Materials challenge
 - Conventional "bulk" materials \rightarrow architecture innovations (near term)
 - Micro/Nano materials \rightarrow Proof-of-concepts (Long term)

UNCLASSIFIED

LANL Jan 2017 Z. Wang Slide 2

William Henry Fox Talbot

' Further progress in this direction would not be difficult --British J. Photography, 1864

UNCLASSIFIED

LANL Jan 2017 Z. Wang Slide 3

Eadweard Muybridge

Muybridge designed his own high speed electronic shutter and electro-timer

UNCLASSIFIED

and the galloping horse photography

LANL Jan 2017 Z. Wang Slide 4

Harold "Doc" Edgerton

and stroboscope photography in MIT

"strobe lighting"

UNCLASSIFIED

LANL Jan 2017 Z. Wang Slide 5

Ahmed Zewail

00.00010302707070179203856600

UNCLASSIFIED

Entangled nanoparticles

LANL Jan 2017 Z. Wang Slide 6

and the dancing molecule photography

mm- & nano- horses

UNCLASSIFIED

LANL Jan 2017 Z. Wang Slide 7

Camera frame-rate inversely proportional to dimensions 10 fs 1 1 ns MaRIE 10 μs 0.1 nm 1 mm 100µm 10µm 1µm 10 nm 100 nm 1nm Los Alamos UNCLASSIFIED NATIONAL LABORATORY LANL Jan 2017 Z. Wang Slide 8 EST 1943

Macroscopic applications also possible

Seeing things around the corner

R. Raskar et al. — MIT Media Lab

UNCLASSIFIED

LANL Jan 2017 Z. Wang Slide 9

"Trillion frame cameras" for visible light

LANL Jan 2017

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Z. Wang Slide 10

Duilline

Introduction

- Historical highlights of high-speed photography/imaging
- Recent advances in ultrafast imaging technology

New ingredients for ultrafast imaging

- 'Horses' + photons + cameras + data
- LANL interest → MaRIE & others (LCLS, APS, etc)
- Towards gigahertz HE x-ray imaging
 - Software: Data challenge (acquisition, storage, transport, processing)
 - Hardware: Materials challenge
 - Conventional "bulk" materials \rightarrow architecture innovations (near term)
 - Micro/Nano \rightarrow Proof-of-concepts (Long term)

UNCLASSIFIED

LANL Jan 2017 Z. Wang Slide 11

Imaging technology triangle

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

EST. 1943

an 2017 Z. Wang Silde 12

Evolution of lighting

EST.1943

Evolution of high-speed imaging technologies

A lot of parallel efforts...

XFEL sync XFEL

Detector/	ctor/ Voxel Noise CMOS		Pixel Bias	Digital	Frame rate	
Camera	dimension		technol.		clock	
	(μm^3)		(µm)	(V)	(MHz)	(MHz)
CSPAD	110 ×110	330 e ⁻	0.25	190	25	1.2×10 ⁻⁴
	× 500		(TSMC)			
ePix100a	50 × 50	50 e ⁻	0.25	200	0.1	1.2×10 ⁻⁴
	× 500		(TSMC)			
Keck-PAD	150 ×150	1530e ⁻	0.25	200	50	6.5
	× 500	(860 µV)	(TSMC)			
AGIPD 1.0	200 ×200	265e ⁻	0.13	500	99	4.5
	× 500	<14.4	(IBM)			
DSSC	136 (hex)	50 e ⁻	0.13	150	50 700	5
(DEPFET)	× 450		(IBM)			
pnCCD	75 ×75	5 e ⁻	CCD	140	10	2.5×10 ⁻⁴
(CAMP)	× 280	(100 ms)		(0.5V/µm)		(5, burst)
LPD	500 ×500	1000 e ⁻	0.13	~250	100	4.5
	× 500		(IBM)			
MPCCD	50 × 50	200 e ⁻	CCD	~20	5	6×10 ⁻⁵
[HG:2015]	× 50					
SOPHIAS	30 × 30	150 e ⁻	0.2	~200	25	6×10 ⁻⁵
	× 500		FD-SOI			
JUNGFRAU	75 × 75	100 e ⁻	0.11	220	40	2.4×10 ⁻³
[SMS:2015]	× 450		(UMC)			
ALPIDE ²	28 × 28	~ 20 e ⁻	0.18	<10	40	5.0×10 ⁻²
(MAPS ³)	× 50		(TowerJazz)			
FASPAX	100×100	<1000 e ⁻	130nm	1000	100	13
[ZIM:2016]	× 500		SiGe			(burst)
			(IBM)			

UNCLASSIFIED

Z. Wang Slide 15 LANL Jan 2017

Ultrafast imaging technology driven by sources

Inputs: Rich Sheffield, Dinh Nguyen

UNCLASSIFIED

ICHSIP 2016 Z. Wang Slide 16

P. Abbamonte et al., SLAC-R-1053 (2015)

Ultrafast imaging technology driven by sources (3rd harmonic included)

Inputs: Rich Sheffield, Dinh Nguyen

UNCLASSIFIED

ICHSIP 2016 Z. Wang Slide 17

P. Abbamonte et al., SLAC-R-1053 (2015)

MaRIE XFEL & Experiments

MaRIE-camera: Performance summary

- PicoSecond sensor <-> Materials challenge
 - highly efficient (>50%) x-ray detection at 40-keV and above energies.
 - Sub-ns (<100-ps) X-ray sensor and storage response.
- GigaHertz frame-rate <-> Fabrication/scaling challenge
 - Many pixels, interframe time, 300 ps (3 GHz)
 - Multiple frames per experiment/ framing for acoustic velocities across grains
 - Single line-of-sight
- Large data <-> Computing challenge
 - 3 MB per image (20 bit, 1 Mpix)
 - Up to 10⁶ images per experiment
 - big data sets transmission and processing driven by scientific "co-design"

UNCLASSIFIED

Z. Wang Slide 19

The August 2016 workshop

High–energy an A MaRIE workshop shining a lig	d Ultrafast) ht on the future of ultra	K-Ray Imaging	g Technology	gies and Appli	ications		
ACCOMMODATIONS	ABSTRACTS	REGISTRATION	PROGRAM	TRAVEL			
Ultrafast high-energy photon imaging ps, GHz & large data 100 fs 300 ps 							
High-energy and Ult Date : August 2-3, 2010 Hotel venue: Hilton San The goal of this workshop is to prioritize the path forward for the next 5-10 years, and estab	Trafast X-Ray I 6 ta Fe at Buffalo T 9 gather leading expe ultrafast hard x-ray in 9 bish foundations for 1	maging Technolo hunder rts in the fields related to maging technology deve near-term R&D collabora	ogies and App o ultrafast high-ene lopment, identify im ttion.	lications rgy photon imaging and portant applications in	 Peggy Vigil (505) 667-8448 For logistical purposes and questions External Co-Organizers Peter Denes (LBL) Sel Crupper (Corpol) 		
This workshop is one in a serie community in the MaRIE (Matte	es being organized by er-Radiation Interactio	Los Alamos National La Dons in Extremes) develop	boratory to engage l ment process. MaRI	broader scientific E is the proposed	Univ.)		

UNCLASSIFIED

LANL Jan 2017 Z. Wang Slide 20

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

NNSX

The August 2016 workshop summary

UNCLASSIFIED

Ultrafast and High-Energy X-Ray Imaging Technologies & Applications

(August 2-3, 2016; Santa Fe, NM 87506, USA)

Table of Contents

executive summary	2
ntroduction	3
Type I & Type II ultrafast and high-energy X-ray imaging technologies	3
Charges to the workshop	4
Vorkshop overview	4
Vorkshop findings	6
A. The state-of-the art imaging technologies	6
B. Scientific and LANL mission needs	7
C. Relations to large data and on-board data processing (ASIC)	8
D. Emerging sensor materials and device possibilities	9
E. Near-term & long-term ultrafast imaging technologies for HE-XFEL	12
Recommendations	15
ppendices	16
Workshop participants & group photo	16
Workshop agenda	16
Presentation summaries	16
Workshop summaries	16

LANL Jan 2017

017 Z. Wang Slide 21

NATIONAL LABORATORY

EST.1943

Two-step development process

Performance	Type I imager	Type II imager
X-ray energy	30 keV	42-126 keV
Frame-rate/inter-frame time	0.5 GHz/2 ns	3 GHz / 300 ps
Number of frames	10	10 - 30
X-ray detection efficiency	above 50%	above 80%
Pixel size/pitch	≤ 300 mm	< 300 mm
Dynamic range	10 ³ X-ray photons	≥ 10 ⁴ X-ray photons
Pixel format	64 x 64 (scalable to 1 Mpix)	1 Mpix

MaRIE KPP requirements

ASIC/Data	No. Chan.	A n a l o g bandwidth (GHz)	digital samplin g (GHz)	S/N (dB)	Bit Res.	CMOS technol.		
PSEC4	6	1.5	15		10.5	IBM 130 nm		
"Hawaii	128?	3	20	58 dB/	9.4	(TSMC 130 nm)		
chip"				1Vpp				
"Cornell	384 x	0.5						
Keck GHz"	256							
epix∆	1M	3			>= 8	TSMC 250 nm		

LANL Jan 2017 Z. Wang Slide 22

Dutline

Introduction

- Historical highlights of high-speed photography/imaging
- Recent advances in ultrafast imaging technology
- New ingredients for ultrafast imaging
 - 'Horses' + photons + cameras + data
 - LANL interest \rightarrow MaRIE & others (LCLS, APS, etc)

Towards gigahertz HE x-ray imaging

- Software: Data challenge (acquisition, storage, transport, processing)
- Hardware: Materials & engineering challenge
 - Conventional "bulk" materials \rightarrow architecture innovations (near term)
 - Micro/Nano → Proof-of-concepts (Long term)

UNCLASSIFIED

LANL Jan 2017 Z. Wang Slide 23

Data challenge: Exascale computing & machine learning

Solutions in the making

May 2016 Z. Wang Slide 24

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

EST.1943

The materials challenge: Silicon is the chosen one so far

Emerging Materials: High-Z Sensors

Existing camera architecture: 2D hybrid

EST.1943

OS

October 2016 Z. Wang Slide 27

The need for "3D" architecture: speed & efficiency

• Efficiency driven total sensor thickness

	42	keV	126 keV		
	Λ_{tot} (cm) $3\Lambda_{tot}$ (cm)		Λ_{tot} (cm)	$3\Lambda_{tot}$ (cm)	
C (Diamond)	1.4	4.2	2.0	6.0	
Si	0.7	0.7 2.0		8.1	
Ge	3.3e-2	0.1	0.52	1.55	
GaAs	3.4e-2	0.1	0.52	1.55	
CdTe	9.5e-3	0.028	0.17	0.51	

- Speed driven pixel thickness
 - charge collection length for 1 ns, $\leq 200 \ \mu m$ (saturated drift 2x10⁷ cm/s)
 - aspect ratio, 10 to > 1000.

UNCLASSIFIED

Z. Wang Slide 28

Material innovations

Architectural innovations based on semiconductors

Sandia October 2016 Z. Wang Slide 30

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

а

EST 1943

Can we keep 2D? Thin-Film Concepts

More details: Z. Wang (2015) JINST 10 C12013

The fabrication/scaling challenge: CMOS is the best known process

- **Driven by**
 - material selection (Si, SiO_2) ۲
 - Economics / user (consumer) base •

Leveraging prior development/investment

- High-energy physics community (CERN, Fermilab and others) ۲
- Semiconductor industry •

Image Sensor Market by Main Usage

Five materials questions for ultrafast HEXI

- Will silicon continue to dominate as ultrafast HEXI sensors?
- Will CMOS continue to be used for ASICs & fabrication?
- Will 3D structures replace 2D hybrid structures?
- Can quantum properties of materials be used?
- Can we speed up material discovery to device applications?

UNCLASSIFIED

ICHSIP 2016 Z. Wang Slide 33

HEX changes the physics in silicon

UNCLASSIFIED

May 2016 Z. Wang Slide 34

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

NATIONAL LABORATORY

EST 1943

Speed is still limited by charge collection, bandgap also important

B₂

Re

(CI

co (W

Sa ele ve ns

	Material	Mobilit	y, Diele	etric	Bandg	ap,	p, Break		BFOM		Tmax,	
		μ, cm ² /	V.s Const	ant,	Eg, eV	'	down R		Ratio		°C	
			3				field, Eb					
							10°V/c	m				
	Si	1300	11.9		1.12 0.1		0.3		1.0		300	
	GaAs	5000	12.5	12.5			0.4		9.6	Т	300	
	4H-SiC	260	10		3.2		3.5		3.1		600	
	GaN	1500	9.5		3.4 2		2	24.6			700	
	BFOM	is Baliga's	figure of m	erit for	power	trans	istor pe	rfor	mance (µ*ε	*Eg ³)	
				Electro	n Dov	1 0 ++	10 15	5 (1	1000)	-		
		D. J. Da	liga, ieee e	lectro	n Dev.	Leii.	10, 45	э (I	1909).			
					010							e.
	SI G		GaAs	6H	-SIC	4H	-SIC		GaN	D	amono	Ì
ndgap (eV)		1.12	1.43	3.	3.03 3.2		.26		3.45		5.45	
lative d	ielectric	11.9	13.1	9.	66	1	0.1		9		5.5	
notant												
eakdow //cm)	n field	300	400 2500 2200		200	2	2000		10000			
nobility	,	1500	8500	5	00	1	000		1250		2200	
n-/vs)												
le mobi n²/Vs)	bility 600		400	101		115			850		850	
ermal		1.5	0.46	4	.9	4	4.9		1.3		22	
nductiv /cmK)	ity											
turated	rift	1	1		2		2		2.2		2.7	
locity (1	00 μm/											

L. M. Tolbert, et al., Proc. IASTED Mult. Conf. Pwr En. Syst. 7, 317 (2003).

UNCLASSIFIED

ICHSIP 2016 Z. Wang Slide 35

Structural & processing innovations

Summary

- Ultrafast imaging technology development requires a interdisciplinary approach – 'global optímízatíon'—Cris Barnes.
 - Parallel development paths
 - Selections of specific concepts for prototype development should be based on peer-reviewed proposal rankings.
- Opportunities exist to develop revolutionary (type II) technologies
 - Collaborations with broad community will be the key to success
 - Integration of material, fabrication, data handling & application

Exciting time for instrumentation & experimental science

UNCLASSIFIED

Z. Wang Slide 37

