

Dark-Sector Searches at Intensity Frontier & Towards New LANL Opportunities

Yu-Dai Tsai, Fermilab/U Chicago

[1] Dark photon, inelastic dark matter, muon g-2, and LongQuest (1908.07525)

[2] The FerMINI Experiment (<u>1812.03998</u>, PRD '19)

[3] Millicharged Particles (MCPs) in Neutrino Experiments (1806.03310, PRL '19)

[4] FORMOSA (2010.07941, NEW)

Proton Fixed-Target Experiments Decay vs Scattering Detectors

[5] Light Scalar & Dark Photon at BoreXino & LSND, 1706.00424, PLB '18

(proton-charge radius anomaly) w/ Pospelov

[6] Dipole Portal Heavy Neutral Lepton, 1803.03262, PRD '18

(LSND/MiniBooNE anomalies) w/ Magill, Plestid, Pospelov

[7] Dark Neutrino at Scattering Exps: CHARM-II & MINERvA, 1812.08768, PRL '19

(MiniBooNE Anomaly) w/ Argüelles, Hostert

Many relevant references listed in the end; Please let me know if there are missing refs.

Email: <u>yt444@cornell.edu</u>; arXiv: <u>https://arxiv.org/a/tsai_y_1.html</u>

Outline

- Motivations: Why MeV 10 GeV New Physics?
- **Decay vs Scattering** Experimental Probes
- Decay studies (e.g., dark photons) & the LongQuest proposal
- Specialized millicharge experiment: **FerMINI** & FORMOSA
- New LANL Opportunities! in addition to the CCM exp (congrats on the 1st DM result!)

Motivations

Yu-Dai Tsai, Fermilab, 2021

Exploration of Dark Sector

- Astrophysical/cosmological observations: important to reveal the actual story of dark matter (DM).
- Why fixed-target experiments? And why MeV GeV+, in addition to the motivation of thermal dark matter

Why study MeV – GeV+ dark sectors? Signals of discoveries grow from anomalies Dark Matter & Standard Model connections

Yu-Dai Tsai, Fermilab, 2021

Some anomalies involving MeV - GeV+ Explanations

- Muon g-2 anomaly
- EDGES result
- LSND & MiniBooNE anomaly

Below ~ MeV there are also **strong astrophysical/cosmological bounds** that are hard to avoid even with very relaxed assumptions

v Hopes for New Physics

- EDGES 21-cm absorption spectrum anomaly
- Millicharged Particles in Neutrino Experiments,

Magill, Plestid, Pospelov & Tsai, PRL '19, 1806.03310

- Cosmic-ray produced MCP in neutrino observatories, <u>2002.11732</u>, PRD '20

• Muon g-2 Anomaly

Dark Photon, Inelastic Dark Matter, and Muon g-2 Windows in

CHARM, NuCal, NA62, SeaQuest, and LongQuest,

Tsai, de Niverville, Liu, <u>1908.07525</u>

Happy to talk about these offline

Accelerator Probes for New Physics

• LSND/MiniBooNE Anomalies

- Dipole Portal Heavy Neutral Lepton,

Magill, Plestid, Pospelov, **Tsai**, PRD '18, <u>1803.03262</u>

- Dark Neutrino at Scattering Experiments: CHARM-II & MINERvA
 Argüelles, Hostert, Tsai, PRL '20, <u>1812.08768</u>
- Proton charge radius anomaly:
- Light Scalar & Dark Photon at Borexino & LSND, Pospelov, Tsai, PLB '18, <u>1706.00424</u>

The Rise of Dark Sector: Sub-GeV DM

- The Lee-Weinberg bound (1977'): below ~ 2 GeV, DM freeze-out through weak-Interaction (e.g. through Z-boson) would overclose the Universe.
- Could consider ways to get around this but generally sub-GeV DM needs BSM mediators to freeze-out to proper relic abundance.
- New mediator is needed: the rise of "dark sector" (DM + mediators + stuffs).
- Another motivation to consider dark sector other than anomalies

Advantages of Accelerator Experiments

Yu-Dai Tsai, Fermilab, 2021

Not all bounds are created with equal assumptions

Assumptions

Or, how likely is it that theorists would be able to argue our ways around them

Accelerator-based: **Collider, Fixed-Target Experiments** Some other ground-based experiments

techinical

Astrophysical productions (not from ambient DM): energy loss/cooling, etc: Rely on modeling/observations of (extreme/complicated/rare) systems (SN1987A & neutron-star mergers)

Dark matter direct/indirect detection: abundance, velocity distribution, etc

Cosmology: assume cosmological history, species, etc

Lifferent

Reveal actual DM story

Not all bounds are created with equal assumptions Example: Constraints on Millicharged Dark Matter (mDM)

consider ambient dark matter

Produce dark particles in collisions

Same mass and interaction strength.

Different assumptions

Yu-Dai Tsai, Fermilab, 2021

Proton FT (& Neutrino) Experiments

- High statistics, e.g., LSND has 10²³ Protons on Target (POT)
- Neutrinos are **dark-sector particles**.
- Could have low to high energy proton beams on targets:
 O(1 400) GeV (I will compare Fermilab/CERN facilities)
- Shielded/underground: lower background
- Many of them existing and many to come:

strength in numbers

Proton Facilities of Interest

Fermilab / CERN current & future facilities

Fermilab (undergoing a Proton Improvement Plan: PIP)			
Booster Beam (BNB)	$\sim 10^{20}$ POT/yr	8 GeV	now
NuMI beam	1 - 4 x 10 ²⁰ POT/yr	120 GeV	now
LBNF beam (future)	$\sim 10^{21}$ POT/yr	120 GeV	near-future

CERN - SPS beam				
NA62	up to 3 x 10^{18} POT/yr	400 GeV	now	
SHiP	up to 10^{19} POT/yr	400 GeV	future	
CERN – HL LHC	10 ¹⁶ POT/yr	\sqrt{s} = 13 TeV	near-future	

Lujan Neutron Target (800 MeV protons, ~ 10^{22} POT/yr), now

Proton FT Experiment: Decay vs Scattering

Yu-Dai Tsai, Fermilab, 2021

Decay Experiments/Detectors

Including CHARM decay detector (DD), NuCAL, NA62 (see, arXiv:1908.07525)

• Experiments optimized to study **decaying particles**, or simply two charged particle final states, e.g. from Drell-Yan (SeaQuest)

General features:

- 1. Large decay volume
- 2. Low density (likely vacuumed), low background
- 3. Simple design thus relatively low cost (tracking planes + ECal)
- Often, there is external magnetic field (track separations/momentum reconstruction/filter-out soft SM radiation)
- Usually studying long-lived particles
 (kaon rare decays, dark mediators, e.g., dark photons)

Decay Experiments/Detectors

CHARM: CERN HAmburg Rome Moscow

Legion of Decay Experiments

A					
	Experiment	Beam Energy	POT	$L_{\rm dist.}$	$L_{ m dec}$
	CHARM	$400 {\rm GeV}$	2.4 e18	480 m	$35 \mathrm{~m}$
Existing Probes	NuCal	$70 {\rm GeV}$	1.7e18	64 m	$23 \mathrm{m}$
Future Probes	NA62	$400~{\rm GeV}$	*1.3e16/1e18	82 m	$75 \mathrm{m}$
	SeaQuest	120 GeV	*1.4e18/1e20	$5 \mathrm{m}$	*7 m
	LongQuest	120 GeV	*1e20	$5 \mathrm{m}$	*7/13 m
	DUNE ND	120 GeV	1e21	500 m	*1m
	LANL - CCM	800 MeV	2.25e22 (3yr)	20 m	1.2 m

- *L_{dist.}* = from target to detector (longer will lose short-lived particles)
- L_{dec} = length of the decay region (the longer the better)
- *means still to be determined
- See, e.g., <u>1908.07525</u> for a systematic comparison
- Conducting a comprehensive study for general & Snowmass purposes

Interesting Long-Lived Particles for Decay Studies

Yu-Dai Tsai, Fermilab, 2021

The Rise of Dark Sector: Sub-GeV DM

3

- The Lee-Weinberg bound (1977'): below ~ 2 GeV, DM freeze-out through weak-Interaction (e.g. through Z-boson) would overclose the Universe.
- Could consider ways to get around this but generally sub-GeV DM needs BSM mediators to freeze-out to proper relic abundance.
- Mediator is needed for a proper freeze-out: the rise of "dark sector" (DM + mediators + stuffs).
- Another motivation to consider dark sector other than anomalies

Renormalizable "Portals"

- Dark sectors can include mediator particles coupled to the SM via the following **renormalizable interactions.**
- High-Dim. axion portal is also popular

Dark-Sector Phenomenology Studying "dark photon" portal

• "Dark Sector": DM + "mediators" to SM

$$\mathcal{L} \supset -rac{1}{4}F'^{\mu
u}F'_{\mu
u} + rac{1}{2}m^2_{A'}A'^{\mu}A'_{\mu} + \epsilon e A'^{\mu}J^{EM}_{\mu}
onumber \ ext{kinetic mixing}$$

- One of the three 4-dimentional "portals" to dark sectors
- These "portals" help connect dark matter to SM and is essential for GeV or sub-GeV thermal dark matter (see, Lee-Weinberg Theorem, Lee, Weinberg, PRL 77)

Details of LongQuest: A Multi-Purposed Detector

Yu-Dai Tsai, Fermilab, 2021

SpinQuest -> DarkQuest @ Fermilab

Yongbin Feng (Fermilab), for DarkQuest collaboration, PPC21

arXiv:1509.00050 (Gardner, Holt, Tadepalli); arXiv:1804.00661 (Berlin, Gori, Schuster, Toro) + ... DarkQuest is a proposal for EMCal installation after current SpinQuest run (Fall 2023)

Nhan Tran (Fermilab) was rewarded Fermilab LDRD funding and is leading detailed SeaQuest/DarkQuest study + Snowmass white paper.

LongQuest: Three Part Upgrad of SpinQuest, as Dedicated Long-Lived Particle Experiment

arXiv:1908.07525, Tsai, de Niverville, Liu '19

Yu-Dai Tsai, Fermilab, 2021

LongQuest Updated Configuration

arXiv:1908.07525, Tsai, de Niverville, Liu '19

Yongbin Feng (Fermilab), for DarkQuest collaboration, PPC21

Legion of Probes on Dark Photon

(a) Updates on dark photon bounds and NA62 projection.

Consider proton bremsstrahlung production properly resonance from mixing with the ρ and ω mesons

(b) Compilation of projections and constraints on dark photon.

New Projections from NA62 and LongQuest, Trai. do Nivervillo, Liu, 1008 0752

Tsai, de Niverville, Liu, <u>1908.07525</u>, Many new projections since '19

Inelastic Dark Matter

- One of the few viable MeV GeV thermal dark matter candidates
- A "thermal target" for DM searches
- Can explain g-2 and freeze-out to the right relic DM abundance
- Smith, Weiner, arXiv:0101138, + many papers

$$\mathcal{L} \supset \sum_{i=1,2} ar{\chi}_i (i \partial \!\!\!/ - m_{\chi_i}) \chi_i - (g_D A'_\mu ar{\chi_1} \gamma^\mu \chi_2 + ext{h.c.}).$$

$$\Delta \equiv \frac{m_2 - m_1}{m_1}, \quad g_D \equiv \sqrt{4\pi\alpha_D}, \quad m_{A'} > m_{x1} + m_{x2}.$$

1703.06881 (Izaguirre, Kahn, Krnjaic, Moschella)

Inelastic Dark Matter (iDM)

1703.06881 (Izaguirre, Kahn, Krnjaic, Moschella)

$$m_1 \sim \frac{\epsilon \left(\alpha_D \,\alpha_{\rm em} \,T_{\rm eq} \,m_{\rm pl}\right)^{1/2}}{\left(m_{A'}/m_1\right)^2} \,e^{-x_f \Delta/2}$$

- Co-annihilation freeze out to right relic abundance but avoid CMB constraints
- Suppressed at the CMB epoch
- Considered thermal targets for newly proposed experiments
- Suppressed at the CMB epoch

- Collider: 1508.03050 (Izaguirre, Krnjaic, Shuve) Fixed target:
- 1703.06881 (FT: Izaguirre, Kahn, Krnjaic, Moschella),
- 1804.00661 (SeaQuest: Berlin, Gori, Schuster, Toro)
- 1902.05075 (g-2: Mohlabeng)
- 1908.07525 (Strong bounds: Tsai, de Niverville, Liu)
- 1911.03176 (Belle II update, Duerr, Ferber, Hearty, Kahlhoefer, Schmidt-Hoberg, Tunney)

New Bounds on Inelastic Dark Matter

(e) Compilation of relevant constraints and sensitivity projections for iDM with $\alpha_D = 0.1$ and $\Delta = 0.1$. $m_{AI}/m_{\chi 1} = 3$.

Tsai, de Niverville, Liu, <u>1908.07525</u> See, Duerr, Ferber, Hearty, Kahlhoefer, Schmidt-Hoberg, Tunney, 1911.03176, for Belle II update

The muon (g-2): an additional motivation to search for dark photons

Inelastic Dark Matter & Muon g-2 explainer

- <u>1908.07525, **Tsai**</u>, deNiverville, Liu
- <u>2012.08595</u>, Duerr et al, detailed BaBar analysis may rule out the g-2 region

LANL-LLP Opportunity!

LANL-LLP Target: Inelastic Dark Matter

LANL-LLP Target: g-2 Motivated Models

- Batell et al, <u>arXiv:2106.04584</u>
- LANL-CCM/LLP Study: deNiverville, Tsai, in preparation

Beyond Simple Dark-Sector Models

Can also look into

- Strongly Self-Interaction DM (motivated by dark QCD)
- Cosmology motivated models

New results in preparation!

Scattering Experiments

Yu-Dai Tsai, Fermilab, 2021

Scattering Detectors

MiniBooNE, SBND, MicroBooNE, MINERvA, DUNE LArTPC, Coherent Captain-Mills (CCM)

Primary goals to study neutrino scattering and/or neutrino oscillation

Features (comparing to decay detector):

- 1. higher density
- 2. complicated design compared to the decaying detector.
- 3. Smaller fiducial volume (for near-beam detectors); cost more.
- 4. Usually studying **stable particles (**neutrino, dark matter, **millicharged particles)**

Scattering Detectors

MiniBooNE Detector

arXiv:0806.4201 MiniBooNE collaboration

DUNE Near Detector

 χ

 $\bar{\chi}$

MicroBooNE Detector

arXiv:1612.05824 MicroBooNE collaboration

CCM

https://p25ext.lanl.gov/~lee/CaptainMills/ https://arxiv.org/abs/2105.14020 40

- NuMI Beam

- BNB
- LBNF (future)

One can do a lot of interesting new physics analyses based on scattering detectors

<u>arXiv:2002.02967</u>, DUNE TDR V - I

AI & Machine Learning at the Intensity Frontier

Low energy neutrino event in **ArgoNeuT**, from ArgoNeuT collaboration, PRD '19 https://lss.fnal.gov/archive/2018/pub/fermilab-pub-18-559-nd.pdf

Studying **very faint signals (tracks)** in DUNE, Proto-DUNE, CCM, and other Argonne Detectors, for **MCP**, **DM**, and other **dark-sector** signatures. New applications for well-developed techniques

Specialized "Scattering" Detectors

- NuMI beam
- BNB
- LBNF (future)

Low-cost / specialized detectors to add to the beam facilities?

Broaden the physics cases

FerMINI - Proton Fixed-Target Search for Millicharged Particle (MCP) & Millicharged Dark Matter (mDM)

Kelly, **Tsai**, arXiv:1812.03998, PRD19

Yu-Dai Tsai, Fermilab, 2021

Finding Millicharge (Minicharge)

- Electric charge quantized and why? A long-standing question!
- SM U(1) allows arbitrarily small (any real number) charges. Why don't we see them? Motivates **Dirac quantization, Grand Unified Theory (GUT)** (anomaly cancellations fix some SM U(1)_Y charge assignments)
- Link to string compactification and quantum gravity (Shiu, Soler, Ye, PRL '13)
- Testing if **e/3 is the minimal charge**
- MCP could have natural link to **dark sector** (dark photon, etc)
- Could account for **dark matter (DM) abundance**
- Used for the cooling of gas temperature to explain the **EDGES anomaly**

MCP Model

• A particle fractionally charged under SM U(1) hypercharge

$$\mathcal{L}_{\rm MCP} = i\bar{\chi}(\partial - i\epsilon' eB + M_{\rm MCP})\chi$$

- Can just consider these Lagrangian terms by themselves (no extra mediator, i.e., dark photon). Completely legal! Naively violating the empirical charge quantization (cool!).
- We are only probing MCP here! Minimal assumptions. Most robust constraints.
- This could be from vector portal **Kinetic Mixing** (Holdom, '85)
 - a nice origin to the above term
 - help give rise to dark sectors
 - easily compatible with Grand Unification Theory

Kinetic Mixing and MCP Phase

- New fermion χ charged under new gauge boson B'.
- Millicharged particle (MCP) can be a low-energy consequence of massless dark photon (a new U(1) gauge boson) coupled to a new fermion (become MCP in a convenient basis.)

EDGES Measurement

MCP Detection: "Hard" Scattering or Ionization

• **Ionization (eV-level):** ~ very low-energy scattering:

e.g., MilliQan: arXiv:1410.6816, Haas, Hill, Izaguirre, Yavin

• "Hard" (MeV-level) electron elastic scattering:

e.g., Magill, Plestid, Pospelov, Tsai, 1806.03310

(MCP in neutrino Experiments, MiniBooNE, MicroBooNE, SBND, DUNE, SHiP)

MCP Detection: Ionization

- Want very low momentum transfer: ionization and scintillation signature
- Signature proportional to dE/dx of the MCP, referred to as energy loss/stopping power
- Can be approximated with the Bethe-Bloch Formula (various modified versions and detailed considerations.)

$$\left\langle -\frac{dE}{dx}\right\rangle \propto \epsilon^2.$$

intentionally make the plot small so we don't get into too much details of this. http://pdg.lbl.gov/2020/reviews

MilliQan: Detector Concept

 $(\Delta t)_{\text{offline}} = 15 \,\text{ns}$

<u>1607.04669</u>, Ball, Brooke, Campagnari, De Roeck, Francis, Gastal, Golf, Goldstein, Haas, Hill, Izaguirre, Kaplan, Magill, Marsh, Miller, Prins, Shakeshaft, Stuart, Swiatlowski, Yavin

FerMINI: Fermilab Millicharge Search

Yu-Dai Tsai, Fermilab, '20

FerMINI Site 1: NuMI-MINOS Hall

An illustration of the FerMINI experiments utilizing the NuMI facility.

Yu-Dai Tsai Fermilab

NuMI: Neutrinos at the Main Injector MINOS: Main Injector Neutrino Oscillation Search, ND: Near Detector

Production of MCP **Production: Meson Decays** Target Figures replaced A' with photon from 1703.06881 (Izaguirre, Kahn, Krnjaic, Moschella) **Production: Drell-Yan** https://en.wikipedia.org/wiki/Drell%E2%80%93Yan process

Heavy (vector) mesons are important for high-mass mCP's in high-energy beams

 $BR(\pi^{0} \rightarrow 2\gamma) = 0.99$ $BR(\pi^{0} \rightarrow \gamma e^{-}e^{+}) = 0.01$ $BR(\pi^{0} \rightarrow e^{-}e^{+}) = 6 * 10^{-6}$ $BR(J/\psi \rightarrow e^{-}e^{+}) = 0.06$

MCP Production/Flux

Photoelectrons (PE) from Scintillation

• The averaged number of photoelectron (PE) seen by the

detector from single MCP is:

$$N_{PE} \propto \left\langle -\frac{dE}{dx} \right\rangle \times l_{scint}, \ \left\langle -\frac{dE}{dx} \right\rangle \propto \epsilon^2.$$

 $\langle dE/dx\rangle$ is the "mass stopping power" (PDG 2018)

One can use Bethe-Bloch Formula to get a good approximation

- $N_{PE} \sim \epsilon^2 \times 10^6$ for 1 meter plastic scintillation bar
- $\epsilon \sim 10^{-3}$ roughly gives one PE

Site 2: LBNF Beam & DUNE ND Hall

Jonathan Asaadi - University of Texas Arlington

LBNF: Long-Baseline Neutrino Facility

There are many other **new physics opportunities** in the **near detector hall**! Combine with **DUNE PRISM**?

FerMINI @ DUNE

see SUBMET, Kim, Hwang, Yoo, arXiv:2102.11493, JHEP21

Strongly Interacting Dark Matter

DM-SM Interaction too strong that attenuation stop the particles from reach the direct detection detector

DMATIS (Dark Matter ATtenuation Importance Sampling), Mahdawi & Farrar '17

Probe of Millicharged Dark Matter

- Here we plot the critical reference cross-section see <u>1905.06348</u> (Emken, Essig, Kouvaris, Sholapurkar)
- Yu-Dai Tsai, Fermilab
- Accelerator probes can help close the Millicharged SIDM window!
- Cosmic-ray production & Super-K detection <u>2002.11732</u>

FerMINI Probes of EDGES DM

FORMOSA is similar to milliQan and FerMINI, but study MCP at LHC forward region

LANL Millicharge Opportunity!

Fig. 1. Layout of the LANSCE user facility.

LANL-MCP Experiment

LANL-MCP Target Region

Foroughi, Liu, Tsai, in preparation

Legion of Decay Experiments

	Experiment	Beam Energy	РОТ	$L_{\rm dist.}$	$L_{ m dec}$
	CHARM	$400 {\rm GeV}$	2.4e18	480 m	$35 \mathrm{m}$
Existing Probes	NuCal	$70 {\rm GeV}$	1.7 e18	64 m	$23 \mathrm{m}$
Future Probes	NA62	$400~{\rm GeV}$	*1.3e16/1e18	82 m	$75 \mathrm{m}$
	SeaQuest	120 GeV	*1.4e18/1e20	$5 \mathrm{m}$	*7 m
	LongQuest	120 GeV	*1e20	$5 \mathrm{m}$	*7/13 m
	DUNE ND	120 GeV	1e21	500 m	*1m
_	LANL - CCM	800 MeV	2.25e22	20 m	1.2 m
[LANL - MCP	800 MeV	~ 1e22	TBD	TBD
	LANL - Decay	v 800 MeV	~ 1e22	TBD	TBD

• *L_{dist.}* = from target to detector (longer will lose short-lived particles)

• L_{dec} = length of the decay region (the longer the better)

- *means still to be determined
- See, e.g., <u>1908.07525</u> for a systematic comparison
- Conducting a comprehensive study for general & Snowmass purposes

Summary and Big Picture

• **Proton fixed-target/beam-dump** experiments:

very powerful searching for MeV-GeV DM and LLP, anomaly motivated

• LANL can be the next center for dark sector search, building a research complex at the Lujan Center or Proton Radiography Facility (pRad)

 Conduct LLP search like LongQuest (LANL-LLP), can do MCP search like FerMINI (LANL-MCP): low-cost new experiments!

LHC vs LANL New-Physics Complex

High energy frontier

High intensity frontier

https://lansce.lanl.gov/facilities/index.php

New Physics Opportunities!

https://indico.fnal.gov/event/18430/session/8/contribution/17 From Roni Harnik Yu-Dai Tsai, Fermilab, 2021

Thank you! There are many other exciting ideas to explore!

Yu-Dai Tsai, Fermilab, '21

Signature: Triple Coincidence

• Based on Poisson distribution, zero event in each bar correspond to $P_0 = e^{-N_{PE}}$, so the probability of seeing triple incident of one or more photoelectrons is:

$$P = \left(1 - e^{-N_{PE}}\right)^3$$

• $N_{x,detection} = N_{X,going through detector} \times P.$

Millicharged DM for EDGES

Liu, Outmezguine, Redigolo, Volansky, '19

EDGES gives another hint of dark matter property, just like small-scale structure

Proton Facilities of Interest

Comparison of Various Facilities

LSND	Total of 10 ²³ POT	Beam: 800 MeV	King of POT		
Fermilab (undergoing a Proton Improvement Plan: PIP)					
Booster Beam (BNB)	$\sim 10^{20}$ POT/yr	8 GeV	now		
NuMI beam	1 - 4 x 10 ²⁰ POT/yr	120 GeV	now		
LBNF beam (future)	$\sim 10^{21}$ POT/yr	120 GeV	near-future		

CERN - SPS beam					
NA62	up to 3 x 10^{18} POT/yr	400 GeV	now		
SHiP	up to 10^{19} POT/yr	400 GeV	future		
CERN – HL LHC	10 ¹⁶ POT/yr	\sqrt{s} = 13 TeV	near-future		

Lujan & CCM Information!

https://indico.fnal.gov/event/46020/contributi ons/202757/attachments/137980/172466/LA NSCE-PSR-LOITalk-NF-09.pdf

Lee-Weinberg

- The Lee-Weinberg bound (1977'): below ~ 2 GeV, DM freeze-out through weak-Interaction (e.g., through Z-boson) would overclose the Universe. Freeze-out too early m^2/M^4
- Could consider ways to get around this but generally sub-GeV DM needs BSM mediators to freeze-out to proper relic abundance.
- New mediator is needed: the rise of "dark sector" (DM + mediators + stuffs).
- Another motivation to consider dark sector other than anomalies