

Study of Forward J/ψ Production vs Event Multiplicity in p+p/A Collisions at PHENIX

Ming X. Liu Los Alamos National Laboratory

(for the PHENIX Collaboration)

CIPANP 2022

J/ψ Production in High Energy p+p/A Collisions

How J/ψ are produced?

Perturbative + Non-perturbative

- J/ ψ ($c\bar{c}$), a simplest QCD system
- " $c\bar{c}$ " pair from hard scattering
 - pQCD:

"IS/MPI"

"FSI"

- Single hard scattering
- Multiple semi-hard parton interactions (MPI)
- NRQCD models:
 - Color Singlet (CS)
 - Color Octet (CO)
- Jet fragmentation
- " $c\bar{c}$ " hadronization to J/ ψ
 - Color neutralization
 - Interactions with QCD medium

Gluon Fusion

Gluon fusion dominates at RHIC energy

CS:

PHENIX Detector at RHIC (Last Run 2016)

 Central Arms η < 0.35 Identified charged hadrons Neutral Pions Direct Photon J/ψ Heavy Flavor
 Muon Arms 1.2 < η < 2.4 J/ψ Unidentified charged hadrons Heavy Flavor
BBC/MPC 3.1 < η < 3.9 • Neutral Pion's • Eta's
ZDC η ~ 5.9 • Neutrons

Event Multiplicity Measurements:

SVX: Silicon Vertex Det. $| \eta | < 1$

```
FVTX: Forward Silicon
Vertex Det.
1.2< | η | < 2.4</p>
```

 $J/\psi \rightarrow \mu^{+} + \mu^{-}$

BBC: MB Trigger 3.1< | η | < 3.9

J/ψ Yields vs Event Multiplicity - Topology

- Multi-Parton Interactions (MPI)

 N_{ch}

J/ψ

- Final State Interactions (FSI)
- Local event multiplicity: N_{ch}

dimuon

(J/ψ)

MPI, local energy density?

PHENIX Experiment in 2015 Run, 200GeV pp and pA

- Transversely polarized p+p, p+Au and p+Al collisions at RHIC
 - p+p: $L_{NN} \sim 200 \text{ pb}^{-1}$
 - p+Au: $L_{NN} \sim 130 \text{ pb}^{-1}$

J/ψ Production in pp and pAu Collisions at PHENIX

p+p ●→**←**●

У

Our Measurements at PHENIX

J/ψ Relative Yields vs Normalized Event Multiplicity from FVTX and SVX

Ming Liu @ CIPANP2022

J/ψ Production: same kinematic region

RED = Tracklets N_{ch}^{N} (1.2 < η < 2.4) Green = J/ ψ (1.2 < y < 2.2)

Multiplicity: MPI, FSI contributions to the forward J/ψ production?

J/ψ Production vs Multiplicity at Midrapidity

expect less co-mover type FSI at high multiplicity

10

9

8

2

4

 $N_{ab}^{M}/\langle N_{ab}^{M}\rangle$

J/ψ Production: far-off kinematic region

J/ψ Yields vs Event Multiplicity

J/ψ Yields vs Event Multiplicity: All Together

PYTHIA 8 p+p Simulations

- Detroit Tune (RHIC) pp 200GeV
 - MPI ON/OFF
 - PHENIX acceptance
 - $J/\psi \rightarrow \mu^{+} + \mu^{-}$

7

PYTHIA vs Data (RHIC and LHC)

8

10

Probe CGC in pAu?

Summary and Outlook

- First measurements of the relative J/ ψ yields R in the forward rapidity vs normalized event charged particle multiplicity N_{ch}/< N_{ch} > in pp at 200GeV
 - Strong N_{ch} dependence observed when signal and N_{ch} in the same kinematics
 - ightarrow N_{ch} dependence reduced significantly if dimuon contribution removed
 - Dimuon subtracted N_{ch} dependence similar to the ones from N_{ch} determined in a far kinematic region from the signal

• Physics discussions

- ➤ "c-cbar" favors CS state, at low pT?
- R depends on not only MPI but also other effects/production mechanisms
- Comparison with PYTHIA, favors MPI
- More theoretical inputs welcome

• p+Au analysis in progress, stay tuned!

Very interesting CGC motivated model predictions

Backup slides

PYTHIA Simulations

PYTHIA and Data – Same Arms

PYTHIA and Data – Dimuon subtracted

PYTHIA sim with CS and CO, MPI ON

J/ψ Dimuon Mass Fits

MB Events' FVTX and SVX Tracklet Raw Distributions

Raw J/ ψ Counts vs FVTX and SVX

Multiple Collision Probability Table

BBCLL1_Eff = 55 +/ 5 % for run15 pp MB; 79 +/-2 % for hard scattering

FVTX Track Multiplicity Correlations

Evt_Mult_FVTXS:Evt_Mult_SVX {abs(Evt_Mult_SVX)<8 && abs(Evt_Mult_FVTXS)<8 && Evt_Mult_FVTXS>0 && Evt_Mult_SVX>0}

LHC: p-Pb @8TeV

Farid Salazer, Bjorn Schenke and Alba Soto-Ontoso arXiv:2112.04611;

Figure 3. Correlation between normalized J/ψ and charged hadron yields in p + Pb collisions at 8.16 TeV for BK evolved dipoles and using NRQCD to describe the J/ψ hadronization. Shown are results from individual events as scatter plots and the event average with statistical errors. Experimental data from ALICE [13]. Left: Using values of Q_s that lead to multiplicities in line with experimental results. Right: Artificially low Q_s to mimic the situation of no, or much weaker, saturation effects.