

sPHENIX Open Heavy Flavor Physics

Ming Liu Los Alamos National Lab for the sPHENIX Collaboration

04/20/2021 APS April Meeting (Online)

EBIS

NSRL

AGS

Probing the "Inner Workings" of QGP with HF

• Heavy quark energy loss mechanisms in QGP

- Radiative vs collisional
- Mass dependence R_{AA} @transition region, pT ~ M_Q

Heavy quark interactions with QGP

- HF diffusion coefficient, "flow"
- QGP properties, RHIC vs LHC

• CNM to QGP transition

- pp, pA and AA, RHIC vs LHC
- Event multiplicity dependence, onset of QGP?

Heavy quark hadronization

- Coalescence, non-perturbative QCD at low pT
- Baryon/Meson ratios
- Test pQCD at high pT

sPHENIX projections:

Rich set of observables - hadrons and jets

The sPHENIX Experiment

MVTX beam view R = 2.5 - 4.0 cm

Key capabilities:

- Full azimuth, |eta| < 1.1
- High trigger rate ~15kHz, collect all central AuAu
- EMCal: high pT direct photons
- Inner and outer HCals: jets
- Precision tracking: HF and more
 - 0.2 < pT < 40 GeV

Trigger-less streaming readout, p+p and pAu

sPHENIX Run Plan

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z <10 cm	z <10 cm
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%-str]	
2024	p [↑] +Au	200	-	5	0.003 pb ⁻¹ [5 kHz]	0.11 pb ⁻¹
					0.01 pb ⁻¹ [10%-str]	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹
	Year 2023 2024 2024 2025	YearSpecies2023 $Au+Au$ 2024 $p^{\uparrow}p^{\uparrow}$ 2024 $p^{\uparrow}+Au$ 2025 $Au+Au$	Year Species $\sqrt{s_{NN}}$ 2023 Au+Au 200 2024 $p^{\uparrow}p^{\uparrow}$ 200 2024 $p^{\uparrow}p^{\uparrow}$ 200 2024 $p^{\uparrow}p^{\uparrow}$ 200 2024 $p^{\uparrow}+Au$ 200 2025 Au+Au 200	Year Species $\sqrt{s_{NN}}$ Cryo GeV] Weeks 2023 Au+Au 200 24 (28) 2024 $p^{\uparrow}p^{\uparrow}$ 200 24 (28) 2024 $p^{\uparrow}p^{\uparrow}$ 200 24 (28) 2024 $p^{\uparrow}+Au$ 200 - 2025 Au+Au 200 24 (28)	Year Species $\sqrt{s_{NN}}$ Cryo Physics Weeks Weeks Weeks Weeks 2023 Au+Au 200 24 (28) 9 (13) 2024 $p^{\uparrow}p^{\uparrow}$ 200 24 (28) 12 (16) 12 (16) 2024 $p^{\uparrow}+Au$ 200 - 5 5 2025 Au+Au 200 24 (28) 20.5 (24.5) 20.5 (24.5)	YearSpecies $\sqrt{s_{NN}}$ CryoPhysicsRec. Lum.[GeV]WeeksWeeksWeeks $ z < 10 \text{ cm}$ 2023Au+Au20024 (28)9 (13) $3.7 (5.7) \text{ nb}^{-1}$ 2024 $p^{\uparrow}p^{\uparrow}$ 20024 (28)12 (16) $0.3 (0.4) \text{ pb}^{-1} [5 \text{ kHz}]$ 2024 $p^{\uparrow}p^{\uparrow}$ 20024 (28)12 (16) $0.3 (0.4) \text{ pb}^{-1} [5 \text{ kHz}]$ 2024 $p^{\uparrow}+Au$ 200 $-$ 5 $0.003 \text{ pb}^{-1} [10\%-str]$ 2024 $p^{\uparrow}+Au$ 200 $-$ 5 $0.01 \text{ pb}^{-1} [10\%-str]$ 2025Au+Au20024 (28)20.5 (24.5)13 (15) \text{ nb}^{-1}

SPHE

Open HF Tagging with MVTX Upgrade - Monolithic-active-pixel-sensor based VerTeX detector

- MVTX key parameters: (ALPIDE)
 - pixel size: 27um x 29 um
 - ultra-thin stave: 0.35%X₀
 - Integration time: ~5us
- Multi-tracks w/ large DCA
- 2nd vertex mass
- Exclusive hadron reconstruction

b-jet efficiency

Work in Progress: from Full Monte Carlo Simulations

PYTHIA 8 p+p with full detector GEANT sim + reco

KFParticle package implemented for exclusive HF hadron reconstruction

Work in Progress: More from KFParticle Outputs

For D*, pT ~> 1.5GeV, with soft pion pT > 0.2GeV

Precision HF Hadron and b-Jet R_{AA}

SPHE

Many factors affect the HF hadron production:

- Heavy quark energy loss in QGP: mass, pT dependence
- Heavy quark diffusion in QGP
- Heavy quark hadronization in QGP

Also other observables:

- di-b-jet, modification of HF jet structures etc.

Precision "Flow" Measurements of B-hadron and b-Jets

$$B \rightarrow \overline{D^0} + X$$
 (B.R. 60%)

Many factors affect the HF hadron production:

- Heavy quark energy loss in QGP
- Heavy b-quark diffusion in QGP
- Heavy quark hadronization in QGP

b-jet flow, pQCD:Energy loss induced v2?

SPHE

From Quarks to Hadrons in QGP

- Critical to understand the hadronization process
- Hadron production strongly affected by the QCD environment
 - Non-perturbative process important at low pT, coalescence etc.
 - Strong multiplicity dependence observed in p+p, pA and AA ... @RHIC and LHC
 - Breakdown of pQCD factorization at low pT
- High precision measurements of HF meson and baryons in sPHENIX

Clear pT dependence observed: e+e- vs pp

From Quarks to Hadrons (Cont.)

- More exclusive HF hadrons D^{+/-}, Ds, Bs yields etc.
- Event multiplicity dependence

Ming Liu (LANL), sPHENIX HF Physics @APS April Meeting

10

SPHE

Summary and Outlook

- Great HF physics opportunity at RHIC
 - High precision measurements of HF over a wide pT range, to study "inner workings of QGP"
 - Heavy quark energy loss mechanisims
 - HF diffusion coefficients
 - Jet structure modification in QGP
 - Heavy quark hadronization and QCD
 - Complimentary to LHC
- sPHENIX day-1 physics in early 2023
 - Detectors ready by 2022
- Other physics not covered here
 - Jets and QGP
 - Upsilons and QGP
 - Spin and cold QCD

Backup slides/plots

sPHENIX Detector Construction Photos

sPHENIX in Progress: 1008 I&F in Photos

SPHENIX

Probe Initial Magnetic Field in HI collisions

Di-b-Jets in QGP

Kang, Reiten, Vitev, Yoon, PRD 99, 034006 (2019)

A Broad Physics Program with Hadrons and Jets

Parton Mass and Flavor Dependence of Jet Suppression and more

HQ Diffusion in QGP

Model calculations

Classical Brownian motion:

$$\sigma_x^2 = 2Dt$$
$$D \propto \frac{k_B T}{\eta}$$

Shuang Li and Jinfeng Liao, Eur. Phys. J. C (2020) 80: 671

Probe Gluon TMD with D⁰

sPHENIX projection

Charm is unique probe of gluon TMD $D^0 A_N \rightarrow$ Tri-gluon correlation functions

PHENIX, DOI:10.1103/PhysRevD.95.112001 0.4AN p+p $\rightarrow \mu^+$ +X at \sqrt{s} = 200 GeV p+p $\rightarrow \mu^+$ +X at \sqrt{s} = 200 GeV 0.03 **SPHENIX** Projection, $p^{\uparrow}+p \rightarrow D^{0}/\overline{D}^{0}+X$, P=0.57 $0.3 - PHENIX x_F < 0$ + PHENIX $x_{F} > 0$ ----- 6.2 pb⁻¹ str. p+p, Years 1-3 0.02 86 pb⁻¹ str. p+p, Years 1-5 0.2 Kang, PRD**78**, $\lambda_f = \lambda_d = 0$ 0.1 0.01 Kang, PRD**78**, $\lambda_f = -\lambda_d = 70 \text{ MeV}$ **A** -0--0.01-0.2 (3.4% scale uncertainty not shown) (3.4% scale uncertainty not shown) -0.3Twist-3 model 1 ($D \rightarrow \mu$) Twist-3 model 1 ($D \rightarrow \mu$) -0.02----- Twist-3 model 2 (*D*→µ) ----- Twist-3 model 2 ($D \rightarrow \mu$) -0.4 2.5 3.5 4.5 0.5 3 1.5 2 2 3 Ę p₋ (GeV/c) p₊ (GeV/c) p_{τ} [GeV]

Heavy Quark Hadronization

SPHE

sPHENIX Detector Sub-Systems

Continuous readout TPC Si strip intermediate tracker 3-layer MAPS-based µ vertex

Calorimeter stack

Steel/plastic scintillator HCAL SiPM readout

MVTX Detector

Excellent track DCA resolutions in pp, pAu and AuAu

Precision Vertex and Open HF Observables

Precision vertex tracker + high rate capability
→ Precision open charm and bottom over wide scales

Monolithic-Active-Pixel-Sensor based Precision Vertex Detector

-- for Open Heavy Quark Measurements

-2

track dz [npixels]

MVTX based on copy of ALICE staves with support structure modified for sPHENIX