

# MVTX Production Readiness Review Overview

Ming Liu (LANL)

Camelia Mironov (MIT) and Grazyna Odyniec (LBNL)

For the MVTX Team

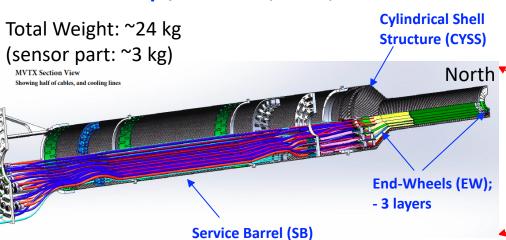
MVTX Production Readiness Review (Remote Meeting)
12/15/2020

### Outline



- MVTX detector design
  - Design updates
- Review questions
  - MVTX status
- Recommendations from previous FDR
  - All implemented
- Mechanical structure production and detector assembly plan
  - Updated schedule

A Production Readiness Review (PRR) for MVTX components will be held Dec 15th, 2020 as a virtual meeting. The purpose of the PRR is to address design updates and actions items from the FDR and approve readiness for fabrication of the MVTX Cylindrical Support Structure (CYSS), End Wheels, and Service Barrel and the MVTX "X-Wing" support structure. The review will also cover assembly fixtures, assembly procedures, and planning for the integrated support and insertion system in the core of sPHENIX.


In general a **Production Readiness Review (PRR)** addresses the following questions and topics:

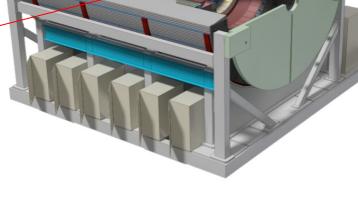
- 1. Engineering and Design Are the drawings complete? Have they been reviewed, approved, and released following guidelines? Are the drawings now under configuration control? Has there been an appropriate independent review of the design? If there have been changes to the documents since the Final Design Review, have these changes been vetted properly? Are the changes still consistent with the Requirements? Has appropriate parts lists been generated for all subsystem assemblies? Have all components been identified?
- 2. Management Is the schedule for procurement, including internal signatures and approvals, bid duration, material procurement, and fabrication been correctly estimated? Are they consistent with the Resource Loaded Schedule? Have all recommendations from prior reviews been properly addressed and approved?
- 3. <u>Fabrication</u> Have potential vendors been identified? Will assembly be required? Who will perform the assembly? What are the acceptance criteria for parts? Is this documented and part of the procurement package? Who will do the <u>acceptance</u> inspection and testing? Is shipping included in the procurement? Where will equipment be stored upon arrival at BNL?
- 4. Quality What are the quality assurance requirements for this procurement? Are material certifications required? Are there intermediate inspection steps required during fabrication that will require BNL involvement? Are they clearly spelled out in the procurement documentation?
- 5. Safety Have all safety requirements been satisfied and closed out?

### **MVTX** Detector Design



### Carb. Fib. Comp./CFC = EW, CYSS, SB

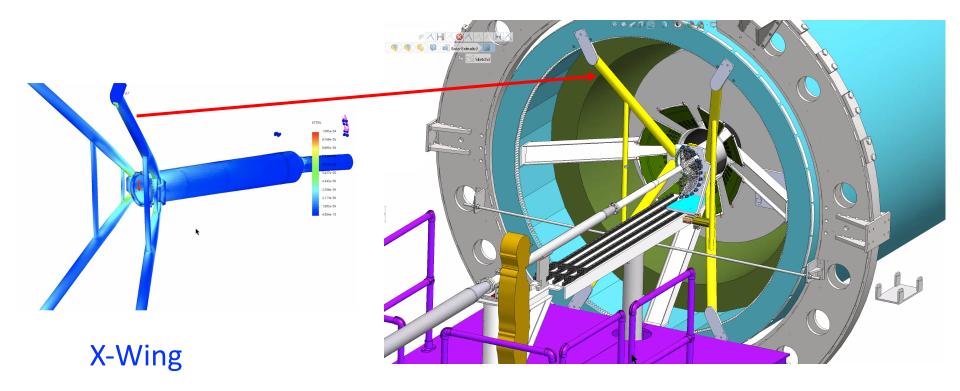



MVTX parameters: L = 271 mm

| R (mm)  | min   | mid   | max   |
|---------|-------|-------|-------|
| Layer 0 | 24.61 | 25.23 | 27.93 |
| Layer 1 | 31.98 | 33.35 | 36.25 |
| Layer 2 | 39.93 | 41.48 | 44.26 |

3-layer sensor barrel

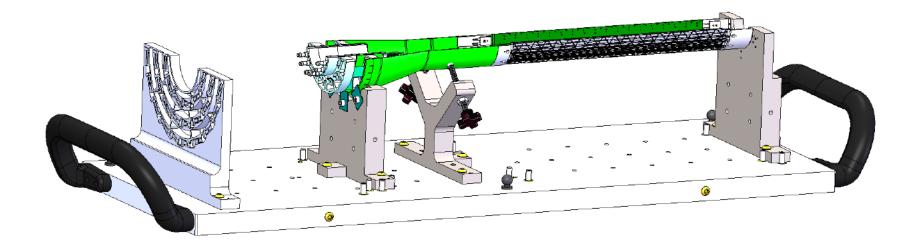
- 48 staves, 432 chips






# Detector Support Structure: X-Wing




Jason's talk



# **Detector Assembly Fixtures**



Joe's talk



### 1. Engineering and Design



NOTE: all these covered in detail in Jason's presentation.

- Are the drawings complete? Yes
  - Have they been reviewed , approved, and released following guidelines?
  - Are the drawings now under configuration control?
- Has there been an appropriate independent review of the design?

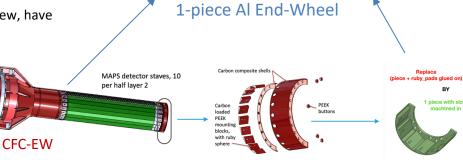
Yes, LBNL (while updating the LBNL production cost) Here is the link to the summary

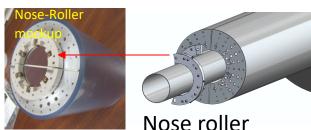
• If there have been changes to the documents since the Final Design Review, have these changes been vetted properly?

Yes, meetings/reviews with LBNL+CERN, LINK to discussions

#### 2 design changes:

- End-Wheels: a simple 1-piece design, made of Al, ~\$10K/pair
- Lock-and-roll (nose roller) system on the nose of detector to protect against crushing into the Beam Pipe


Are the changes still consistent with the Requirements?


Yes (link to the EW discussions )

- Has appropriate parts list been generated for all subsystem assemblies?
  - Yes
- Have all components been identified?

– Yes







### 2. Management



- Is the schedule for procurement, including internal signatures and approvals, bid duration, material procurement, and fabrication been correctly estimated?
  - Yes.
  - Prepreg carbon fiber fabrication long lead time: 6-8 weeks
    - · for test article, small amount in stock.
    - for the production work: order placed in advance (October)
      - --> expected ready to go for full production in Dec/early January
- Are they consistent with the Resource Loaded Schedule in P6? Yes
  - Mechanical structure fabrication costs: well within the budget :

3-layer CFC-EW:  $$197K \rightarrow \text{ in P6 } $311K + 60\% (contingency)$ 

One-piece Al-EW: ~\$50K

CYSS: \$54K → in P6 \$201K + 40%
 SB: \$53K → in P6 \$266K + 40%

- Manpower cost/schedule:
  - 4~5 months delay, still within cost & schedule contingencies
- Have all recommendations from prior reviews been properly addressed and approved?
  - yes
    - only 1 suggested design modification from the January FDR: the lock-and-roll (nose roller) system

### 3. Fabrication



- Have potential vendors been identified? -Yes.
- -> see Jason's talk

- Carbon Fiber: CYSS, SB, EW Layers
  - CAD designs completed in July 2020
  - Design package (drawings + SOW) sent to 4 potential vendors on July 27th (WorkShape in France, 3 in CA, including LBNL)
  - Received feedbacks and revised the drawings accordingly: v2 of the package sent out Aug. 13<sup>th</sup>, 2020
  - Received 3 responses by the end of August deadline (see back-up for price/schedule comparison)
- One-piece End-Wheels: Carbon loaded PEEK -> Aluminum -- mostly affected by the pandemic (schedule wise)
  - CAD design finalized early April, 2020
  - Prototype-1 ready end of April: made by Xometry -- failed → weeks to get scheduled for CMM due to COVID shutdown
  - Prorotype-2 sent in August to a 2nd shop in MA  $\rightarrow$  delivered mid-Oct.  $\rightarrow$  (other weeks to schedule CMM) CMM failed
  - Prototype-3 (present): made of Al, sent to MIT shop in end of Oct. → back in November→ CMM acceptable
- Will assembly be required?
  - Yes. Fixtures and assembly steps designed by MIT/Bates, LANL and LBNL → see Joe's talk
- Who will perform the assembly?
  - LBNL will do it.
- What are the acceptance criteria for parts? Is this documented and part of the procurement package?
  - All specified in Sec .2. of the SOW <u>here</u>
- Who will do the acceptance inspection and testing?
  - Shops in US (MIT for test articles; LBNL for production parts)
- Is shipping included in the procurement?
  - Yes. Costs from vendor include shipping to US, and there are money allocated for transport from LBNL to BNL
- Where will equipment be stored upon arrival at BNL?
  - Setup a clean tent at BNL in late 2021 for receiving & commissioning
  - The shipping box will also act as a storage cradle, before the detector put on the insertion rails in the IR

### 4. Quality



- What are the quality assurance requirements for this procurement?
  - Mechanical dimensions and tolerances
- Are material certifications required?
  - No. The prepreg carbon fiber change, from the originally design (ITS) to a better (and more expensive) one, was approved by the MIT/LANL/LBNL engineers.
- Are there intermediate inspection steps required during fabrication that will require BNL involvement?
  - No
- Are they clearly spelled out in the procurement documentation?
  - N/A

### 5. Safety



- Have all safety requirements been qualified and closed out?
  - Yes.

#### Requirements ~same for all sPHENIX systems

- 1. Are there aspects of the MVTX unit design or operation that present a safety hazard like high voltage or flammable gas, etc...?
  - No.
- 2. Are there aspects of MVTX fabrication, assembly and testing at Bates, LBNL and BNL that present safety hazards?
  - No.
- 3. Are there aspects of the MVTX installation at BNL that present any unusual hazards like heavy weight, ergonomic issues, etc...?
  - No. → see Russ and Jason' talks
  - sPHENIX will also have a design review for the integrated Beam Pipe, MVTX, INTT and MBD installation and tools that will address installation safety, planed for ~early 2021

### Addressed all Recommendations from last FDR



#### Recommendations

- 1. Before proceeding to finalizing design and drawings:
  - a. Finalize discussions with CAD on whether the 40 mm aperture restriction to  $\pm 5.6$  m is acceptable for all collision species.
- 2. When the specifications for the composite structures is complete, expected to be in March 2020, confirm feasibility with vendors and/or outside experts soon afterward. Define the specific performance, QA, and dimensional tests that are required. Some balance will be needed between overly tight versus practical and testable specs. The main risk is to schedule, if the specs prove too difficult for vendors to achieve, or too laborious to test.
- 3. Before final construction:
  - a. Complete Interface Control Documents.
  - b. Complete plans for interlocks and alarms.

- Beam pipe modification reviewed and approved, work in progress at Materion (BNL, Russ' talk)
- Worked with vendors on the final designs and tolerances. A test article (most challenging piece, MVTX Layer-0 EW) was produced and qualified with the selected vendor (WorkShape)
- a) Completed ICD documents, andb) preliminary plans for interlocks and alarms (BNL, Russ' talk)

### Summary I: Mechanical Design and Vendor Selection



#### Final designs developed based on ITS/IB concept, with inputs from MIT, LANL, CERN, LBNL and BNL engineers

- CAD designs completed in July 2020 and sent to 4 potential vendors with SOW on 7/27/2020
  - modification of EW, with one-piece-EW
  - Lock-and-roll system
- Received feedbacks and revised the drawings accordingly: final package sent out Aug. 13th
- Received 3 responses by the end of August deadline

#### Changed vendor selection process for the production cost and COVID-19 schedule challenge

Advise from LBNL CFC production experience: skip the round-1 competition, provide detailed designs & SOW for vendor selection, then work with the selected vendor to fabricate the production CFC

#### WorkShape (France) won the competition

- Experience/qualifications, cost and delivery schedule
- Started fabrication of the test article in September 2020
- The first test article produced in Nov. and qualified in Dec. at MIT! (links to the US CMM measurements and also from WorkShape)
- Full production and delivery plan developed



### Summary II: CFC Production and Detector Assembly Schedule



#### Mechanical support structures

- Test article production and QA
  - 1st test article, Layer-0 EW qualified
  - PRR: Dec. 15, 2020 (Today)
- CFC full production starts ~Jan. 2021
  - 1st half CFC(EW+CYSS+SB) available in ~March 2021
  - 2<sup>nd</sup> half CFC finish in April 2021
- Assembly fixtures designed (Joe's talk)
- Insertion system designed & mockup in progress (Jason's talk)
  - System integration review: early 2021

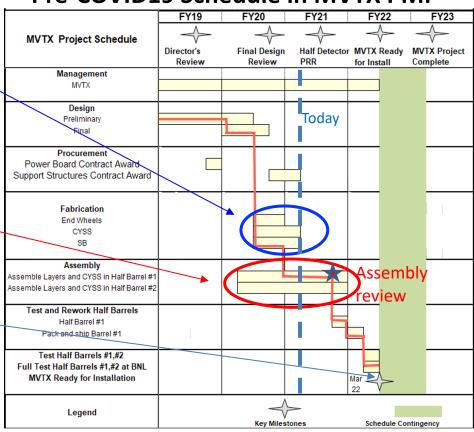
#### Stave production in good progress at CERN

- Shipping and QA at LBNL, Jan -- Mar in 2021
- Half-detector assembly at LBNL
  - Assembly fixture production, ~Jan/Feb 2021
  - CFC CMM & test fitting, March~April, 2021
  - Half-detector assembly review, ~May 2021
  - Complete the 2<sup>nd</sup> Half-detector by 12/2021 (orig. schedule)

#### Aim to meet the original MVTX installation dates

- ready to install in sPHENIX IR, ~March, 2022
- IR available for MVTX installation, ~Sept., 2022 MVTX has ~6 months schedule float

#### NB:


Original (pre-COVID19) schedule:

- start assembly in Dec 2020

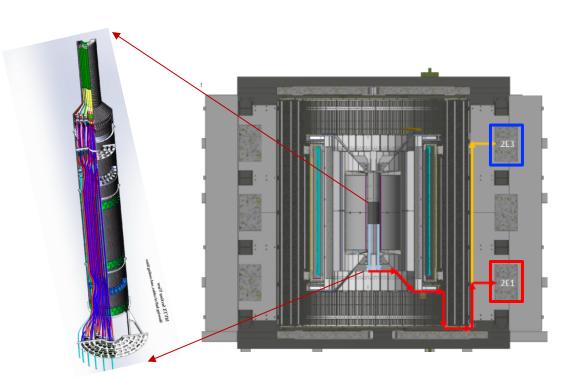
Current schedule:

- start assembly in March/April 2021 (3-4 months delay)

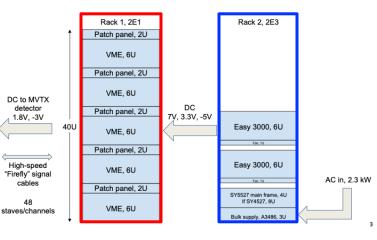
#### **Pre-COVID19 Schedule in MVTX PMP**



# Backup slides

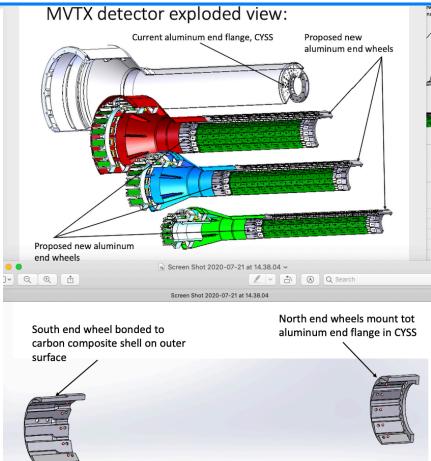



### MVTX Detector and Interface




#### sPHENIX-SE-ICD-042 Document:

https://docs.google.com/spreadsheets/d/1hHUhxZOZv8WEs3FH361\_gN6McVU4Zhy60sGtYotRHMs/edit?usp=sharing




#### Power and safety interlock



### MVTX Detector: End-Wheels





12/15/2020 MVTX Production Readiness Review 16

# 3 Vendors' Bids Received (one didn't responded)

|                                      |                              | Workshape                                    | SpencerComposite            | LBL                                      |
|--------------------------------------|------------------------------|----------------------------------------------|-----------------------------|------------------------------------------|
| Price Bulk Extra                     | Bulk                         | 270 552 EUR                                  | 461 000 USD                 | ~896 000 USD (best case)                 |
|                                      | options)                     | for visit                                    | ~1 046 000 USD (worst case) |                                          |
|                                      | TOTAL                        | 314 595 USD                                  | >470 000 USD                |                                          |
| Delivery time testArticle everything | 12weeks+6weeks (Grenoc)      | ~26weeks ARO                                 |                             |                                          |
|                                      | testArticleApproval+~20weeks | (almost 1 year)                              |                             |                                          |
| Impressions                          |                              | Much experience in very similar projects.    | Very Formulaic Reponse      | Thoroughly thought out quote, willing to |
|                                      |                              | Propose to combine cone and cylinder of CYSS |                             | Propose to combine cone and cylinder of  |
| Proposed change                      | es                           | Propose to use 7075 instead of 6061 Aluminum |                             | Propose to use 7075 instead of 6061      |

# Cost from WorkShape



1 EU\$ = 1.2 US\$

Total cost = EU\$271K x 1.2 = US \$325K

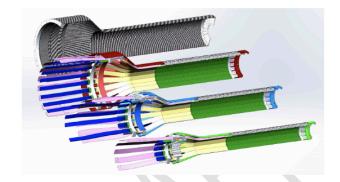
EWs: EU \$164.1 => US \$197K

CYSS: EU \$44.65K => US \$54K

EU \$44.15K => US \$53K SB:

US \$21K Shipping:

| Summary                                                                                                                                              |        |           |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-----------|
| MVTX L0                                                                                                                                              | set    |           | 51 256,00 |
| MVTX L1                                                                                                                                              | set    |           | 53 774,00 |
| MVTX L2                                                                                                                                              | set    |           | 59 084,00 |
| MVTX CYSS                                                                                                                                            | set    |           | 44 652,00 |
| MVTX Service Barrel                                                                                                                                  | set    |           | 44 146,00 |
| Packing and transport                                                                                                                                | 1      |           | 17 640,00 |
| <u>OPTIONS</u>                                                                                                                                       |        |           |           |
| Additional CAD/CAM, milling and finishing of the moulds, parts manufacturing in case of springback.                                                  | 1 to 2 | 6 640,00  |           |
| Prototype MVTX L0 assembly (needs CAD/CAM, as well as the moulds to be manufactured), included all measurements with reports, packing and transport. | 1      | 14 933,00 |           |
| MVTX L0 assembly: same as above, with all the documentation and coupons.                                                                             | 1      | 15 649,00 |           |
| Extra work: to gain 2 weeks on the prototype, so 10 weeks instead of 12                                                                              | 1      | 4 908,00  |           |
| Extra work: to gain 4 to 5 weeks on the project, prototype not included (5 weeks on 22 weeks, so 17 weeks for the project after prototype)           | 1      | 23 448,00 |           |
| Total, no options                                                                                                                                    |        |           |           |


12/15/2020

Μ

### Project Management Plan



- Draft PMP document completed
  - Project baseline
    - Physics
    - Functional requirements/KPP
    - Technical scope
    - Cost breakdown
    - Schedule
    - Funding profile
    - Planned BNL funding
    - Baseline change control
  - Management structure
    - Organization and team
    - Management responsibilities
    - Participating institutions
  - Project management and oversight
    - Risk management
    - Project reporting
    - · Engineering and technology readiness
    - · Quality assurance and configuration/document management
    - · Operation readiness plan
    - ESSH plans and fabrication
    - Project closeout
- Project fully integrated into sPHENIX P6
  - Costs, schedules and risk register



**Management Plan** 

for

A Monolithic-Active-Pixel-Sensor-based Vertex Detector (MVTX) Upgrade for the sPHENIX Experiment

at the

**Brookhaven National Laboratory** 

July 22, 2019

# MVTX Milestones and Key Tasks



#### Table 5 Milestones and Key Tasks:

| Milestone                                    | Date           |
|----------------------------------------------|----------------|
| Project Start                                | December 2019  |
| Preliminary Design of the MVTX Detector      | March 2020     |
| Power Board Production Contract Award        | April 2020     |
| End Wheel, CYSS and SB Design Complete       | June 2020      |
| Start Test and Rework Staves – Batch 1       | July 2020      |
| Insertion Mock-up Ready                      | August 2020    |
| MVTX Final Design Review                     | September 2020 |
| Samtec Readout Cable Contract Award          | November 2020  |
| Complete End-Wheels Fabrication              | January 2021   |
| Complete CYSS Fabrication                    | February 2021  |
| Complete SB Fabrication                      | March 2021     |
| Support Structure Production Start           | April 2021     |
| Test Installation of Staves onto End-Wheels  | May 2021       |
| Half-Detector Assembly Review                | July 2021      |
| Perform Half-Detector Metrology on Layers    | September 2021 |
| Assemble Layers and CYSS into Half-Barrel #1 | October 2021   |
| Assemble Layers and CYSS into Half-Barrel #2 | November 2021  |
| Test and Rework Half-Barrel #1               | December 2021  |
| 1st Half Barrels Assembled                   | February 2022  |
| 2 <sup>nd</sup> Half Barrels Assembled       | March 2022     |
| Test Half Barrels at BNL                     | April 2022     |
| MVTX ready for Installation                  | June 2022      |
| Approve Project Complete                     | May 2023       |

From MVTX PMP 12/2019

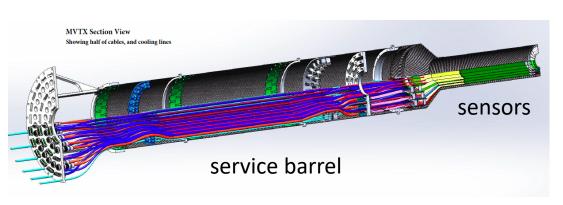
# MVTX High Level Cost



| WBS     | Level 2 WBS Description              | Burdened<br>AY\$ labor | Burdened<br>AY\$ M&S | Burdened<br>AY\$ Total |
|---------|--------------------------------------|------------------------|----------------------|------------------------|
| 3.02.01 | MVTX Project<br>Management           | \$498.8k               | \$46.8k              | \$544.6k               |
| 3.02.02 | MVTX Electronics                     | \$211.2k               | \$358.4k             | \$569.6k               |
| 3.02.03 | MVTX Mechanics and Detector Assembly | \$1241.6k              | \$667.0k             | \$1908.6k              |
| 3.02.04 | MVTX Integration and Installation    | \$456.8k               | \$416.5k             | \$873.3k               |
|         | Total                                | \$2187.8k              | \$1500.6k            | \$3688.5k              |

# MVTX Carbon Structure Cost(July 2019) SPHE

|                          | WBS                     | Cost (K) | Contingency | Basis               |
|--------------------------|-------------------------|----------|-------------|---------------------|
| End Wheels               | 03.02.02<br>Line 143    | \$311    | 60%         | Previous experience |
| Cylindrical<br>Structure | 03.02.03.01<br>Line 158 | \$201    | 40%         | Previous experience |
| Service Barrel           | 03.02.03.02<br>Line 169 | \$266    | 40%         | Previous experience |


Changed to 60%, following July 2019 review recommendations

### **MVTX Material Distribution**

Total weight = ~24kg

Sensors parts (CYSS+EWs+Staves+noseroller)= ~3 kg

Cables of detector = ~12kg Cooling tubes = ~1.1kg



| gnal Cables Type               | per side                          |
|--------------------------------|-----------------------------------|
| cation                         | SB inside face                    |
| ower Cables                    | 3612.3 g                          |
|                                | Distributed Force,                |
| rpe .                          | per side                          |
| cation                         | SB inside face                    |
|                                | 261.26 g                          |
| /pe                            | Remote mass, per side             |
| ocation                        | CYSS Clamp ring and<br>Nose Plate |
|                                | 312.9 g                           |
| pe                             | Remote mass, per side             |
| ocation                        | CYSS Clamp ring and<br>Nose Plate |
|                                | 418.9 g                           |
| /pe                            | Remote mass, per side             |
| ocation                        | CYSS Clamp ring and<br>Nose Plate |
| ooling tubes 4mm + Air<br>ibes | 1122.054 g                        |
| /pe                            | Distributed Force,<br>per side    |
| cation                         | SB Inside face                    |
| ose rollers                    | 30 g                              |
| /pe                            | Distributed Force,<br>total       |
| cation                         | Nose Plates                       |

2226 g

Distributed Force,

Signal Cables Load

12/15/2020

**MVTX Production Readiness Review**