MVTX PRR Mechanics

15 DEC 2020

Jason Bessuille (MIT)

Overview

- 1. Comparison of MVTX to ALICE design
- 2. Leveraged ALICE work
- 3. Mechanical analyses
- 4. Production progress

15 Dec 2020

ITS vs. MVTX

Changes driven by:

Beam pipe: wider and closer in sPHENIX 1. \rightarrow snugger fit, and stave positions modified to keep hemeticity Layers

2, 1, 0

MVTX Pre-Production Review

Staves

Beampipe radius

Inner Layer sensors radius

Beampipe clearance (to sensors)

Beampipe clearance (to nose

Primary structural construction

Split configuration

Total radiation dose

IP)

flange)

(AI)

(AI)

(AI)

24.61 mm

Carbon fiber

Left / Right

< 100 kRad

3.85 mm (Be) / 2.91 mm

2.07 mm (Be) / 1.125 mm

SPHE

22.38 mm

3.38 mm

3.38 mm

Foam core carbon fiber

Top / Bottom

2700 kRad

3

ITS vs. MVTX

- Different envelope dimensions complicate cable routing
- Whereas ITS had sufficient radial space to terminate all signal and power cables for each layer in a single plane, MVTX staves have been modified so that power cables can terminate further down the service barrel

15 Dec 2020

ITS vs MVTX

Changes driven by:

3. Convenience/practical aspects : the EndWheel change \rightarrow simpler design (also cheaper)

ITS vs MVTX

Changes driven by:

4. Final Design Review (January 2020) → Added a "nose roller" assembly to protect the beam pipe Uses spring-loaded PEEK balls whose inner radius is smaller than the staves inner radius

Leveraged ITS Work

	Directly Applicable	Needs some modification	Useful as baseline
Fabrication tooling design		Х	
Assembly tooling		х	
Stave mfg tolerances and FEA studies	х		
Design of many small parts	х		
Achievable assembly tolerances	х		
Spring-finger connection scheme	х		
Signal cable strain relief	Х		
Materials selection for patch panels and CF components		Х	
Potential vendors			х
Static and frequency-domain FEA			х

Bottom line: most of the ITS work/knowledge was directly applicable to MVTX

MVTX Pre-Production Review

Overview

- 1. Comparison of MVTX to ALICE design
- 2. Leveraged ALICE work
- 3. Mechanical analyses
- 4. Production progress

FEA Studies

Load	Value	Туре	Location
Gravity	-9.81 m/s ²	Global free body	Everywhere
Signal Cables	2226 g	Distributed Force, per side	SB inside face
Power Cables	3612.3 g	Distributed Force, per side	SB inside face
LO	261.26 g	Remote mass, per side	CYSS Clamp ring and Nose Plate
L1	312.9 g	Remote mass, per side	CYSS Clamp ring and Nose Plate
L2	418.9 g	Remote mass, per side	CYSS Clamp ring and Nose Plate
water 4mm + Air Tubes	1122.1 g	Distributed Force, per side	SB Inside face
Nose rollers	Self weight / or 30 g per side	Mass / Distributed Force	Self / On nose plates

Total Mass: 24 kg (both sides combined) <->~53lb

FEA Studies – Nose Roller

von Mises (N/mm^2 (MPa)

0.800

. 0.700 0.600 0.500 0.400 . 0.300 . 0.200 . 0.100

FEA Nose y Displacement (mm)

Study name: 7(-Default-) Plot type: Static displacement Displacement1 Deformation scale: 100

SPHE

Nose Roller that interconnects ends of MVTX halves effectively reduces sag by over 0.3 mm

Study 14 Results (12 JUNE 2020)

SPHENIX

Overview

- 1. Comparison of MVTX to ALICE design
- 2. Leveraged ALICE work
- 3. Mechanical analyses

4. Production progress

Production

- 1. Discussion of endwheel manufacturing hurdles
- 2. Latest results from End Wheel CMM

3. Discussion of CF procurement4. CMM results for test article

C-ring is sanded, and protected with some Teflon tape. It is then degreased.

Passthrough is degreased as well.

Some glue is applied on the C-ring, then the part is placed in the main bonding jig.

WORK SHAPE

15 Dec 2020

MVTX Pre-Production Review

Changes during production

1. Test Article:

1. Divider mounts: aluminum --> carbon fiber

Step 1: we mill a 4 parts mould in aluminium.

Step 2: we lay-up the 2 first plies as describe on this picture

Divider mount

WORK SHAPE

SPHENIX

Step 5: we put the last 2 plies on top, and then

Mould is long enough (260mm) to allow us to

manufacture the divider mounts for 1 MVTX layer

close the mould. We can now cure the part.

each autoclave cure.

Step 4: we put the side parts of the mould in place, and secure them with pins

MVTX Pre-Product

15 Dec 2020

Changes during production

2) Lengthened / enlarged end flange: we start working on the mock-up, we realized we would like a larger flange (near PP3) for more clearance to support structure and for additional installation bracket mounting holes

MVTX Pre-Production Review

Endwheel production

- The endwheels were made of a single piece each to simplify production
- Initial plan was to produce using 30% carbon fiber filled PEEK
 - 2 shops made 3 total attempts at this, without success
 - Different methods of stress relieving were tried, including heat-annealing and vibration (tumbling)
- Ultimately, it was decided to use aluminum
- Measurements were confirmed using 3rd party CMM shop
- Results of aluminum end wheel test pieces are good

EndWheel CMM Reports Test Article Reports (Mfr) Test Article Reports (3rd Party)

	MM	ITEM, 1	1-CYL 1	1					
	NOMIN	AL	MEAS	+TOL	-TOL	DEV	OUTTOL		
	1.000		1.038	0.075	-0.025	0.038	0.000		
	MM	ITEM 1	2 - CYL 1	2					
	NOMIN	AL.	MEAS	 +TOL	-TOL	DEV	OUTTO		
	1.000	_	1.038	0.075	-0.025	0.038	0.000		
	MM	ITEM 1	3-01.1	3					
	NOMIN	AL	MEAS	+TOL	-TOL	DEV	OUTTOL		
	1.000		1.039	0.075	-0.025	0.039	0.000		
	MM	ITEM 1	4-CYL 1	4					
	NOMIN	AL	MEAS	+TOL	-TOL	DEV	OUTTO		
	1.000	-	1.039	0.075	-0.025	0.039	0.000		
	MM	ITEM 1	5.01 1	5					
	NOMIN		MEAS	+TOI	-TOI	DEV	OUTTO		
	1.000	-	1.039	0.075	-0.025	0.039	0.000		
	MM	ITEM 1	6-C/1_1	6			2.000		
	NOMIN		MEAS	+TO	-TOI	DEV	OUTTO		
	1.000	-	1.040	0.075	-0.025	0.040	0.000		
	MM	ITEM 1	7.01.1	7	01020	01010	01000		
	NOMIN		MEAS	-/ +TOI	-TOI	DEV	OUTTO		
	1.000	-	1.042	0.075	-0.025	0.042	0.000		
	MM	ITEM 1	8-01 1	8			2.000		
	NOMIN		MEAS	+TO	-TOI	DEV			
	1.000	~-	1.042	0.075	-0.025	0.042	0.000		
	MM	ITEM 1	9.01.1	0	0.025	010 12	0.000	_	
	NOMIN		MEAS	-* +TOI	-TOI	DEV			
	1.000	~-	1.042	0.075	-0.025	0.042	0.000		
	MM	ITEM 1	10.01.1	10	0101.0	010 12	0.000		
	NOMIN		MEAS	_10 _10	-70	DEV			
	1.000		1.042	0.075	-0.025	0.042	0.000		
ITEM	2B Position	-	MM		010120	4 Ø0.05			
atura			MEAS	+T0	-TO			BONIUS	
GUIC	TWO-11WA		PICA3	TIOL	-100	DEV	JUTIOL	001403	
R_1_1	0.000		0.006	0.050		0.006	0.000	0.000	
R_1_2	0.000		0.018	0.050		0.018	0.000	0.000	
R_1_3	0.000		0.035	0.050		0.035	0.000	0.000	$\left(+ \right)$

15 Dec 2020

MVTX Pre-Production Review

SPHENIX

SPHEN

SPHENIX

SPHENIX

	Do	PARTNAM	ME: MVTX-	1-S-00019	REVC			December	10,2020	14:59
	PC	REV NUM	BER: R2		SER NUMBER	₹ :		STATS CC	DUNT:	1
Current Femperat	Temperatures: X=71.644 Y=71.2 Z=70.901 P=None ture Compensation is ON									
ITEM_1	ММ				A	0.1				
Feature	NOMINAL	MEAS	+TOL	-TOL	DEV	OUTTOL	BC	NUS		
CYL_A	0.000	0.059	0.100		0.059	0.000				
#	ММ	ITEM_2 - PLN_B								
AX	NOMIN	AL MEAS	+TOL		-TOL	DEV	OUTT	OL		
Z	0.750	0.693	0.025		-0.025	-0.057	0.032		< <u> </u>	
↔	MM	ITEM_3 - PLN_3 TO	PNT_TOP (YAX	IS)						
AX	NOMIN	AL MEAS	+TOL		-TOL	DEV	OUTT	OL		
М	57.150	57.294	0.300		-0.300	0.144	0.000			
ITEM_4	ММ				ØØ	.15 A				
Feature	NOMINAL	MEAS	+TOL	-TOL	DEV	OUTTOL	BC	DNUS		
CYL_C	0.000	0.050	0.150		0.050	0.000				
\triangleleft	DEG	ITEM_5 - PLN_5 TO	XAXIS							
AX	NOMIN	AL MEAS	+TOL		-TOL	DEV	OUTT	OL		
A	30.000	29.558	0.500		-0.500	-0.442	0.000			
⊿	DEG	ITEM_6 - PLN_6 TO) XAXIS							
AX	NOMIN	AL MEAS	+TOL		-TOL	DEV	OUTTO	OL		
A	90.000	90.052	0.500		-0.500	0.052	0.000			
⊿	DEG	ITEM_7 - PLN_7 TO) XAXIS							
AX	NOMIN	AL MEAS	+TOL		-TOL	DEV	OUTTO	OL		
A	150.00	0 150.368	0.500		-0.500	0.368	0.000			
ITEM_8	MM				ØØ).1 C				
Feature	Nominal	MEAS	+TOL	-TOL	DEV	OUTTOL	BC	DNUS		
CYL_8	0.000	0.017	0.100		0.017	0.000				
ITEM_9	MM				ØØ).1 A				
Feature	NOMINAL	MEAS	+TOL	-TOL	DEV	OUTTOL	BC	ONUS		
CYL_8	0.000	0.077	0.100		0.077	0.000				

15 Dec 2020

MVTX Pre-Production Review

- Layer 0 Cone was produced at Workshape (FR) and delivered to MIT earlier this month
- 3rd-party inspection confirms results from manufacturer
- Layer 0, 1, and 2 cones are the most complex components with the tightest tolerances. Layer 0 was chosen because it is the smallest of these

Drawing for layer 0 cone which we used as a Test Article for checking production at WorkShape in France.

CMM results for the test article. One OOT which we deemed acceptable. WorkShape authorized to continue.

Programme Sélection Actuelle	Nom Pièce 3577-J Workshape metro Piec	Date 2433Novembre 2020	Temp. Pièce	No de Plan * drawingno *	ZEIN
No Pièce incrémentiel 201123-Piece-1	N° rapport de contrôle: * vda_auditno *	Heure 16:36:51	Opérateur Master	Date de modification 23 Novembre 2020 16:36:35	
2.61 - Coupe A-A Real 2.620 No.4.8 0.005 Tol.1 - 0.005	57,15 10.3 - Coupe A-A Real 57.560 Mem 57.150 Tol.8 0.300 Tol.7 -0.300			0.035	
Ect 0.010 Exc	Bet 0.118 Hac			0.019	
*				166.79 - Coupe A-A Réel 166.785 Nem 166.785 Vel. # 0.625 Bet -0.005 Bee	
2				0.006	
1 9.	· *			0.000	
				-0.006	
12 81 - Course 4-4			_	-0013	
Réel 12.790 Nem 12.810 Tol.8 0.025 Tol.7 -0.025 Bot -0.020				0019	
y				-0.025	
₹×				-	
				20 m	<u>m</u>

	Da	PART NAM	E: MVTX-	1-S-00019 F	REV C	vc				14:59
	PC	REV NUME	ER: R2 SER NUMBER:			STATS			ATS COUNT : 1	
Current Temperatures: X=71.644 Y=71.2 Z=70.901 P=None Temperature Compensation is ON										
ITEM_1	MM	[夕] 0.1								
Feature	NOMINAL	MEAS	+TOL	-TOL	DEV	OUTTOL	BONUS			
CYL_A	0.000	0.059	0.100		0.059	0.000				
#	MM	ITEM_2 - PLN_B								
AX	NOMIN	AL MEAS	+TOL	2	TOL	DEV	OUTT	OL		
z	0.750	0.693	0.025	-	0.025	-0.057	0.032			
↔	MM	ITEM_3 - PLN_3 TO	PNT_TOP (YAX	IS)						
AX	NOMIN	AL MEAS	+TOL	2	TOL	DEV	OUTT	ÓL		
м	57.150	57.294	0.300	-	0.300	0.144	0.000			
ITEM_4	MM				ØØ	.15 A				
Feature	NOMINAL	MEAS	+TOL	-TOL	DEV	OUTTOL	BONUS			
CYL_C	0.000	0.050	0.150		0.050	0.000				
⊿	DEG	ITEM_5 - PLN_5 TC	XAXIS							
AX	NOMIN	AL MEAS	+TOL	2	TOL	DEV	OUTT	OL		
А	30.000	29.558	0.500	-	0.500	-0.442	0.000			
⊿	DEG	ITEM_6 - PLN_6 TO	XAXIS							
AX	NOMIN	AL MEAS	+TOL	-	TOL	DEV	OUTT	OL		
А	90.000	90.052	0.500	-	0.500	0.052	0.000			
⊿	DEG	ITEM_7 - PLN_7 TO	XAXIS							
AX	NOMIN/	AL MEAS	+TOL	2	TOL	DEV	OUTTOL			
A	150.000	0 150.368	0.500	-	0.500	0.368	0.000			
ITEM_8	MM	Ø Ø0.1 C								
Feature	NOMINAL	MEAS	+TOL	-TOL	DEV	OUTTOL	BONUS			
CYL_8	0.000	0.017	0.100		0.017	0.000				
ITEM_9	ММ				ØØ).1 A				
Feature	NOMINAL	MEAS	+TOL	-TOL	DEV	OUTTOL	BC	ONUS		
CYL_8	0.000	0.077	0.100		0.077	0.000				

4.1 Metrology

- 1. Staves being produced at CERN, electrical testing and pressure / flow / cooling testing done
- 2. Staves will be shipped to LBNL where they will be installed to CF end wheels
- 3. Stave position will be measured w.r.t. end wheels for future transfer to fiducials on CYSS
- 4. Assembled Half-detector (including CYSS) will be delivered by LBNL

Taken from ALICE ITS

LBNL facility for testing, assembly, metrology,

4.1 Metrology

Summary

- Changes to proven ITS design have been designed and analyzed
- Production on longest lead-time parts (composite structures) is underway
- We have examined critical test pieces (layer 0 carbon and layer 2 end wheels) and determined that they are satisfactory

2.2 Leveraged ITS Work

ITS Inner Barrel layer model

Bending test

Flexural stiffness Elx~0.3Nm² Flexural stiffness Ely~1.41Nm²

Torsion test

ITS Inner Barrel patch panel and strain relief model

Torsional stiffness GIp~0.33Nm²

MVTX Pre-Production Review

ITS vs. MVTX

MVTX Pre-Production Review

Nose Roller

