MVTX PRR Integration

Jason Bessuille (MIT)

15 Dec 2020

Overview

- 1. Interfaces
 - Interface to INTT
 - Interface to beampipe
 - Interface to iHCAL
 - Services
- 2. MVTX Support Structure
- 3. MVTX Installation
 - Hardware
 - Sequence of operations

1.1 Interface to INTT

- Minimum clearance to INTT is 4.3 mm once installed
 - This is much greater than our predicted deflection
 - Need to coordinate with INTT to ensure sufficient gap is maintained
- Access to MVTX during installation complicated by INTT electronics

1.3 Interface to Beampipe

- Small clearances to beampipe (on the order of 2 mm)
- Beampipe protection (nose roller)

1.2 Interface to iHCAL

Requirement		How Accomplished
1	Deflection less than 0.1 mm vertically	Design / analysis
2	Deflection of MVTX Service Barrel – X- Wing interface flange of less than 0.01 deg from vertical	Design / analysis, angular adjustment can compensate for deflection
3	Minimal magnetic material	Built primarily of 316 stainless steel. Welds will be annealed to $\mu \le 1.05$
4	Adjustment range of +/- 2 mm in x and y	Available through mounting hole bolt clearance
5	Adjustment range of +/- 2 mm in z	Accomplished with shims at mounting surface to inner HCAL
6	Must install around beampipe	Structure designed in two mirror- image halves, coupled together at main flange
7	Must mount to inner HCAL, not interfere with TPC and INTT supports	Mounts to inner HCAL face at +/- 30.9 deg from vertical. Concurrent design with INTT and TPC engineers to ensure no interference

We have a support design that satisfies these requirements

Support Structure

MVTX is mounted to the iHCAL through a structure known as the X-WING.

• The X-wing

- is made of stainless steel, approx. 25 kg per side (fairly simple to manufacture)
- will be split down the middle to allow installation around in-situ beam-pipe
- has lifting points on each half
- shims at mounting feet for angles
- has provisions for up to 10 fiducial reflector balls
- will be surveyed into position

4 ft

X-wing: FEA

X-wing: FEA

Installation

- The MVTX will be installed after all other detectors and services have been installed so space will be tight
- Care must be taken not to damage MVTX sensors in proximity to beampipe
- A linear rail table will need to be temporary installed on the work platform
- MVTX group is designing an insertion bracket to ride on these rails and guide MVTX into place
- We are working closely with BNL engineers to ensure there is room for everything.

Installation System - Carriage

Installation System: FEA

 Stress analysis of bracket (Sy = 572 MPa, stresses near bolts will be lower than reported due to simulation method)

Installation System

• FEA Study Showing Deflections

Maximum Sag one half: 8.1 mm

Maximum Sag two halves connected: 2.7 mm

Sag exceeds beampipe clearance Mostly due to deflection of the insertion bracket

→ Kinematic adjustment on carriages will be used to set flange in vertical plane so that actual deviation from nominal position equals the sag of the MVTX alone

Rail table installed on platform Cross slides installed

Insertion bracket assemblies installed

Left side MVTX connected to installation bracket*

Connection from Service Barrel flange to bracket using 8x M5 screws

STEP 3

Right side connected in same fashion

At this point the carriage pitch may be adjusted to correct for tip sag CARRENT R

Both Halves are slid inwards until the nose section clears the X-Wing flange bore

Both Halves are slid inwards until the nose section clears the X-Wing flange bore

Left Side nose section passed through X-Wing bore

Right side moved in, kept slightly aft of left side (2-3 cm)

Both halves completely closed, still offset 2-3 cm

STEP 7

Halves are aligned in Z

STEP

Full MVTX slid towards IP

STEP

Full MVTX slid towards IP

STEP

Full MVTX slid towards IP

STEP

STEP

STEP

STEP

Remove bolts connecting brackets to MVTX. Bracket's kinematic adjusters may be used to relax load on bracket.

Bracket pulled back enough to clear main interface bolts

12

STEP

Bracket pulled back enough to clear main interface bolts

12

STEP

STEP 12

STEP 12

Front plate and side support removed from installation bracket

Away<Display Stat

STEP

Survey

- MVTX is installed last, with beampipe and all detectors inplace.
 - TPC services will be installed; Unclear if INTT services will be installed before MVTX
- MVTX passes very close to beampipe: ~2 mm to aluminum section, 1.15 mm to beryllium (central) section
- MVTX installed using external insertion rails, moving parallel to beampipe. Mounted to external support (x-wing) and cantilevered into the IR.
- CMM / optical survey during installation will transfer position knowledge of sensors to fiducials on the MVTX outer shell
 - We would like to know the position of these fiducials to better than 50 μm in x and y, 1 mm in z.

Summary

Deflection field Shown

Maximum for displayed model using 1/8" tubes: 0.617 mm Maximum for similar model using 1/4" tubes: 0.508 mm

Baseline just (simplified) MVTX for this model: 0.326 mm Deflection due to support = 0.508 -0.326 =0.182 mm

Deflection of more accurate MVTX baseline: 0.186 +/-.022 mm Predicted total deflection at tip: 0.368 mm

