

sPHENIX MVTX Cost and Schedule Review Summary

Ming Liu, LANL

July 29-30, 2019

BNL

Presentation Summary

Associate Laboratory Director for Nuclear and Particle Physics

Berndt Muelle Building 510I P.O. Box 500I Upton, NY 11973-500I Phone 631 344-539 Fax 631 344-582I

nanaged by Brookhaven Science Associates for the U.S. Department of Energy

www hal gov

- 1. Overview of the MVTX's Place in sPHENIX- Ed
- 2. MVTX Overview Ming, #1-4
- 3. Cost & Schedule Dave, #1-4
- 4. MVTX in sPHENIX P6 and Risk Registry Irina, #2-4
- 5. MVTX mechanical design Walt, #1-3
- 6. MVTX Service Barrel and Integration Camelia, #1-3
- 7. MVTX Detector QA and Assembly Yuan, #1-3
- 8. MVTX Readout Jo, #1-3
- 9. R&D and Beam Test Results Cameron, #1,2
- 10. Summary Ming, #4

Cost and Schedule Review of the sPHENIX vertex detector upgrade, MVTX

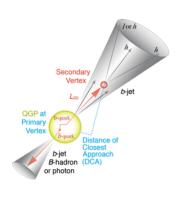
July 29-30, 2019

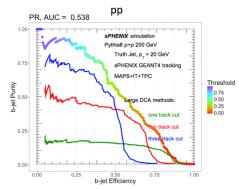
The purpose of this review is to assess the technical feasibility of the sPHENIX vertex detector upgrade, MVTX, within cost and schedule constraints, and to assess the risk the MVTX upgrade introduces to the overall sPHENIX program.

In carrying out this review, the review committee is requested to consider the following questions:

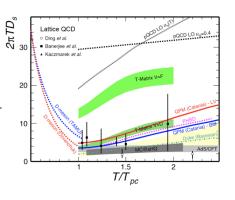
- 1) Are the costs of the project sufficiently well understood, and are all resources required to successfully complete the project fully identified?
- 2) Is the schedule of the project sufficiently well understood and matched to the plan for installation in FY22?
- 3) Are the project risks properly identified and appropriate mitigation strategies in place, including any risks to sPHENIX operations? Do the cost and schedule estimates include adequate contingency based on sound and reasonable risk analysis?
- 4) Is the Project Management Plan complete?

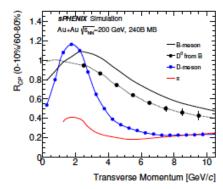
I very much appreciate your willingness to lend your time and expertise to this important process and look forward to receiving your assessment.


Rud hilm


Berndt Mueller

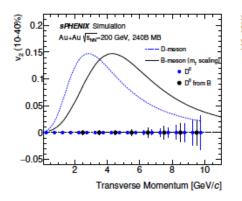
Associate Laboratory Director for Nuclear and Particle Physics

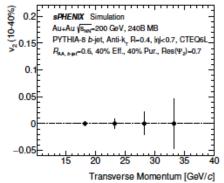

MVTX Enables the 3rd Science Pillar





From measurements to physics understandings




Open heavy flavor hadron & jet modification

Open heavy flavor hadron & jet flow

MVTX Performance Parameters: KPPs & UPPs

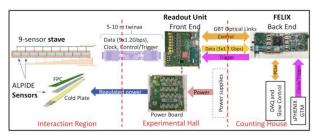
KPPs from MVTX PMP

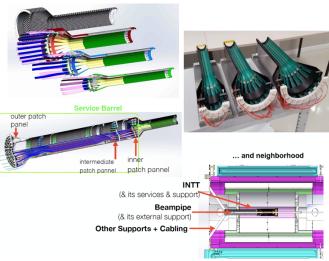
Table 2. sPHENIX MVTX System Key Performance Parameters (KPPs)

Pixels active	>80%
Hit efficiency	>90%
Radiation length per wedge	< .5 %
Detector hit resolution	< 25 μm
Noise hits/chip	< 0.01%
LVL1 latency	4 µs
LVL1 Multi-Event buffer depth	5 events
Read-out trigger rate	> 15 kHz

UPPs from MVTX PMP

Table 3. sPHENIX MVTX System Ultimate Performance Parameters (UPPs)

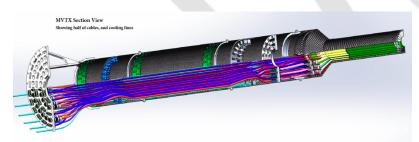

DCA resolution	<50um for charged hadrons (pions) at pT = 1GeV/c
Tracking efficiency	>60% for charged hadrons (pions) at pT = 1GeV/c in the 10% most central Au+Au collisions


Very Successful R&D

SPHENIX

- MVTX sensor/stave & readout integration
 - Full stave readout chain demonstrated with final electronics RU, PU, FELIX
 - Stave modified for better MVTX/INTT integration;
 MVTX-INTT space-conflict resolved
 - Long readout cables tested
 - Verify MVTX KPP
- MVTX mechanical design & system integration
 - Preliminary detector design completed, 3D mockup demonstrated
 - MVTX + INTT/sPHENIX integration design developed
 - Assembly and installation plan developed

Jo, Cameron, Walt, Camelia, Yuan et al.



MVTX Deliverables in PMP

Table 2 MVTX Deliverables

ITEM	Quantity	Spares
RU*	48	12
Felix Board	6	2
Staves*	48	36
1/2 Barrel Assembly	2	0
Power Supply	1	0
Service Barrel	1	0

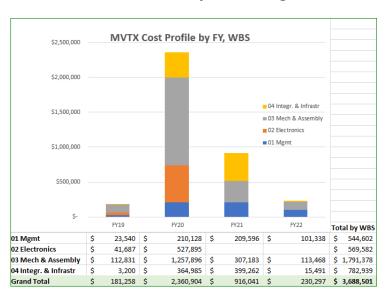
Detectors + Services

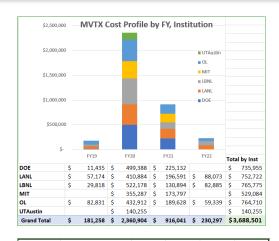
*: The staves and RUs are from BNL contribution, no cost to MVTX project.

Review Charge

In carrying out this review, the review committee is requested to consider the following questions:

- 1) Are the costs of the project sufficiently well understood, and are all resources required to successfully complete the project fully identified?
- 2) Is the schedule of the project sufficiently well understood and matched to the plan for installation in FY22?
- 3) Are the project risks properly identified and appropriate mitigation strategies in place, including any risks to sPHENIX operations? Do the cost and schedule estimates include adequate contingency based on sound and reasonable risk analysis?
- 4) Is the Project Management Plan complete?


1) Are the <u>costs of the project</u> sufficiently well understood, and are all <u>resources required</u> to successfully complete the project fully identified?



Yes.

All previous talks

- Based on R&D, quotes and experience
- M&S and labor cost profile in P6
 - Electrical system
 - Detector mechanical system
 - MVTX mechanical system integration

		FY19	FY20	FY21	FY22
LANL	MGR LANL	0.02	0.28	0.28	0.12
	PROF4 LANL	0.08	0.43	0.07	0.03
	SCI3 LANL	0.06	1.01	0.00	0.27
	TECH4 LANL	0.00	0.04	0.00	0.00
LBNL	CMMTECH4 LBNL	0.00	0.00	0.04	0.09
	ELENG3 LBNL	0.00	0.06	0.08	0.03
	ELTECH4 LBNL	0.07	0.22	0.15	0.02
	GRSTUD LBNL	0.00	0.22	0.74	0.34
	MECHENG3 LBNL	0.00	0.02	0.15	0.06
	MECHENG4 LBNL	0.02	0.67	0.01	0.03
	MECHTECH4 LBNL	0.02	0.68	0.04	0.05
	POSTD LBNL	0.17	0.41	1.04	0.66
	STAFFPHYS LBNL	0.02	0.37	0.49	0.32
MIT	PROF4 MIT	0.00	1.11	0.43	0.00
	SCI3 MIT	0.00	0.00	0.03	0.00
	TECH4 MIT	0.00	0.08	0.21	0.00
UTAustin	ElectEng UTAustin	0.00	0.23	0.00	0.00
	ElectTech UTAustin	0.00	0.41	0.00	0.00

2) Is the schedule of the project sufficiently well understood and matched to the plan for installation in FY22?

Yes.

See Dave and Irina's talks; and all technical presentations

- Based on R&D and experience
- Milestones defined in PMP
- Critical path identified

CY-2018	2019	2020	2021	2022	2023
	Stave & RU	-			
	production @	CERN			
	*	Construction			
Detect	or mechanics design	& production, global	interface to sPHENIX	•	
	Detector &	interface design review	inal		
		End Wheels	s	cooling & safety system @BNL	
	l į	CYSS	SB production	System @ DIVE	
		Service b global sy	arrel & stem design		
	-	Stave testing, half-ba	rrel assembly @LBNL	→	
	-	Stave Testing	Half Ba	—	dy for Installation
		FELIX production(7)	Half	Barrel #2	25 MVTX start
	I sPHE	NIX interface & global sup	port design		tallation
		ower system Cooling Cooling		detector m test @BNL Lab	
			Des installation consider	-ii ODA	"PD4-like"
			Pre-installation commis RU, FELIX, PS, cables et		Closeout 12/202

Table 4 Milestones and Key Tas	sks
Milestone	Date
Start Project	4 th Qtr FY2019
SamTec Cables Prod. Contract Awards	3rdQtr FY2020
Felix v2.0 Prod. Contract Awards	2 nd Qtr FY2020
All 84 Staves received	4 th Qtr FY2020
End Wheel Tooling Design	2 nd Qtr FY2020
CYSS Design	2ns Qtr FY2020
Service Barrel Design	3 rd Qtr FY2020
MVTX Final Design Review	4 th Qtr FY2020
Complete End Wheels	4 th Qtr FY2020
Complete CYSS	4 th Qtr FY2020
Complete SB	1 st Qtr FY2021
Procure Support Structures Contract Awards	1st Qtr FY2021
Half Barrels Assembled	1 st Qtr FY2022
MVTX ready for Installation in sPHENIX	2 nd Qtr FY2022
Installation Finished	4 th Qtr FY2022
Ready for Beam	1 st Qtr FY2023
Project Closeout	1 st Qtr FY2024

3) Are the project risks properly identified and appropriate mitigation strategies in place, including any risks to sPHENIX operations? Do the cost and schedule estimates include adequate contingency based on sound and reasonable risk analysis?

Yes.

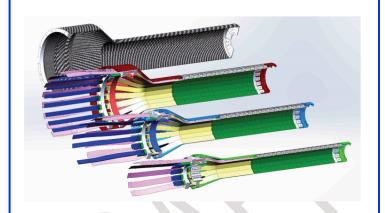
- MVTX risk register in sPHENIX
- Major risks identified and mitigation strategies developed

See Dave and Irina's talks; and all technical presentations

MVTX Risk Register in sPHENIX

		Risk I	dentification					mitigated						Risk Handling Plan (Mitigations)
Risk ID Number	RLS activity or next WRS	Owner	Risk Title	Schedule Impact	Techni cal Impact	Cost Impact Estimat		Cost Score (1- 4)		Technica I Score (1-4)	Overall Impact Score	EMV K\$	Overall Impact Score	Risk Handling Plan (Mitigations)
MVTX_001	3.1.5	M. Liu	Stave Delivery Delay	Low		0	2	0	2	0	1.33	0.00	Low	Participate in stave production to be aware of possible delays. Assembly schedule could be compressed with
MVTX_002	2.1	M. Liu	RU Delivery Delay	Negligible		0	2	0	1	0	0.67	0.00	Negligible	Large float in schedule before RUs are critical path
MVTX_003	2.2	M. Liu	FELIX delivery Delay	Negligible		10	2	1	1	0	1.33	1.00	Low	Large float in schedule before FELIX boards are critical path.
MVTX_004	2.3	M. Liu	Samtec Cable R&D	Negligible	Low	10	0	1	1	2	0.00	0.00	Retired	Early R&D, ITS already uses 32 AWG custom cable at 8m.
MVTX_005	2.3	M. Liu	Samtec Cable Delivery	Negligible		10	2	1	1	0	1.33	1.00	Low	Large float in schedule before cabling of assembled detector is critical path
MVTX_006	2.3	M. Liu	Custom Power Cable Unavailable	Low		20	3	1	2	0	3.00	6.00	Moderate	Early involvement in ITS cable production to maximize advance notice
MVTX_007	2.3	M. Liu	Power System Radiation	Low		20	3	1	2	0	3.00	3.00	Moderate	Purchase additional radiation hard power modules from CAEN. Already procured control unit is needed in this scenario. 'Harsh environment' tolerant crate already exists at LANL and can be used.
MVTX_008	2	M. Liu	lower yield in purchased electronics boards	Low		20	3	1	2	0	3.00	6.00	Moderate	Reserve contingency to cover possible additional boards, early procurement and testing to mitigate schedule impacts.
MVTX_009	3.2	M. Liu	Carbon Structure Cost	Low		20	3	1	2	0	3.00	6.00	Moderate	Producing low-cost prototypes from outside vendors to validate other options
MVTX_010	3.2.3	M. Liu	Carbon Structure Delivery Delay	Low		20	3	1	2	0	3.00	6.00	Moderate	Stay in contact with other vendors.
MVTX_011	3.2.2	M. Liu	Spiderwheel Design	Low		20	3	1	2	0	3.00	6.00	Moderate	Conical design is essentially complete but would be produced by outside vendors to stay on cost. Strut design would need further development
MVTX_012	3.2.2	M. Liu	Inner Support Material	Negligible		0	3	0	1	0	1.00	0.00	Negligible	Most parts of concern are planar and can be produced with CF if necessary. These elements are a small component of total CF cost.
MVTX_013	3	M. Liu	Half-Barrel Assembly	Moderate		20	2	1	3	0	2.67	2.00	Moderate	Personnel trained in ALICE ITS assembly to reduce risk. Practice assembly with dummy or sacrificial parts first.
MVTX_014	3.3	M. Liu	Installation	Moderate		10	2	1	3	0	2.67	1.00	Moderate	Practice (dry run) installation with dummy or sacrificial parts. Installation scheme designed with non-administrative device safety in mind. Significant number of spare staves can replace any damaged ones.
MVTX_015	4.4	M. Liu	Clam shell insertiion redesign	High		40	2	2	4	0	4.00	4.00	High	Developed alternate insertion schemes with OSI. Discuss with C-AD to get advance warning. Seek quotes for new beampipe.
MVTX_016	MVTX	M. Liu	Currency fluctuations	Negligible		20	3	1	1	0	2.00	3.00	Low	Reserve contingency to cover possible fluctuations
MVTX_017	3	M. Liu	Integration of slow controls, configuration and software/firmware into SPHENIX environment	Low		10	3	1	2	0	3.00	3.00	Moderate	Early efforts with prototypes of full chain of complete system to test full needed functionality to mitigate schedule concerns. a moderate increase in contingency to cover any additional needed hardware for integrate.
MVTX_018	3	M. Liu	Wirebonds not encapsulated	Low	Negligi ble	20	2	1	2	1	2.67	2.00	Moderate	Use triple bonds, dedicated transportation plates
MVTX_019	3	M. Liu	End Wheel Redesign	Low		200	2	3	2	0	3.33	20.00	High	Review current design, reserve contingency.
												70.00		

4) Is the Project Management Plan complete?



Yes.

Ming and Dave's talks

- PMP document completed
 - Project baseline
 - Physics
 - Functional requirements/KPP/UPP
 - Technical scope
 - · Cost breakdown
 - Schedule
 - Funding profile
 - Planned BNL funding
 - Baseline change control
 - Management structure
 - Organization and team
 - Management responsibilities
 - Participating institutions
 - Project management and oversight
 - Risk management
 - · Project reporting
 - Engineering and technology readiness
 - · Quality assurance and configuration/document management
 - Operation readiness plan
 - ESSH plans and fabrication
 - Project closeout
- Project fully integrated into sPHENIX P6
 - Costs, schedules and risk register

Ready to deliver MVTX on schedule and on budget!

Management Plan

for

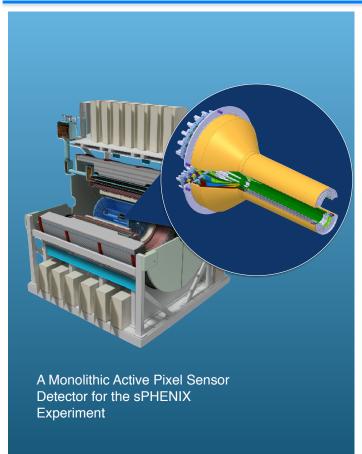
A Monolithic-Active-Pixel-Sensor-based Vertex Detector (MVTX) Upgrade for the sPHENIX Experiment

at the

Brookhaven National Laboratory

July 26, 2019 (V7)

Summary



- MVTX is ready to receive fund for the project
 - Electrical system is ready for production
 - Preliminary detector mechanical design completed
 - Preliminary sPHENIX mechanical system integration developed
- LANL LDRD support critical for early key R&D
- Costs, schedules and risk register integrated into sPHENIX P6, RLS aligned with sPHENIX
- Project management plan developed, TPC \$4.6M, ready for installation on time for Day-1 physics

We are ready to start the project!

Yes, we are ready!

Back Up

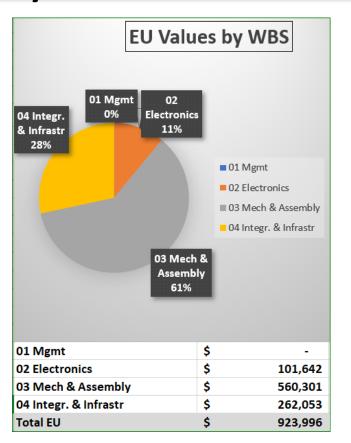
MVTX WBS

WBS Number	WBS Name
3.02	MVTX
3.02.00	External Milestones in WBS 3x from WBS 1x, 2x
3.02.01	MVTX Project Management
3.02.02	MVTX Electronics
3.02.02.01	Readout Unit (RU)
3.02.02.02	FELIX 2.0
3.02.02.03	MAPS Power System
3.02.02.03.01	Power Boards
3.02.02.03.02	Power Supplies
3.02.03	MVTX Mechanics and Detector Assembly
3.02.03.01	Staves
3.02.03.01.01	Production
3.02.03.01.02	Stave Assembly Tooling
3.02.03.01.03	Metrology
3.02.03.01.04	Shipping and Storage Containers
3.02.03.01.05	Shipping the Staves from CERN to LBNL
3.02.03.02	Carbon Structures
3.02.03.02.01	Mechanics Detector Design
3.02.03.02.02	End Wheels
3.02.03.02.03	Mechanics Fabrication
3.02.03.02.03.01	Cylindrical Support Structure (CYSS)
3.02.03.02.03.02	Service Barrel (SB)
3.02.03.02.04	MVTX Final Design Review
3.02.03.03	Barrel Assembly
3.02.03.03.01	Assembly and Testing
3.02.03.03.01.01	Layer Assembly and Test
3.02.03.03.01.02	Half Barrel #1 Assembly and Test
3.02.03.03.01.03	Half Barrel #2 Assembly and Test
3.02.04	MVTX Integration and Infrastructure
3.02.04.01	Cooling System
3.02.04.02	Safety Systems
3.02.04.03	Service Barrel Support Frame & MVTX Interface to sPHENIX
3.02.04.04	Half detector Assembly Readout and Cooling Test at BNL

July 29-30, 2019

Critical Path

	PHENIX WBS 3.02 Preliminary Baseline [MVTX]			FX Critical Pat	
tivity ID	Activity Name	Original Start	Finish	Burdened AY\$ -Total	FY2019 FY2020 FY2021 FY2022 FY2023 FY19 FY20 FY21 FY22 FY23 FY
100500	Milestone Start MVTX	0.00 03-Sep-19*		0	◆ Milestone Start MVTX
110800	Develop MVTX inner tracker mechanical model	100.00 03-Sep-19	29-Jan-20	200,199	29-Jan-20
113000	CYSS Tooling Design	20.00 30-Jan-20	27-Feb-20	23,446	= 27-Feb-20
113200	CYSS Tooling Material - M&S	15.00 28-Feb-20	19-Mar-20	38,250	■ 19-Mar-20
113300	CYSS Tooling Iteration - Labor	15.00 20-Mar-20	09-Apr-20	0	■ 09-Apr-20
113301	CYSS Tooling Iteration - M&S	15.00 20-Mar-20	09-Apr-20	38,250	09-Apr-20
113900	Review SB Design-Fabrication Compatibility	20.00 10-Apr-20	07-May-20	12,505	■ 07-May-20
114000	Hold SB Review (PRR)	10.00 08-May-20	21-May-20	12,644	■ 21-May-20
114100	SB Tooling - Labor	25.00 22-May-20	26-Jun-20	49,950	■ 26-Jun-20
114101			26-Jun-20 26-Jun-20	51,000	= 26-Jun-20
	SB Tooling - M&S	25.00 22-May-20		,	1 06-Jul-20
14700	MVTX Design Review LBNL - M&S	5.00 29-Jun-20	06-Jul-20	6,375	1 06-Jul-20 1 06-Jul-20
14800	MVTX Design Review LBNL - Labor	5.00 29-Jun-20	06-Jul-20	1,954	l ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
14801	MVTX Design Review LANL - Labor	5.00 07-Jul-20	13-Jul-20	5,034	■ 13-Jul-20
14810	MVTX Design Review LANL - M&S	5.00 07-Jul-20	13-Jul-20	6,375	■ 13-Jul-20
14900	Incorporate MVTX Review Comments LBNL	5.00 14-Jul-20	20-Jul-20	8,792	■ 20-Jul-20
114910	Incorporate MVTX Review Comments LANL	5.00 21-Jul-20	27-Jul-20	11,327	I 27-Jul-20
115000	Complete Final MVTX Design LBNL	1.00 28-Jul-20	28-Jul-20	977	l 28-Jul-20
15010	Complete Final MVTX Design LANL	1.00 28-Jul-20	28-Jul-20	1,259	! 28-Jul-20
08400	Stave Assembly Tooling - Design	20.00 29-Jul-20	25-Aug-20	13,701	= 25-Aug-20
08700	Stave Assembly Tooling - Final Jig Design	40.00 26-Aug-20	22-Oct-20	27,711	22-Oct-20
08800	Stave Assembly Tooling - Procure Assembly Fixtures and Tooling - M&S	60.00 23-Oct-20	22-Jan-21	51,840	22-Jan-21
08900	Stave Assembly Tooling - Procure Assembly Fixtures and Tooling - Labor	60.00 23-Oct-20	22-Jan-21	4,234	22-Jan-21
115600	Test Installation of Staves onto Layer End-Wheels	20.00 25-Jan-21	22-Feb-21	7,208	■ 22-Feb-21
115700	Hold Half-Detector Assembly Review (PRR)	5.00 23-Feb-21	01-Mar-21	2,729	■ 91-Mar-21
15800	Install Staves Onto Layer End-Wheels To Form Layers - M&S	70.00 02-Mar-21	08-Jun-21	3,589	08-Jun-21
115900	Install Staves Onto Layer End-Wheels To Form Layers - Labor	70.00 02-Mar-21	08-Jun-21	34,303	08-Jun-21
16000	Test and Rework Lavers After Assembly - M&S	25.00 09-Jun-21	14-Jul-21	3,350	■ 14-Jul-21
116100	Test and Rework Layers After Assembly - Maco	25.00 09-Jun-21	14-Jul-21	14.565	■ 14-Jul-21
116200	Perform Half-Detector Metrology On Layers	12.00 15-Jul-21	30-Jul-21	11,234	■ 30-Jul-21
				11,234	02-Aug-21
16300	Milestone: Complete Layers	0.00 02-Aug-21	02-Aug-21	40.00	= 27-Aug-21
16500	Assemble Layers and CYSS into Half Barrel #1 - Labor	20.00 02-Aug-21	27-Aug-21	13,894	■ 27-Aug-21 ■ 04-Oct-21
16700	Test and Rework Half Barrel #1 - Labor	25.00 30-Aug-21	04-Oct-21	18,840	
16800	Perform Half Barrel #1 Metrology On Final Assembly - Labor	10.00 05-Oct-21	19-Oct-21	8,181	■ 19-Oct-21
116900	Validation Of Final Assembly - M&S	15.00 20-Oct-21	09-Nov-21	3,417	■ 09-Nov-21
17000	Validation Of Final Assembly - Labor	15.00 20-Oct-21	09-Nov-21	14,093	■ 09-Nov-21
17100	Pack/Ship Final Assemblies of Half Barrel #1 To BNL - M&S	15.00 10-Nov-21	03-Dec-21	5,077	■ 03-Dec-21
17200	Pack/Ship Final Assemblies of Half Barrel #1 To BNL - Labor	15.00 10-Nov-21	03-Dec-21	4,990	■ 03-Dec-21
23500	Test Half Barrel #1	15.00 06-Dec-21	27-Dec-21	6,219	■ 27-Dejc-21
123600	Test Half Barrel #2	15.00 28-Dec-21	19-Jan-22	6,219	■ 19-jan-22
123700	MVTX Full System Test at BNL	40.00 20-Jan-22	17-Mar-22	0	=== 17-Mar-22
101400	[EXTERNAL] MVTX Assembly Complete and Ready for Installation	0.00	17-Mar-22*	0	◆ [EXTERNAL] MVTX Assembly Complete an
123800	Completed: System Test at BNL	0.00	17-Mar-22	0	Completed: System Test at BNL
	[EXTERNAL] SPHENIX CD-4	0.00	29-Dec-22*	0	♦ [EXTERNAL] SPHENIX


July 29-30, 20

Estimate Uncertainty

EU tables are identical to those used by sPHENIX for establishing baseline cost

Labor
L1 - Actual - 0%
L2 - Level of Effort Tasks - 5%
L3 - Advanced - 10%
L4 - Preliminary - 25%
L5 - Conceptual - 40%
L6 - Pre-conceptual - 60%
L7 - Rough Estimate - 80%
L8 - Beyond state of the art - 100%
M&S
M1 - Existing Purchase Order (Actual) - 0%
WIT Existing Furchase Order (Actual) 070
M2 - Travel, supplies, software - 5%
M2 - Travel, supplies, software - 5%
M2 - Travel, supplies, software - 5% M3 - Advanced, Quote or Catalog Price - 10%
M2 - Travel, supplies, software - 5% M3 - Advanced, Quote or Catalog Price - 10% M4 - Preliminary Engineering Judgment - 25%
M2 - Travel, supplies, software - 5% M3 - Advanced, Quote or Catalog Price - 10% M4 - Preliminary Engineering Judgment - 25% M5 - Conceptual Design - 40%

Estimate Uncertainty by WBS

WBS Name	Bu	dgeted Cost	EL	J	EU Percent
MVTX Project Management	\$	544,602	\$	-	0%
Readout Unit (RU)	\$	213,002	\$	27,867	13%
FELIX 2.0	\$	110,571	\$	27,260	25%
Power Boards	\$	144,329	\$	33,705	23%
Power Supplies	\$	101,680	\$	12,809	13%
Production	\$	72,924	\$	2,318	3%
Stave Assembly Tooling	\$	97,486	\$	38,994	40%
Metrology	\$	75,834	\$	27,480	36%
Shipping and Storage Containers	\$	63,926	\$	6,393	10%
Shipping the Staves from CERN to LBNL	\$	30,600	\$	3,060	10%
Mechanics Detector Design	\$	200,199	\$	80,080	40%
End Wheels	\$	310,865	\$	123,465	40%
Mechanics Fabrication	\$	90,160	\$	-	0%
Cylindrical Support Structure (CYSS)	\$	200,808	\$	80,323	40%
Service Barrel (SB)	\$	266,239	\$	97,693	37%
MVTX Final Design Review	\$	42,093	\$	7,213	17%
Assembly and Testing	\$	21,565	\$	5,391	25%
Layer Assembly and Test	\$	76,978	\$	29,836	39%
Half Barrel #1 Assembly and Test	\$	75,436	\$	26,038	35%
Half Barrel #2 Assembly and Test	\$	75,859	\$	26,207	35%
MVTX Integration and Infrastructure	\$	58,084	\$	5,808	10%
Cooling System	\$	172,233	\$	54,721	32%
Safety Systems	\$	151,940	\$	37,743	25%
Service Barrel Support Frame & MVTX Interface to sPHENIX	\$	431,797	\$	163,661	38%
Half detector Assembly Readout and Cooling Test at BNL	\$	59,290	\$	5,929	10%
TOTAL	\$	3,688,501	\$	923,996	25%

Risk Register

Risk Identification				Primary Risk (Unmitigated Risk Assessment)										Risk Handling Plan (Mitigations)
Risk ID Number	RLS activity or next WRS	Owner	Risk Title	Schedule Impact	Techni cal Impact	Cost Impact Estimat e (\$K)	Probab ility Score	Cost Score (1- 4)		Technica I Score (1-4)	Overall Impact Score	EMV K\$	Overall Impact Score	Risk Handling Plan (Mitigations)
MVTX_001	3.1.5	M. Liu	Stave Delivery Delay	Low		0	2	0	2	0	1.33	0.00	Low	Participate in stave production to be aware of possible delays. Assembly schedule could be compressed with
MVTX_002	2.1	M. Liu	RU Delivery Delay	Negligible		0	2	0	1	0	0.67	0.00	Negligible	Large float in schedule before RUs are critical path
MVTX_003	2.2	M. Liu	FELIX delivery Delay	Negligible		10	2	1	1	0	1.33	1.00	Low	Large float in schedule before FELIX boards are critical path.
MVTX_004	2.3	M. Liu	Samtec Cable R&D	Negligible	Low	10	0	1	1	2	0.00	0.00	Retired	Early R&D, ITS already uses 32 AWG custom cable at 8m.
MVTX_005	2.3	M. Liu	Samtec Cable Delivery	Negligible		10	2	1	1	0	1.33	1.00	Low	Large float in schedule before cabling of assembled detector is critical path
MVTX_006	2.3	M. Liu	Custom Power Cable Unavailable	Low		20	3	1	2	0	3.00	6.00	Moderate	Early involvement in ITS cable production to maximize advance notice
MVTX_007	2.3	M. Liu	Power System Radiation	Low		20	3	1	2	0	3.00	3.00	Moderate	Purchase additional radiation hard power modules from CAEN. Already procured control unit is needed in this scenario. 'Harsh environment' tolerant crate already exists at LANL and can be used.
MVTX_008	2	M. Liu	lower yield in purchased electronics boards	Low		20	3	1	2	0	3.00	6.00	Moderate	Reserve contingency to cover possible additional boards, early procurement and testing to mitigate schedule impacts.
MVTX_009	3.2	M. Liu	Carbon Structure Cost	Low		20	3	1	2	0	3.00	6.00	Moderate	Producing low-cost prototypes from outside vendors to validate other options
MVTX_010	3.2.3	M. Liu	Carbon Structure Delivery Delay	Low		20	3	1	2	0	3.00	6.00	Moderate	Stay in contact with other vendors.
MVTX_011	3.2.2	M. Liu	Spiderwheel Design	Low		20	3	1	2	0	3.00	6.00	Moderate	Conical design is essentially complete but would be produced by outside vendors to stay on cost. Strut design would need further development
MVTX_012	3.2.2	M. Liu	Inner Support Material	Negligible		0	3	0	1	0	1.00	0.00	Negligible	Most parts of concern are planar and can be produced with CF if necessary. These elements are a small component of total CF cost.
MVTX_013	3	M. Liu	Half-Barrel Assembly	Moderate		20	2	1	3	0	2.67	2.00	Moderate	Personnel trained in ALICE ITS assembly to reduce risk. Practice assembly with dummy or sacrificial parts first.
MVTX_014	3.3	M. Liu	Installation	Moderate		10	2	1	3	0	2.67	1.00	Moderate	Practice (dry run) installation with dummy or sacrificial parts. Installation scheme designed with non-administrative device safety in mind. Significant number of spare staves can replace any damaged ones.
MVTX_015	4.4	M. Liu	Clam shell insertiion redesign	High		40	2	2	4	0	4.00	4.00	High	Developed alternate insertion schemes with OSI. Discuss with C-AD to get advance warning. Seek quotes for new beampipe.
MVTX_016	MVTX	M. Liu	Currency fluctuations	Negligible		20	3	1	1	0	2.00	3.00	Low	Reserve contingency to cover possible fluctuations
MVTX_017	3	M. Liu	Integration of slow controls, configuration and software/firmware into SPHENIX environment	Low		10	3	1	2	0	3.00	3.00	Moderate	Early efforts with prototypes of full chain of complete system to test full needed functionality to mitigate schedule concerns, a moderate increase in contingency to cover any additional needed hardware for integrate.
MVTX_018	3	M. Liu	Wirebonds not encapsulated	Low	Negligi ble	20	2	1	2	1	2.67	2.00	Moderate	Use triple bonds, dedicated transportation plates
MVTX_019	3	M. Liu	End Wheel Redesign	Low		200	2	3	2	0	3.33	20.00	High	Review current design, reserve contingency.
					•							70.00		