

sPHENIX MVTX Cost & Schedule Review

MVTX Cost and Schedule

Dave Lee/Ming Liu, LANL

July 29-30, 2019

BNL

Scope of the MVTX Project – WBS 3.02

- Mechanical system (3.02.03, 3.02.04)
 - MVTX detector mechanical structures

Walt's talk

- Design & simulations, MIT/LANL
- End Wheels
- Cylindrical support structure
- Service barrels

Camelia's talk

- Mechanical system integration
 - Service barrel support & interface to sPHENIX
 - Installation tooling etc., BNL/LANL/MIT/LBNL
 - Adopt ALICE cooling plant design

Yuan's talk

- Detector assembly
 - Stave QA & detector assembly @LBNL

Electronics (3.02.02)

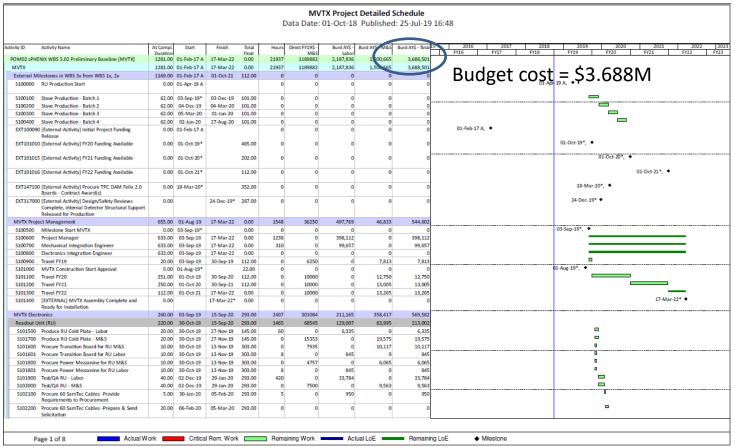
Jo's talk

- Readout Integration
 - RU QA & assembly @UT-A
 - Backend: ATLAS FELIX
 - FELIX boards @LANL/BNL
 - Frontend RU services: daughter cards, transition boards, cables etc.
- Ancillary systems "adopt" ALICE ITS system
 - Power, slow control & monitoring etc.

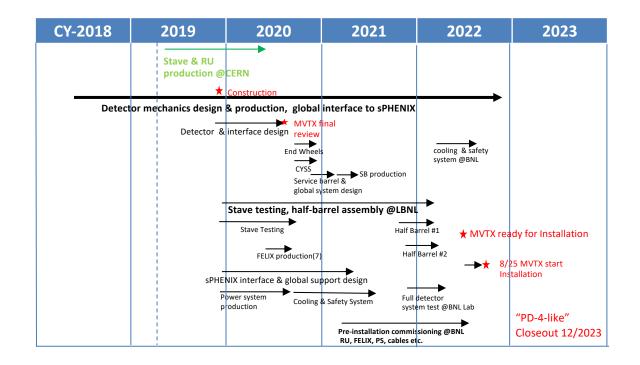
BNL provides Staves & RUs, w/o cost to MVTX project:

- 84 ALICE/ITS-IB (modified) staves from CERN; 48+spares(2-inner layers+10%)
- 60 ALICE/ITS-RU from CERN 48+spares(12, 25%)

Early R&D by LANL LDRD \$5M, FY17-19


July 29-30, 2019 sPHENIX Director's Review

MVTX C & S - Assumptions


- Fully Integrated into the sPHENIX schedule (P6)
- Self contained project, funding from BNL
- Up-to-date Institutional resource hourly rates, fully burdened
- Implement Risk Based Contingency
- Schedule smoothed, ~6 months float in P6 prior to sPHENIX installation
- Electronics ready for production on start of project to the successful LDRD effort, cost based on as built experience, FELIX and RU service boards, power system etc.
- Linkages to Stave and RU in the schedule

MVTX in sPHENIX P6 (fully Burd. & Esca.)

Simplified MVTX Schedule

Milestones

Milestone	Date
Start Construction	4 th Qtr FY 2019
MVTX Final Design Review	3 rd Qtr FY 2020
Half Barrels Assembled	1st Qtr FY 2022
Installation Finished	4 th Qtr FY 2022
Ready for Beam	1st Qtr FY 2023

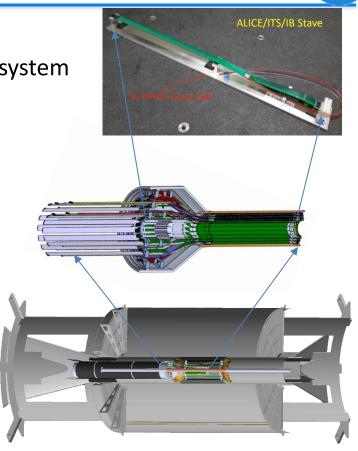
Lower Level Milestones

Management		
	Project Start	Sept 3, 2019
Electronics		
	Procure Samtec Cables	Feb 5, 2020
	Procure Transition Board	Nov 13, 2019
	Procure Power Mezzanine for RU	Nov 13, 2019
	Procure FELIX units(7)	Apr 14,2020
	Procure Power Boards	Feb 12, 2020
	Fab Cooling plates	Sep 16, 2019
	Fab breakout boards	Sep 30,2019
	Procure Power Distributioin	Sep 30, 2019
	Ship Power System to BNL	Apr 23, 2020
	Procure CAEN Power Supplies	April 20 2020

Lower Level Milestones

MVTX Mechanics and Detector Assembly			
	Stave Assembly Tooling	Jan 22, 2020	
	Metrology design and produce	Dec 30, 2020	
	Ship stave container to CERN	Sep 30, 2019	
	Ship first batch staves to LBNL	Dec 12, 2019	
	Ship last batch staves to LBNL	Sep 3, 2020	
	End Wheels production and test	Aug 17, 2020	
	CYSS Production and test	Sep 1, 2020	
	Production and test SB	Oct 7, 2020	
	Test and rework staves batch 1	Apr 9, 2020	
	Test and rework staves batch 4	Sep 29, 2020	
	Hold half detector Assembly review	Mar 1, 2021	
	Perform half detector metrology on layers	Jul 30, 2021	
	Install staves onto end wheels	Jun 8, 2021	
	Assemble layers and CYSS into half barrel 1,2	Aug 27, 2021, Sep 23, 2021	
	Perform half barrel 1,2 metrology	Oct 5 , 2021 , Nov 3, 2021	

Lower Level Milestones



MVTX Integration and Infrastructure		
	Design cooling system	Aug 25,2020
	Procure cooling system	Mar 1, 2021
	Ship to BNL	Mar 8, 2021
	Review Sensors and Interlocks with BNL ES&H	Oct 15, 2020
	Design Electronics Safety System	Nov 13, 2020
	Tet safety system at BNL	Apr 12, 2021
	Design interface to sPHENIX	June 22, 2020
	Design insertion system	Oct 7, 2020
	Test half barrel 1 at BNL	Dec 27, 2021
	Test half barrel 2 at BNL	Jan 19, 2022
	MVTX Full system test at BNL	Mar 29, 2022

Schedule Drivers

- Budget availability
 - Final engineering design of the mechanical system
 - Production of support structures
- Mechanical structures
 - Detector and interface system design
 - Carbon structure fabrication
- Detector assembly and test
 - Assembly jigs design and fabrication
 - Detector assembly & QA
 - Metrology
- Final installation in IR
 - Currently, last detector to be installed

High Level Costs

WBS	Level 2 WBS Description	Burdened AY\$ labor	Burdened AY\$ M&S	Burdened AY\$ Total
3.02.01	MVTX Project Management	\$498.8k	\$46.8k	\$544.6k
3.02.02	MVTX Electronics	\$211.2k	\$358.4k	\$569.6k
3.02.03	MVTX Mechanics and Detector Assembly	\$1241.6k	\$667.0k	\$1908.6k
3.02.04	MVTX Integration and Installation	\$456.8k	\$416.5k	\$873.3k
	Total	\$2187.8k	\$1500.6k	\$3688.5k

Mechanical design and fabrication

- CYSS
- End wheels
- Service barrel
- Global interface

Electronics

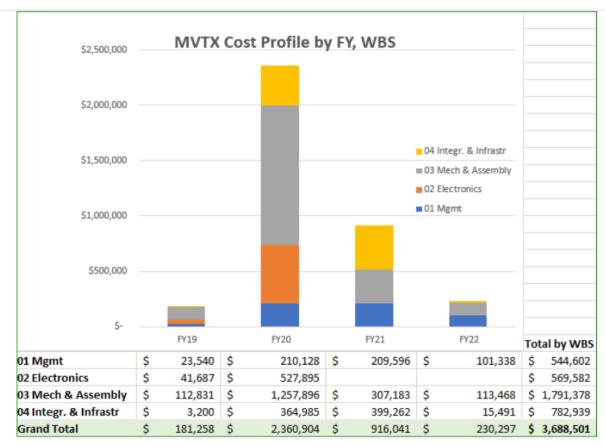
- Readout Unit
- Felix
- Maps Power System

Integration and Infrastructure

- Cooling System
- Safety System
- Service Barrel Support
- Assembly and cooling tests

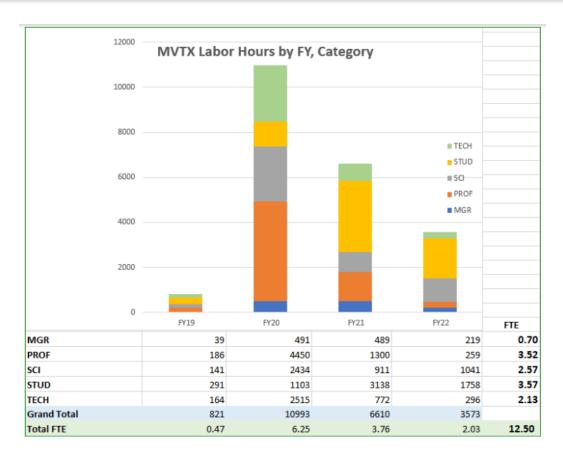
Basis of Estimate & Resource-Loaded Schedules PHE (SE)

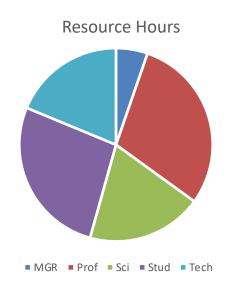
Electronics: production


- FELIX: ATLAS/sPHENIX production, LANL/LDRD
- RU services, cables: ALICE/ITS production, LANL/LDRD
- Power boards: ALICE/ITS production , LANL/LDRD
- CAEN bulk PS: Quotes from CAEN, ALICE/ITS production, LANL/LDRD

Mechanics & Integration: design and production

- CYSS, End wheels, Service barrel: ALICE/ITS Engineers
- Integration: Recent experience at RHIC, HFT/STAR, FVTX/PHENIX


Cost Profile



Resource Hours

Major Cost Items

WBS	Task Name	Cost (K)
03.02.02	End Wheels (EW)	\$311
03.02.03.01	Cylindrical Structure(CYSS)	\$201
03.02.03.02	Service Barrel (SB)	\$266
02.01	RU Services	\$213
02.02	FELIX	\$111
02.03	Power System (PS)	\$246

Carbon Structures

Example of low contingency items

	WBS	Cost (K)	Contingency	Basis
RU Services	03.02.01 Line 31	\$213	25%	As Built*
FELIX	03.02.02 Line 51	\$111	25%	As Built*
Power Board	03.02.03.01 Line 70	\$144	25%	As Built*
Power Supply	03.02.03.02 Line 90	\$102	25%	CAEN quote

• "As Built" means item is a vendor quote for production unit

Carbon Structures

Examples of high contingency

	WBS	Cost (K)	Contingency	Basis
End Wheels	03.02.02 Line 143	\$311	40%	Previous experience
Cylindrical Structure	03.02.03.01 Line 158	\$201	40%	Previous experience
Service Barrel	03.02.03.02 Line 169	\$266	40%	Previous experience

Status and Highlights

- MVTX integrated into P6 (2/2019)
 - TPC \$4.6 M
- Latest Cost & Schedule update following MVTX workshop at LBNL in 3/2019
 - Carbon structures
 - Design
 - Production
 - Schedule
 - Power system
 - Contingency
 - Flectronics
 - Mechanics design
 - Mechanics fabrication
 - Rebalance work load among collaborators
 - LANL, MIT, LBNL, UT-A, BNL et al
- MVTX TPC updated

MVTX Workshop @LBNL, 2/28-3/2,2019 Mechanical System Discussion Session:

- Discussed and updated major carbon structures' design & production cost & schedule, risks etc.
- LANL, MIT, BNL and LBNL engineers and physicists

Issues and Concerns

- Budget availability
 - Final mechanical system design work, at MIT, LANL and LBNL
 - Early R&D required to reduce the high production contingency
- Carbon structure production cost & schedule
 - LBNL busy schedule for carbon lab
 - Exploring other companies in Italy, France, Other USA vendors ...
 - High contingency in design and production cost ~40%
- Global mechanical system integration
 - MVTX design has good progress but not final
 - High contingency in design and production, ~ 40%

Summary

- TPC in P6, \$4.6 M, w/ burden and escalation and contingency
- About 6 months float in schedule
- Implemented Risk Based Contingency
- Plan to update P6 after this review
- Mechanical engineering design in progress
 - Need budget now for the final engineering design work
- Collaboration institutions ready to receive the project fund

backup

