MVTX Mechanical Design

MIT

Ross Corliss April 10, 2019

L3 Components

- Mechanical Support Structures
- Installation
- Cooling System and Infrastructure

SPH

MVTX Mechanics, Integration, Infrastructure, BNL Director's Review

L3 Collaborators (dependencies)

- Mechanical Support Structures (MIT, LANL)
- Installation (MIT, LANL, with RIKEN, BNL)
- RIKEN, BNL)

Cooling System and Infrastructure (MIT, LANL, with

MVTX Mechanics, Integration, Infrastructure, BNL Director's Review

З

Mechanical Support Overview

- Carbon fiber cantilevers detector (~few kg)
- Adapt from ITS for sPHENIX envelope

MVTX Mechanics, Integration, Infrastructure, BNL Director's Review

Inner Support Elements

Service Barrel

- cylinder past first flange
- intermediate patch panels
- ribs and flanges

- thin rings
- cylinders
- patch panels

SPHE

Cylindrical Structural Shell (CYSS) • outermost cone and cylinders

 layer supports • pass-throughs

Adapting from ITS

NEARESPICUNI OP-

- ITS stave layout modified for sPHENIX beampipe AI and Be
- ALICE Be beampipe radius 19.0mm compared to sPHENIX 20.76mm
- Layer 0 Rmin 22.38mm -> 24.58mm
- Maintains hermetic coverage with same staves per layer

SPHE

MVTX Mechanics, Integration, Infrastructure, BNL Director's Review

Adapting from ITS

- Beampipe slightly wider than ALICE - TPC envelope narrower/shorter than ALICE - INTT envelope longer than staves

MVTX Mechanics, Integration, Infrastructure, BNL Director's Review

Adapting from ITS

Conical section and OD modified for compatibility with INTT Intermediate conical sections removed to simplify construction

- Large and small diameter CF halfcylinders connected by conical section
- Upstream flange mounts to Service Barrel
- Downstream plate to secure staves

SPHE

MVTX Mechanics, Integration, Infrastructure, BNL Director's Review

Endwheels

- Upstream CF halfcylinder mounts to Spider Wheel
- Downstream CF ring mounts to endplate
- Blocks with 1mm ruby spheres precisely position staves
- Outer layer staves mount to CYSS directly

SPHE

Spiderwheel Detail

- Aluminum frames support endwheels
- Replace nested conic segments in ITS design (easier to fabricate)
- Mount to conical section of CYSS
- Radial elements give room for cables and hoses to fan out between wheels

sPHE

Patch Panels

SPHE

- ~
- 3D-printed structure to transition signal FPC to Firefly cable
- Narrower than ITS to accommodate INTT
- Power FPCs and cooling lines pass through to Service Barrel

Service Barrel

- Aluminum stiffening ribs cover full phi (with insulating spacers)
- Gap in CF half-cylinders allows vertical beampipe supports to coexist with the SB

April 10, 2019

MVTX Mechanics, Integration, Infrastructure, BNL Director's Review

Outer Support Structure

- 'X wing' provides rigid structure to install and support Service Barrel
- Mounts to HCal support
- Iteration with OSI, structural analysis ongoing

sPHE

 Current beampipe flange requires assembly/clamshell within the TPC bore

SPHEN

1				
·				
 				
		2 		
	de.			
	1 9 0			
	den			
	de			
· · · · · ·			· · · · · ·	

 Symmetric extension of flange by 1m allows MVTX to clamshell outside of TPC bore before insertion

SPHEN

April 10, 2019

SPHENIX

 Supports at new flange and at TPC wagonwheel control sag in the extended pipe

SPHEN

Installation Scheme

Preliminary insertion scheme with modified beampipe developed with INTT

MVTX Mechanics, Integration, Infrastructure, BNL Director's Review

SPHEN

Cabling

SPHEN

Cooling

- reduced.
- >1 gal/hr through each stave, < 5W
- Lines grouped together by half-barrel
- Low flow dry air used for humidity control

April 10, 2019

SPHE

MVTX Mechanics, Integration, Infrastructure, BNL Director's Review

 ITS custom power and controls cable

• Firefly TwinAx data cable

Including air+water, total cross section ~7 sq. in.

April 10, 2019

MVTX Mechanics, Integration, Infrastructure, BNL Director's Review

SPHE

Analog Power, OD 1.55m,sheath .4 mm thick, 2X

Digital Power, OD 2.35 mm, sheath . 4 mm thick, 2X

OD 8.6mm, sheath 1.0mm thick A shield will be incorporated

Grounds, bias, slow controls OD 1.45 mm, sheath .4mm thick, 6X

Racks

SPHENIX

 Estimated cable run from MVTX to 2E1 (testing 10m cables)

Status and Highlights

- Mechanical Support Structures
 - INTT interferences resolved and confirmed with physical model

 - FEA structural analysis
 - Pursuing other CF production options with industry
- Installation
 - First-pass plan developed with INTT
 - Continuing to develop in parallel with mechanical supports
- Cooling System and Cabling
 - ITS cooling plant design in-hand, redesigning for MVTX cooling load
 - prototype developed at LANL

- Design updated with feedback from ALICE, LBNL, continuing to revise and detail

MVTX Mechanics, Integration, Infrastructure, BNL Director's Review

Schedule Drivers

- Stave Assembly Tooling (3.02.3.02.03.01.02)
 Inner mechanical design must be final before procuring
 Must be available for stave assembly
- Stave Support Frame & MVTX Integration (3.02.3.02.04.03)
 Iterate with OSI/INTT engineers for compatibility
- Cooling System (3.02.3.02.04.01)
 Lead time for vacuum vessel/pumps
- Generally: Manpower

Cost Drivers

- Mechanical Detector Design (3.02.3.02.03.02.01)
 Engineer/Designer time \$168k
- Stave Support Frame & MVTX Integration (3.02.3.02.04.03)
 -Engineer/Designer time \$178k
 -Procurement \$96k
- Cooling System (3.02.3.02.04.01)
 Engineer/Technician time \$58k
 Procurement \$77k

Issues and Concerns

- Mechanical Support Structures -Cable routing still needs to be checked with full cable model
- Installation
 - -Availability of beam pipe extension needs to be confirmed - Details of beam pipe support need to be established
- Cooling System/Cabling
 - location
 - -Pump specs may vary depending on pipe lengths / cooling plant -Not clear if we can procure same ALICE cables

- Inner mechanical support structures have significantly matured
- Outer support structures have preliminary designs -- no major obstacles encountered
- Cooling plant derived from ITS design, MVTX version still in early stages
- Continuing to work with OSI on installation and integration issues

MVTX Mechanics, Integration, Infrastructure, BNL Director's Review

