
The Monolithic-Active-Pixel-Sensor-based vertex Detector (MVTX)
Readout and Controls

the technical note for the MVTX readout and controls
August 26, 2018 (revision 1.0)

Proposing Organization: Los Alamos National Lab

Principal Investigator: Ming X. Liu

Phone: 505-412-7396
Email: mliu@lanl.gov

Collaborators: Mark Prokop, Alex Tkatchev, Sho Uemura, Kun Liu, Cesar da
Silva, Pat McGaughey, Andi Klein, Xuan Li, Darren McGlinchey,
Sanghoon Lim, Walt Sondheim, Hubert van Hecke, Yasser Cor-
rales Morales, Cameron Dean, Gerd Kunde

Primary Authors: Alex Tkatchev
Email: alextkatchev17@gmail.com

Sho Uemura
Email: meeg@slac.stanford.edu

Todo list
o completer interface under construction . 69
o AXI documents, API docs, Linux references, Xilinx docs (DMA, PCIe) 180

i

Table of Contents

1 System Description 1
1.1 Description . 1

2 Sensor 4
2.1 Detector Description . 4
2.2 Stave Description . 4
2.3 ALPIDE Description . 4

2.3.1 Pulse Injection and Masking . 8
2.3.2 Matrix Readout and Priority Encoder . 9
2.3.3 Triggering and Timing . 9
2.3.4 Data Transmission Unit (DTU) . 12
2.3.5 Charge Collection . 14
2.3.6 Simulation and threshold characterization . 15

2.4 Interfaces . 21
2.4.1 Cables . 26

2.5 Power System . 26
2.5.1 Specifications . 26

3 Front End Electronics 28
3.1 Description . 28
3.2 Functionality . 28

3.2.1 GBTx ASIC . 28
3.2.2 Readout Data Flow . 33
3.2.3 Trigger . 33
3.2.4 Wishbone Configuration Bus . 34
3.2.5 Software Configuration Interface . 36
3.2.6 Triple Modular Redundancy (TMR) and Scrubbing 36
3.2.7 Clocking . 39
3.2.8 Specifications . 39

3.3 Interfaces . 39
3.3.1 GBT Interface . 43
3.3.2 I2C Interface to Power Boards . 43
3.3.3 RU interfaces to slow controls . 43

4 Back End Electronics 56
4.1 Description . 56
4.2 GBT wrapper . 57
4.3 Data Processing . 59
4.4 Wupper . 62

4.4.1 DMA Operation . 63
4.4.2 Interrupts . 68
4.4.3 Xilinx PCIe EndPoint Core AXI4-Stream interface 69
4.4.4 Firmware Components . 70

4.5 Device Drivers . 87

ii

4.6 Register Map . 100
4.7 Interfaces . 100

4.7.1 Fiber Mapping . 102
4.8 Hardware . 102

4.8.1 Clock Distribution and Configuration . 104
4.9 Test and Validation . 104

5 Data Acquisition System 106
5.1 Description . 106

5.1.1 RCDAQ . 106
5.1.2 FELIX Plugin . 106
5.1.3 Data Format and Decoder . 106
5.1.4 Online Monitoring . 106
5.1.5 Offline Analysis . 106

5.2 Functionality . 107
5.2.1 RCDAQ and FELIX Plugin . 107
5.2.2 Data Format . 111
5.2.3 Online Monitoring (pmonitor) . 114
5.2.4 Offline Software . 114

5.3 Interfaces . 114

6 Timing and Triggering 118
6.1 Work in Progress Discussions, as of Nov. 2020 . 118
6.2 Timing specification . 118
6.3 Timing interfaces . 118

6.3.1 Trigger specification . 118
6.4 Trigger interfaces . 118

7 Control and Monitoring 119
7.1 Description . 119
7.2 Functionality . 119

7.2.1 Specifications . 119
7.3 Interfaces . 119
7.4 Hardware . 119
7.5 Test and Validation . 119

8 Test and Validation 120
8.1 ddump . 120
8.2 Full Chain Test . 120

8.2.1 FELIX and RCDAQ . 120
8.2.2 RU . 122

8.3 Setup . 122
8.3.1 General System Setup . 122
8.3.2 FELIX Firmware . 122
8.3.3 RCDAQ . 123
8.3.4 FELIX Software and Plugin . 123

iii

8.3.5 Decoder and Online Monitoring . 125
8.3.6 RU Firmware and Software . 125

Appendices: 126

A DAQ Fest Stonybrook 127
A.1 February DAQFest Follow Up Simulation . 127
A.2 October DAQ Fest . 135

A.2.1 DAQFest Intro Talks . 135
A.2.2 MVTX 40 MHz Request . 136
A.2.3 Synchronizing the MVTX System . 137
A.2.4 ALICE is Streaming, the MVTX Could/Should . 138
A.2.5 GTM Fiber Splitting vs. Mezzanine Board . 139
A.2.6 SPHENIX Busy . 139
A.2.7 Slow Control . 139

B Test Reports 141
B.1 Testing with the MVTX system . 141
B.2 Test Report on RuV1 . 142
B.3 Test Report on RuV2 with one stave and 9 working ALPIDE chips 146

C PCIe 152

D AXI 167

E PCIe Endpoint Configuration 169

F References 177

iv

 238

 200

 158

 118

 R22

A

A 536

 440
 290

 40.01

SECTION A-A
SCALE 1 : 3

Figure 1: Layout of the Maps-based VerTeX detector (MVTX).

1 System Description
1.1 Description

The MVTX design leveraged the R&D performed for the inner layer ALICE/ITS detector described
in the technical report [1]. The layout of the MVTX is shown in Figure 1. It consists of the three layers
azimuthally segmented in units named staves, which are mechanically and electrically independent.

An overview for the whole electronic system is shown in Figure 2. The most fundamental element of
the MVTX is the ALPIDE sensor which consists of the pixel matrix, analog frontend, digitization, data
formatting, and data transmission integrated in the same chip (monolithic active pixel sensor). Details of
the ALPIDE sensor is described in Sec.2.3. Nine ALPIDE sensors are wire bonded to a single Stave with 9
independent data lines and common control and clock differential lines.

The nine serialized data links from each Stave is sent to one Readout Unit (RU) trough a 5 meters copper
twinax SAMTEC-FireFly cable described in Section 2.4.1. The RU also provides power configuration and
monitoring for the Stave. The RU crate is placed outside the sPHENIX magnet area. Details of the RU
are described ion Section 3.3. Each RU provides an optical connection to the back-end Front End Link
Exchange (FELIX) unit, in the counting house to which the data streams and slow controls are sent trough
GBT optical links.

The back-end unit adopted for MVTX is the FELIX board, it has 48 inputs and outputs capable to
support GBT optical links over multimode fiber. The board also contains a 16-lane PCIe Gen 3.0 interface
to the host server, and a Xilinx Knitex Ultrascale FPGA. One FELIX is expected to support 8 RUs, which

1

Table 1: Geometrical parameters of the MVTX.

layer 0 layer 1 layer 1
Radial position (min) (mm) 22.4 30.1 37.8
Radial position (max) (mm) 26.7 34.6 42.1
Length (sensitive area) (mm) 271 271 271
Pseudo-rapidity coverage ±2.5 ±2.3 ±2.0
Active area (cm2) 421 562 702
Pixel chip dimensions (mm2) 15 × 30
Number of chips 108 144 180
Number of Staves 12 16 20
Staves overlap in rφ (mm) 2.23 2.22 2.30
Gap between chips (µm) 100
Chip dead area in rφ (mm) 2
Pixel size (µm) (20 - 30) × (20 - 30)

will utilize half??->67 or 83% of the optical links. Each FELIX is installed in a host server. More details on
the FELIX board can be found in Section 4.

The software running on the FELIX server reads data from FELIX over the PCIe bus, packages it in the
sPHENIX data format Phenix Raw Data Format (PRDF), and transfers it to the sPHENIX DAQ. RCDAQ
which is the sPHENIX DAQ system is described in Section 5.

The power distribution for the system is performed by the power board, described in Section 2.5. Each
Stave is powered by one power board. The Power Boards are supplied by one CAEN bulk power supply. A
detail description of the control system is found in Section 7.1.

Details on the signal timing and trigger is described in Section 6.

2

Figure 2: Block diagram of the MVTX readout electronics.

3

2 Sensor
2.1 Detector Description

The Stave consists of 9 ALPIDE sensors which takes in a common clock and control lines and outputs
9 gigabit data streams. Each ALPIDE sensor consists of a matrix of 512 pixel rows by 1024 pixel columns.
Each pixel contains an amplifier discriminator and 3 hit storage multi event buffer. The data output rate is
configurable. Zero suppression is done on chip. Readout modes can be configured to triggered or continues
mode. The device can be configured for internal pulse injection mode to pulse specific pixels, typically used
for testing. PRBS data generation for cable verification. As well as pixel masking functionality in the event
a pixel is damaged or remains high. MVTX will use triggered mode at 1.2 Gbps.

2.2 Stave Description
2.3 ALPIDE Description

The ALPIDE chip is based on the Monolithic Active Pixel technology implemented in a 180 nm CMOS
process fabricated by Tower Jazz. The active pixel region for the ALPIDE sensor is 30mm (X direction) by
15mm (Y direction) which contains 1024×512 (X×Y) sensitive pixels, see Figures 4 and 3. The dimension
of each pixel is 29.24µm × 26.88 µm (X×Y). The pixel columns are counted from 0 to 1023 from left
to right along the X axis, and the pixel rows are counted from 0 to 511 from the top to the bottom. The
periphery circuit is located in the bottom of the chip within the 1.2×30 mm2 region.

Figure 3: The ALPIDE sensor Floor Plan.

The ALPIDE design is based on a charge sensitive amplifier, amplifier with capacitive feedback. The
front-end and discriminator act as an analogue delay line. The readout block diagram is shown in Figure
5 and the schematics is shown in Figure 6. The collection n-well has octagonal shape with 2 µm diameter
and n-well to p-well spacing of 3 µm. In Figure 6, diode D1 is the sensor p-n junction. The input node
is continuously reset by diode D0. VRESETD establishes the reset voltage of the charge collecting node
(pix_in). A particle hit will lower the potential at the pixel input pix_in by a few tens of mV. This will cause
the source follower formed by M1 and the current source M0 to force the source node to follow this voltage
excursion and dump charge associated with the voltage change and the capacitance of the source node onto

4

Figure 4: The ALPIDE chip architecture.

5

Figure 5: The ALPIDE sensor block diagram.

Figure 6: The ALPIDE front end schematics.

6

Figure 7: The ALPIDE block diagram 2.

Figure 8: The ALPIDE front end schematics.

7

the analog output node pix_out[2]. The charge threshold of the pixel is defined by ITHR, VCASN and
IDB. The effective charge threshold is increased by increasing ITHR or IDB. It is decreased by augmenting
VCASN. Voltage bias VCLIP controls the gate of the clipping transistor M6. The lower VCLIP, the sooner
the clipping will set in.

The output of the ALPIDE front-end has a peaking time of around 2µs within the typical 5µs duration.
This allows operating the chip in triggered mode when the latency of the incoming trigger is comparable with
the front-end peaking time. A common threshold is applied to all pixels. The latching of the discriminated
hits is controlled by global STROBE pulse. The STROBE pulse can be generated from either external trigger
or internal trigger, the duration of the STROBE is programmable. Each pixel contains a pulse injection
capacitor for the test charge injection in the input of the front-end. A digital-only pulsing mode can be
selected to write the logical signal in the pixel memory cells. The pulsing pattern is programmable. The
readout of the pixel matrix is based on a circuit named Priority Encoder. The transfer of the matrix data to
the periphery circuit is zero-suppressed. The operation voltages are summarized in Table 2.

Each pixel in the ALPIDE matrix has 3 in-pixel data storage elements (buffer). The Multi Event Buffer
(MEB) enables the storage of 3 complete frames without the completion of a matrix readout or any data
loss.

Table 2: The operation voltage for the MVTX chip/stave.

Minimum value Default value Maximum value
AVSS (Analog ground) 0 (V) 0 (V) 0 (V)
AVDD (Analog supply) 1.62 (V) 1.8 (V) 1.98 (V)
DVSS (Analog ground) 0 (V) 0 (V) 0 (V)
DVDD (Analog supply) 1.62 (V) 1.8 (V) 1.98 (V)
PWELL (Bias Voltage) -6 (V) TBD 0 (V)
SUB (Bias Voltage) -6 (V) TBD 0 (V)

The data from the 32 region readout blocks are assembled and formatted by a Top Readout Unit module.
There are two readout modes: one is the “Triggered” mode, the other is the “Continuous” mode. The
“Triggered” mode defines as the strobe generation and readout are triggered externally. The “Continuous”
mode refers to the frames are continuously integrated and readout with programmable strobe duration.

2.3.1 Pulse Injection and Masking

Figure 9: The ALPIDE pixel logic.

8

The pixels of the ALPIDE chip contain built-in testing features. They can be used to force the generation
of a hit using a test charge injection capacitor (analog pulsing), directly setting the pixel state register (digital
pulsing), or disabling readout of the pixel (masking). Details on the pixel digital section including pulsing
are shown in Figure 9. Each pixel contains two read-only registers: MASK_EN and PULSE_EN. The
Mask Enable (MASK_EN) register disables readout of the pixel so the pixel will not report a hit under any
circumstance (real particle, analog pulse, or digital pulse). The Pulse Enable (PULSE_EN) register enables
the pulsing functionality of the pixel; this register must be enabled for the pixel to respond to APULSE or
DPULSE signals. The MASK_EN and PULSE_EN registers for all pixels are controlled through special
register writes; individual pixels, or arbitrary patterns of pixels, can be masked or pulsed.

Once the pulsing has been enabled in the desired pixels, two pulsing signals (APULSE and DPULSE)
are used to trigger the injection of the charge in the front-end or to set the state register. The edges of
the APULSE signal cause the injection of current pulses in the front-end input node pix_in. The polarity
of the pulse depends on the direction of the edge (rising or falling). The rising edge simulates the effect
of release of charge in the collection diode by a particle hitting the pixel. The total charge of the current
pulse is controllable by dedicated DACs. The DPULSE signal can be used to set the pixel state latches that
constitute the Multi-Event buffer. Both pulsing operations require that the PULSE_EN latches of the target
pixels are set and that one of the three global STROBE signals is asserted, in order to store the hit in the
corresponding MEB location. The masking of the pixels has priority over the pulsing, therefore a masked
pixel does not produce a hit when it is pulsed.

2.3.2 Matrix Readout and Priority Encoder
The readout of pixel hit data from the matrix is based on a circuit named Priority Encoder, depicted

in Figure 10. There are 512 instances of this circuit, one every two pixel columns. The Priority Encoder
provides to the periphery the address of the first pixel with a hit in its double column, selecting it according
to a hardwired topological priority. During one hit transfer cycle a pixel with a hit is selected, its address is
generated and transmitted to the periphery and finally the in-pixel memory element is reset. The address of
the next pixel with a hit in the double column is then calculated. This cycle is repeated until the addresses
of all pixels initially presenting a valid hit at the inputs of a Priority Encoder have been transmitted to the
periphery and all the pixel state registers have been reset. The transfer of the frame data from the matrix to
the periphery is therefore zero-suppressed.

Each Priority Encoder is a fully combinatorial circuit and it is steered by sequential logic in the periphery
during the readout of a matrix frame. It is implemented in a very narrow region between the pixels, extending
vertically over the full height of the columns: see Figure 11. There is no free running clock distributed in
the matrix and there is no signaling activity if there are no hits to read out. The average energy needed to
encode the address of a hit pixel is of the order of 100 pJ. Power is consumed proportionally to the readout
rate and to the frame occupancy. The Priority Encoders also implement the buffering and distribution of
readout and configuration signals to the pixels.

2.3.3 Triggering and Timing
For the MVTX operation at the sPHENIX experiment, we foresee to use the trigger mode as sPHENIX

data taking will be mainly in triggered mode(maximum rate = 15kHz). The collection of pixel states (reffed
as frame) will be generated at a particular time and transmitted off chip following the reception of a trigger.
The distribution of the MVTX timing and trigger is shown in Figure 12. The sPHENIX level-1 (LV1) trigger
latency is around 4 µs. This leads to the study of the trigger delay time and ALPIDE pulse shaping time
tuning to check any impacts on the efficiency. This trigger latency also raises the question of the pile up
effects on the MVTX track efficiency at sPHENIX especially in the several MHz p+p collisions.

9

Figure 10: The ALPIDE priority encoder.

Figure 11: The layout of the pixel matrix, showing the double columns and priority encoders.

10

Figure 12: Block diagram of the ALPIDE pixel timing and trigger.

Figure 13: The format of the ALPIDE chip transaction on the control bus.

Figure 14: The format of the ALPIDE chip transaction on the control bus.

11

2.3.4 Data Transmission Unit (DTU)
The Data Transmission Unit (DTU) provides a fast serial link for the transmission of the data from the

ALPIDE sensor. For MVTX, each sensor’s DTU transmits data over a differential serial line with a line rate
of 1.2 Gb/s to the off-detector electronics (Readout Unit). The data stream is transmitted over an aluminum
over polyimide FPC (Flexible Printed Circuit) and then to a micro-twinaxial cable.

The DTU consists of two modules: a DTU Logic module, which interfaces the ALPIDE’s Data Manage-
ment Unit to the DTU, and the Data Transmission Unit itself, which contains the serializer, the transmission
clock PLL, and the LVDS drivers. The DTU Logic module has the following functions:

• 8b/10b encoding of the data produced by the Data Management Unit and to be transmitted by the
DTU

• Programming of the serial port line rate (1200 Mb/s, 600 Mb/s, 400 Mb/s) according to operating
mode and configuration

• Monitoring of the PLL lock status and re-synchronization of the serializer

• Test features for the Data Transmission Unit: bypass of 8b10b encoding, PRBS-7 pseudorandom
pattern, or static test pattern

The Data Transmission Unit and its Serializer are agnostic of the programmed output line rate. They
always operate in the same fashion, shifting out a 30 bits data word loaded into the serializer at every cycle
of the main digital clock (40 MHz). It is the DTU LOGIC that generates the 30 bits of the DTU DATA bus
to obtain the desired output rate, effectively generating slower bit serial stream at the DTU output. For the
operation at 1200 Mb/s, all bits of the DTU DATA bus can be different. When transmitting at 600 Mb/s,
every bit is replicated and transmitted twice, or equivalently for two consecutive bit Unit Intervals. Finally,
every bit is replicated three times when operating at 400 Mb/s.

The DTU interface is designed to have an output signal compatible with the LVDS standard (at least for
the voltage swing; the common mode voltage is reduced to 0.9 V). Resistive termination is required. A 600
MHz transmission clock is provided by an on-chip PLL.

The DTU architecture, shown in Figure 15, is based on a Double Data Rate (DDR) transmission scheme.
The DTU Logic module generates a 30-bit word every 40 MHz clock cycle, which is loaded into two 15-
bit shift registers. The 1.2 Gb/s line rate, combined with the 8b10b gives a data rate of 960 Mb/s for the
MVTX configuration, or 3 bytes per 40 MHz clock cycle. The two shift registers are synchronized on
the two 600 MHz clock edges and drive the line driver after a single-ended to differential conversion. A
secondary path, equal to the main one but with two extra delay latches drives a second driver in order to
provide pre-emphasis.

The LVDS driver provides a current between 0 and 5 mA with a 0.312 mA resolution over a 100 ω

differential cable. The driver is compatible with both commercial LVDS receivers and the GBTX SLVS
receivers. A pre-emphasis current of up to 50% (0 to 2.5 mA) has been implemented in order to be able to
compensate for excessive RC on the cable. The pre-emphasis time width is one bit period, i.e. the current
bit is emphasized if different from the previous one. The driver and pre-emphasis currents are controlled
with 4-bit DACs. The output common mode has been set to 0.9 V (i.e. lower than the 1.2 V from the LVDS
standard) in order to reduce the power consumption and have a better match with the 1.8 V supply voltage.

12

Figure 15: ALPIDE Data Transmission Unit (DTU).

13

Figure 16: Depletion Region

2.3.5 Charge Collection
When a charged particle passes through the silicon of the ALPIDE sensor, the energy lost by the particle

is converted to electron-hole pairs. The signal detected by the ALPIDE consists of free electrons created
in the epitaxial layer of the sensor and collected in a collection diode. The epitaxial layer is a layer of
high-resistivity, weakly p-type doped silicon, and is bounded below by a p-type substrate and above by a
deep p-well. Since both the substrate and p-well are more heavily doped than the epitaxial layer, there is a
potential difference that prevents electrons from traveling from the epitaxial region to these others. Except
for the collection diode, all of the in-pixel circuitry is contained inside the deep p-well so it cannot interfere
with the collection of electrons from the epitaxial layer.

The collection diode is an octagonal n-well implanted in the epitaxial silicon through an opening in
the deep p-well: see Figure 19. The p−n junction between the n-well and the epitaxial silicon results in a
depletion region devoid of holes in the epitaxial layer, where the concentration gradient of holes (which tends
to push holes towards the epitaxial layer) overcomes the electric field created by the charge imbalance in
the depletion region (which tends to force holes towards the n-well). The high electric field in the depletion
region drifts any electrons inside the depletion region rapidly to the collection diode n-well.

Electrons created in the epitaxial layer cannot enter the substrate or p-well regions, so they diffuse in the
low electric field until they hit a depletion region. This diffusion process is slow and random, so electrons
can end up in collection diodes far from where the electron-hole pair was created. Applying a reverse bias to
the collection diode by applying a negative voltage to the substrate enlarges the depletion region, increasing
the probability that an electron is collected quickly.

The size of the signal created in the ALPIDE is based on the number of electron-hole pairs created in
the epitaxial layer. The epitaxial layer is 25 µm thick; as shown in Figure 17 the rate of energy loss by a
minimum ionizing particle varies but has a mean value of 388 eV/µm and (for this thickness) a most probable
value around 210 eV/µm. The number of electron-hole pairs created is related to the energy deposited by
the ionization energy, which for silicon is 3.67 eV. Therefore the mean number of electron-hole pairs is 25

14

µm × 388 eV/µm/3.67 eV = 2600 electrons, and the most probable number is 25 µm × 388 eV/µm/3.67
eV = 1400 electrons.

Figure 17: Energy deposition by minimum-ionizing particles in thin silicon.

2.3.6 Simulation and threshold characterization
The purpose of this section is to convey a circuit description of the ALPIDE front end, as well as simulate

and characterize its bias and threshold parameters IBIAS, ITHR, IDB, VCASP, VCASN, and VCASN2.
The effort began by reaching out to Tower Jazz, special thank to Vivian Gin and obtaining the respective
PDK (Process Design Kit). A PDK is a model of the devices within a certain technology variation for
their processes, typically provided by the foundry to an ASIC design team. After simulating the schematic
in Figure 8 and presenting it to Thanushan Kugathasan of the ALPIDE design team at CERN, additional
suggestions and guidance was provided for a more accurate simulation. The below section could not have
been completed without help from Vivian Gin and Thanushan Kugathasan our team is forever grateful for
their time. This section is divided into three parts Part 1: ALPIDE front end schematic description. Part 2:
ALPIDE simulation results and conclusion Part 3: ALPIDE laser test stand results.

Figure 18: Simulation ALPIDE Reference.

15

The architecture of each ALPIDE pixel contains a sensing diode, amplifier and shaper stage, discrimi-
nator stage, and a digital section consisting of three hit storage registers (Multi Event Buffer). The latching
of the discriminated signal above a threshold by the multi-hit buffer is controlled by three global STROBE
signal. Once the signal is latched the Address- Encoder Reset-Decoder (AERD) provides the ADDRESS
of the hit pixel and whether the current address is VALID to the chip periphery containing the DTU (Data
Transmission Unit). The data is then sent off chip at 1.2Gbps (Inner Barrel). The description below will
reference the three stages and the input signals of each stage PIX_IN, OUT_A, and OUT_D.

The voltage at the input node PIX_IN drops within the charge-collection time below 10 ns. The reset
mechanism lets PIX_IN return to the baseline voltage VBASELINE in about 100 us. The signal amplified
by the front-end that acts as a delay line with a peaking time of around 2 us, the discriminated pulse pulse
has an approximate duration of less than 10 us.

The reset is provided either by a diode or a PMOS1. The PMOS-reset is a constant-current reset mech-
anism which provides the current IRESET when VIN deviates from the baseline value. The reset current
IRESET can be adjusted to achieve the desired reset time and to adapt to the leakage current of the pixel. The
baseline of the pixel can be regulated using VRESET. The diode reset is based on a single forward-biased
diode.

Figure 19: Diode Reset.

1PMOS reset was an option during ALPIDE R&D, but it was not implemented in the final version of the ALPIDE chip

16

The amplifier and shaper consist of two current branches, IBIAS (transistor M0) and ITHR (transistor
M4). It receives the input signal PIX_IN and manipulates it in accordance with the IBIAS, ITHR, VCASP,
VCASN, and bias and threshold parameters then outputs the OUT_A signal to the discriminator stage. The
discriminator stage discriminates and inverts the analog input OUT_A to a digital active low output pulse
OUT_D in accordance with the IDB threshold parameter.

Without external stimulation the input transistor M1 conducts the current IBIAS provided by the current
source M0. The transistor M5 conducts ITHR current provided by the current source transistor M4, leading
to a fixed voltage difference on OUT_A and VCASN. VCASN is used to define the baseline voltage of
OUT_A after a particle hit. The cascode transistor M2 transistor circumvents the Miller effect for the input
transistor.

Transistors M4 and M5 are used to generate a low frequency feedback to adjust conductivity since all
transistors operate in the weak inversions region. The curfeed net loaded with Ccurfeed capacitance is
connected to gate of transistor M3. The transistor M3 absorbs IBIAS+ITHR current. Csource and Ccurfeed
are combined in one capacitance Cs as shown in figure Figure 20 C.

The source of M1 is coupled to the current-feedback node Ccurfeed . The capacitance of M1 input
is much larger than the capacitance of OUT_A. Therefore, the concept is based on charge transfer from a
large capacitance to a small capacitance to generate a voltage gain. When PIX_IN receives a negative input
pulse, the voltage drop at the gate of M1 increases its current which flows between M1 and OUT_A. With
some delay Vsource node and Vcurfeed follow PIX_IN, leading to reduced conductivity of M3 and OUT_A
increases. The increase in OUT_A allows M5 to close. Therefore, ITHR charges Cs leading to an increase
in Vcurfeed and increases conductivity of M3.

The transistor M6 serves as a clipping mechanism once OUT_A exceeds Vcurfeed and as a pulse dura-
tion compressor. Transistor M6 in a diode connection: source and gate are connected to the curfeed node
and the drain is connected to the OUT_A node. Normally M6 is reverse biased, but when the OUT_A signal
is high enough to forward bias it, M6 provides additional discharge current to compress the pulse duration.
The clipping effect is noticeable for input charges larger than 1.4 times the charge threshold both for OUT_A
and OUT_D. The rise time of the pulse is defined by the time ITHR and IBIAS need to charge the OUT_A
node. Additional charge stored at the source node speeds up process. The pulse duration depends on the
clipping point and how quickly CURFEED is charged up to increase the conductivity of M3.

Voltage bias VCLIP controls the gate of the clipping transistor M6. The lower VCLIP, the sooner the
clipping will set in.

Transistors M7 and M8 form the second stage which discriminates and inverts the OUT_A signal. In
static operations the output current is almost zero however once OUT_A is present it increases the transcon-
ductance of M8 and the node OUT_D is discharged. The cascode transistor M9 shown in figure 20 was
added to reduce the equivalent Miller capacitance on pix out.

Figure 24 shows C_in=1.6 fF. 5e3 elementary charge / 1.6e-15 farad = 0.5 V.
Transistors M0, M4, and M7 have been replaced with variable current sources as shown in figure 25

which are controlled in maestro tab using ADE Explorer (virtuoso simulation environment). The voltage
parameters VCASP, VCASN and VCASN2 are also variable and controlled in the maestro tab. figure 26
shows the initial simulation schematic following the reference.

The initial simulation schematic was later modified to obtain a more accurate simulation result. The
current sources were replaced with current mirrors. The reset circuit was added and the cc capacitor was
more accurately modeled with the transistor array shown in 27.

Figure 28 shows the default threshold parameters as shown in the ALPIDE Manual and 29 shows
OUT_A and OUT_D using the defaults. Please observe the bias and threshold parameters appear to the

17

Figure 20: ALPIDE Front End Schematic Principle Practical Implementation Presented Circuit

Figure 21: ALPIDE Optimized Schematic

Figure 22: Transistor Sizes Table

18

Figure 23: ALPIDE Transient plots OUT_A OUT_D from Presentations and papers

Figure 24: ALPIDE Capacitance

19

Figure 25: ALPIDE Simulation Schematic reference.PNG

Figure 26: ALPIDE Simulation initial

20

Figure 27: ALPIDE Simulation Schematic.PNG

left of every waveform displayed.

Figure 28: Default threshold parameters from ALPIDE manual

The waveforms in 29 show OUT_A and OUT_D with 750 electrons, 1550 electrons, and 5000 electrons
at the input. The figures in 30 and 31 show variation of the threshold parameters showing a change in
OUT_A and OUT_D. Please observe the bias and threshold parameters appear to the left of every waveform
displayed.

2.4 Interfaces
The ALPIDE chip has custom control interfaces. The differential control port (DCTRL) supports bi-

directional serial signaling at 40 Mb/s. A second single ended control line (CNTRL) is also available but
is not used for MVTX. The nine sensors on the MVTX stave are directly connected to a shared control

21

Figure 29: ALPIDE Simulation threshold parameters at defaults OUT_A and OUT_D with 750 1550 5000

Figure 30: ALPIDE Simulation threshold parameters to get to 8us OUT_A and OUT_D with 750 1550 5000

22

Figure 31: ALPIDE Simulation threshold parameters to get to 8us 2 OUT_A and OUT_D with 750 1550 5000

Figure 32: Simulation Validation

23

Figure 33: Threshold Parameters

24

Figure 34: Mosaic Pulse Injection Test

Figure 35: Mosaic Pulse Injection Test OUTD Manipulated

25

differential line using the DCTRL port. The Control Management Unit block implements the control layer
and provides full access to the control and status registers of the chip. The DCTRL and DCLK differential
ports are implemented with a custom designed differential transceiver cell. This has been designed with
reference to the standard TIA/EIA-899 Electrical Characteristics of Multi-point-Low-Voltage-Differential-
Signaling (M-LVDS). The control bus can used to distribute commands to the chip, mostly on the trigger
messages. The format of the transaction on the control bus has been shown in Figure 13.

All the analog signals are generated by a set of on-chip 8 bit DACs. The analog section of the periphery
also contains an ADC with 10-bit dynamic range, a bandgap voltage reference and a temperature sensing
circuit. The ADC can used to monitor the outputs of the DACS, the analog and digital supply voltages, the
bandgap voltage and the temperature.

The Data Transmission Unit (DTU) provides a fast serial link for the transmission of the data from the
ALPIDE. The MVTX chip transmits its data over a differential serial line with a line rate of 1.2 Gb/s to
the off-detector electronics (such as the Readout Unit or the MOSAIC readout module). The data stream
is transmitted over an aluminum over kapton FPC (Flexible Printed Circuit) with a maximum length of
300 mm and then to a micro-coaxial cable over a length of 5 m (can be tuned to 7m or 10m based on the
sPHENIX integration study).

The power dissipated by the pixel chip shall not exceed 300 mWcm−2. The power consumption is less
than 40 mW/cm2 measured in operating condition.

2.4.1 Cables
SAMTEC DESC OF NEW CABLES

2.5 Power System
2.5.1 Specifications

Figure 36: Power supply system for MVTX.

The power for the entire MVTX system (Fig.36) is supplied by:

26

• one CAEN EASY3000 crate

• one A1676A EASY Branch Controller

• two A2518 LV 8V 10A (50W) modules

The system can supply 64 channels, even though MVTX will need only 48 power channels, one channel
per power board/RU/stave. The CAEN crate uses one CAEN Power supply (TBD, SY8800?, A3484/5/6).
The power board (Fig.37) has 32 controllable channels for each RU/stave unity. (Needs more specs for the
power boards. Operation, interfacing, controls, what are the numbers in the figure? etc...Cesar) The power
system will be part of the slow control system.

Figure 37: Power card for one Readout Unity/Stave.

1mega hit per mm squared kilahit per cm squared
negative bias gives a better depletion ithr vcasn

27

3 Front End Electronics
3.1 Description

The RU is the frontend board for MVTX. Below is a set of block diagrams showing flow of control and
data.

Figure 38: Trigger Data Path

3.2 Functionality
3.2.1 GBTx ASIC

The optical GBT link between the RU and FELIX is the main interface between the RU and the counting
house. On the RU, the link is implemented with two components: the VTRx/VTTx optical module and the
GBTx ASIC. The VTRx and VTTx are SFP-like modules designed by CERN for high radiation tolerance.
The GBTx is the hardware implementation of the GBT protocol; Figure 45 shows the functionality of the
ASIC.

The GBTx configuration registers can be set in several ways. First, they can be accessed over the GBTx
I2C slave interface; on the RU this is connected to an I2C master firmware block in the Kintex Ultrascale
FPGA, so the GBTx can be configured through the FPGA’s Wishbone bus (further described in Section
3.2.4. Second, the registers can be accessed through the GBT link, as described in Section 3.3.1. Third, the
GBTx contains “e-fuses” that can be irreversibly programmed (using a special CERN I2C dongle), so the
programmed register values are automatically loaded on power-on.

The GBTx data input and output “e-links” are connected to the Kintex Ultrascale FPGA. The data frame
is 80 bits wide and clocked at 40 MHz; on the RU the e-links are configured so the frame is carried on 10
e-links. Each e-link is a differential pair carrying 8 bits of the data frame, serialized at 320 Mbps.

In the FPGA, the serialization and deserialization of the e-links are performed in the gbtx_controller
firmware block. The data to be transmitted is serialized using the Xilinx OSERDESE3 primitive. The
data received from the GBTx is deserialized using the Xilinx IDELAYE3 primitive (for fine adjustment
of the data alignment with clock) and the ISERDESE3 primitive (deserializer), then passes through a

28

Figure 39: Event Data Path

Figure 40: Scrubbing Data Path Flash Prom PA3 Select Map

29

Figure 41: Flash FPGA Programing FELIX GBT SCA JTAG FELIX GBT US PA3 FLASH

Figure 42: Flash PROM Programing FELIX GBT SCA PA3 JTAG

30

Figure 43: Power Board Datapath FELIX GBT US CAN PA3 US

Figure 44: Laser Driven Strength Control

31

Figure 45: GBTx architecture and interfaces.

32

BitSlipInLogic_8b block (based on Xilinx XAPP1208, to replace similar functionality in the 7-Series
ISERDES) that corrects the word alignment of the deserialized data.

3.2.2 Readout Data Flow
Figure 46 shows the data path inside the FPGA from the ALPIDE to the GBTx ASICs. The differential

signals from the ALPIDE data port are received by the GTH transceiver on the FPGA. The complete readout
flow, from the transceiver to the packaging of the event for transmission over GBT, is contained in the
datapath_ib firmware block, the components of which are described below. All data signals are clocked
at the same 160 MHz clock.

alpide_frontend_gth : This is a wrapper containing the Xilinx transceiver IP core, which handles comma
alignment and 8b/10b decoding, and a FIFO that synchronizes the decoded data to the 160 MHz readout
clock. The output from this block to the next is the raw (commas and IDLEs not suppressed) ALPIDE data
stream (8 bits wide), plus flags for valid (not comma and FIFO not empty) and 8b10b errors.

alpide_datapath : This block performs two functions. First, a protocol_checker block monitors the
incoming data stream and checks for all possible violations of the ALPIDE protocol; the protocol error
signals from this block are counted by a alpide_datapath_monitor block in datapath_ib. Second, a
protocol_tracker block identifies BUSY words and only writes valid, non-BUSY words to a FIFO. The
interface from this block to the next is the read interface to the FIFO (8 bits wide, clocked at 160 MHz).

data_packager : This block takes the idle-suppressed bytes from alpide_datapath and packs them
into 72-bit (9 bytes) words for GBT transmission. The interface from this block to the next is a FIFO-
like interface (data and valid outputs, read input) with behavior similar to a first-word fall-through FIFO.
In addition, three output signals (start, stop, timeout) indicate the data stream state: whether the protocol
tracker has detected a start, stop, or timeout in the current event. These signals stay high once asserted and
are reset at the end of the event.

gbt_packer : This block is triplicated (TMR). In addition to the ALPIDE data interface from data_packager,
this block reads the trigger information FIFO in trigger_handler. When trigger information is received,
gbt_packer waits for data from the data_packager blocks. When data appears, gbt_packer trans-
mits the event headers defined by the RU event format, then the data. Since data appears on all active
data_packager blocks, the gbt_packer arbitrates between data_packager blocks: on each clock, it
reads and transmits a data word from one data_packager, strobes the data_packager read line, then
selects the next data_packager that is unmasked, has data (valid asserted), and has not yet sent the end
of its event (stop not asserted). Once a stop has been received from every data_packager, gbt_packer
transmits the event trailer.

GBT output FIFO : The output of gbt_packer is written to a FIFO that is instantiated in datapath_ib.
The read interface of this FIFO is the interface from datapath_ib to the GBTx controller’s TX interface.

3.2.3 Trigger
The RU can operate in two trigger modes: triggered or continuous mode. In triggered mode, the RU

sends triggers to the ALPIDE sensors in response to triggers received on the GBT link. In continuous mode,
the RU generates triggers on a fixed period. MVTX will use triggered mode.

The trigger processing functions are contained in the trigger_handler block in the Kintex Ultrascale
FPGA firmware. This block takes the GBT RX signals as input. The important output interfaces are pulse
and trigger signals, which command the ALPIDE control interface to pulse or trigger the ALPIDE sensors,
and a trigger FIFO, which commands the readout path to prepare for data and communicates the trigger
information that needs to be included in the event data.

33

Figure 46: Block diagram of the data flow inside the RU. For MVTX, there are 9 lanes per stave, and the data lanes run at 120
MHz. This diagram corresponds to the datapath_ib block in the RU firmware. The mapping from diagram blocks to firmware is
as follows: Inside “Data Lane,” “Frontend” is alpide_frontend_gth and “Strip Idles” and the “Lane FIFO” are contained within
alpide_datapath. “Data Packager” is data_packager. “GBT Packager” is gbt_packer.

The functionality of trigger_handler is divided among the following components:

• trigger_handler_mode_tracker: set the trigger mode by watching GBT RX for special control
words (SOT, SOC, EOT, EOC — start/end of triggered/continuous).

• trigger_handler_period_counter: for continuous mode, counts time since last trigger

• trigger_handler_distance_counter: watches ALPIDE trigger line and reports whether the time
since last trigger is less than a minimum value (for suppressing close-together triggers)

• trigger_handler_generate_trigger: generates a trigger pulse: for triggered mode, send a trigger
if GBT RX receives a physics trigger, previous trigger was not within minimum distance, and trigger
is not gated

• trigger_handler_output_data: stuffs the trigger FIFO with information about the triggers issued

• pulse_transfer: widen the output pulse of trigger_handler_generate_trigger from a single
160 MHz clock to 4 clocks

3.2.4 Wishbone Configuration Bus
The configuration of the Kintex Ultrascale FPGA is managed using Wishbone, an open-source bus

interface. As implemented on the Kintex Ultrascale, the bus is 32 bits wide to match the width of the
interface to the Cypress FX3 USB ASIC. Various firmware blocks on the FPGA connect to the shared
Wishbone bus. Each such block has a Wishbone module address, and a number of 16-bit Wishbone registers.
Figure 48 shows how the addresses and data are packed into a bus transaction.

The Wishbone bus has two “bus masters” that can send read and write commands. The first is accessed
through the USB interface on the RU. The second is accessed through the optical GBT interface: special Sin-
gle Word Transactions (SWT)” are recognized by the GBT controller block in the firmware and interpreted
as Wishbone commands.

34

Figure 47: Block diagram of the Wishbone bus on the RU. The control interface can be either the USB or GBT interface of the RU.

Figure 48: Transactions on the Wishbone bus. Here DCS (Detector Control System) represents the slow control system, and can
refer to either the USB or GBT Wishbone masters. The 32-bit bus accommodates a read/write flag, the address of the Wishbone
module, the address of the register inside that module, and the 16-bit value of the register.

35

The ProASIC3 FPGA also uses a Wishbone bus for configuration, but the bus is 15 bits wide (7-bit
address, 8-bit data) to match the I2C protocol. The ProASIC3 Wishbone bus has two bus masters: one is
controlled by the GBT-SCA ASIC through I2C, and the other is controlled through a UART interface.

3.2.5 Software Configuration Interface
The RU configuration and monitoring software is implemented in Python. The software interface is

used primarily in a regression script (for exercising the system in an automated way) and a testbench (which
provides command-line interfaces for setup and test of specific parts of the system). The main building
blocks of the software interface are the RU software modules and the communication servers.

Each RU software module corresponds to a Wishbone module inside the RU. The source files for soft-
ware modules are in the directory modules/board_support_software/software/py. Each software module is
a subclass of WishboneModule, which is a class providing generic read and write methods for accessing
Wishbone registers for the module. The software modules add module-specific functions that abstract away
the register addresses; for example, to select the mask that determines which ALPIDE clock lines are driven
by the ALPIDE controller module (register address 0x15), one can call Dctrl.set_dclk_mask(value) instead
of WishboneModule.write(0x15,value). Modules can also add more sophisticated methods: for example Dc-
trl.write_chip_reg(address, data, chipid) performs the full series of Wishbone writes necessary to command
the ALPIDE controller to write a specified register on an ALPIDE sensor.

The RU is represented in software by the class RUv1 (a subclass of ReadoutBoard), which collects the
full set of modules that exist in the RU firmware. This class also holds the mapping between ALPIDE
sensors and control ports.

The communication servers are Python classes that represent different physical interfaces by which
the software can communicate with the RU. Communication servers exist for both the USB interface and
the SystemVerilog simulation. For the USB interface, two implementations exist: PyUsbComm, using the
PyUSB Python library, and NetUsbComm, which communicates over the network to a C++ implementation
of the USB communication (UsbCommServer) using the libusb library. For the simulation, there are two
communication servers: UsbCommSim, which simulates the USB interface, and Wb2GbtxComm, which
simulates the GBT optical interface. Both communicate with the simulation through buffer files, each of
which represents a one-way communications link: the communication server writes (or reads) the file, and
the simulation reads (or writes).

The testbench script (software/py/testbench.py) uses Python Fire to generate a command-line interface.
Commands in common use include initialize_boards, setup_sensors, and setup_readout.

3.2.6 Triple Modular Redundancy (TMR) and Scrubbing
The RU will operate in a radiation environment that can induce single event upsets (SEUs) in configura-

tion memory, flip-flops, and combinatorial logic. A three-part strategy is used to protect the RU logic from
these effects.

First, the Kintex Ultrascale firmware implements triple modular redundancy (TMR) in many of the logic
blocks. TMR in the Kintex Ultrascale firmware is implemented using distributed TMR as shown in Figure
49. Sections of logic to be TMR-ed are divided into blocks consisting of combinatorial logic followed by
registered outputs (no internal feedback paths). These blocks are triplicated, and the outputs are processed
by triplicated majority voter circuits. As shown in Figure 50, a majority voter is a combinatorial logic circuit
whose output follows the majority of the inputs: if one input signal is incorrect due to SEU, the output will
follow the unaffected inputs and therefore will still be correct. An SEU affecting one of the triplicated blocks
is ignored by the voters (since the other two blocks are operating correctly); similarly an SEU affecting one
of the three voters is ignored by the voters of the next logic block. An SEU affecting a flip-flop or logic

36

in one triplicated block will clear itself when the affected data is dropped by the voters; since there are no
internal feedback paths, bad data cannot survive in the system longer than the propagation delay from one
set of voters to the next. SEUs in the configuration only affect the system function if two of the triplicated
blocks are affected; to avoid system failure, the first SEU must be corrected before the second SEU occurs.

Figure 49: The two types of triple modular redundancy implemented on the RU.

The majority voter circuit has two identical “mismatch” outputs that indicate when any of the voter in-
puts disagree with the voter output. The mismatch outputs from all majority voters are read by a radiation_monitor
module, which counts the mismatches and can be read out over the Wishbone bus. This allows real-time
monitoring of the SEUs seen on the Kintex Ultrascale FPGA.

Not all of the Kintex Ultrascale firmware is protected by TMR; Figure 51 shows the status of TMR
protection of different firmware blocks. Certain firmware blocks, which have relatively low cross-section
for SEUs (therefore low SEU rate) and do not have internal state (therefore will resume normal operation if
the configuration is corrected), are not TMRed.

The FPGA output signals can also be protected from radiation effects. The data-valid signals for the GBT
protocol are output to the GBTx ASICs through triplicated pins, following the scheme shown in Figure 52.

Second, the Kintex Ultrascale FPGA is continuously reprogrammed during operation: this “scrubbing”
corrects configuration upsets before they can cause problems. As shown in Figure 53, this is done using two

37

Figure 50: Majority voter circuit. On the Kintex Ultrascale firmware, the voter output is compared with every input to generate a
“mismatch” output for monitoring purposes.

Figure 51: Block diagram of the Kintex Ultrascale firmware, with colors indicating the status of TMR protection. Green blocks
are protected with TMR, yellow blocks are planned to be protected, and red blocks will not be protected.

Figure 52: Minority-voted outputs implement TMR on FPGA output pins. (From Xilinx XAPP197)

38

additional components: a radiation-hardened ProASIC3 FPGA that reprograms the Kintex Ultrascale FPGA,
and a flash memory that holds the original “golden” firmware image. The Kintex Ultrascale FPGA supports
programming and reprogramming through its SelectMAP interface. The ProASIC3 FPGA operates in two
modes: initial programming, where the Kintex Ultrascale is reset, programmed from the golden image, and
initialized; and scrubbing, where the Kintex Ultrascale is continuously reprogrammed without interrupting
operation.

Figure 53: Block diagram of the RU scrubbing scheme, showing the XCKU060 Kintex Ultrascale FPGA to be scrubbed, the
ProASIC3 FPGA that performs the scrubbing, and the flash memory that holds the golden firmware image.

Third, the ProASIC3 FPGA is protected from radiation effects. The configuration memory of the ProA-
SIC3 FPGA is flash (as opposed to SRAM, as used in the Kintex Ultrascale) and is therefore immune to
radiation effects. The combinatorial logic is also considered relatively insensitive. However, the flip-flops
are still susceptible to SEUs, so TMR is still necessary. As shown in Figure 54, only firmware modules
involved in the scrubbing functionality are protected with TMR. A simpler version of TMR, local TMR (see
Figure 49), is used for the ProASIC3 FPGA: since the majority voter is combinatorial logic, it does not need
to be triplicated. Also, since the configuration memory is SEU-immune, the ProASIC3 does not need to be
scrubbed.

3.2.7 Clocking
Figure 55 gives an overview of the clocking scheme for the RU. The RU has two clock sources: a fixed-

frequency crystal and the GBT clock from FELIX that is recovered by the GBTx ASIC. The GBT recovered
clock can optionally be cleaned using a Si5338 jitter cleaner. A clock buffer IC on the RU selects between
crystal and GBT clock inputs; the switch is controlled by the ProASIC3 FPGA, unless the component
placement on the RU is modified to hard-wire the switch to select the GBT clock input (this was done for
the 2018 beam test). The Si5338 is configured using toggle switches on the RU. The Kintex Ultrascale
firmware can be compiled to choose between the clock buffer output and the raw GBT recovered clock for
the user logic and for the GTH transceivers that receive ALPIDE data: the current MVTX firmware uses the
clock buffer output for both.

3.2.8 Specifications
3.3 Interfaces

The RU connects to staves via Samtec FireFly cables. One RU connects to one stave through a transition
board.

39

Figure 54: Block diagram of the ProAsic3 firmware, with colors indicating the status of TMR protection.

40

Figure 55: Block diagram of the clock distribution on the RU.

Figure 56: Front panel of the Readout Unit.

41

ALICE ITS UPGRADE 8

Readout Unit – overall connections overview

Control

Data @ 3.2 Gb/s

Data @ 3.2 Gb/s

Available

Trigger

Data @ 3.2 Gb/s

GBTx

GBTx

GBTx

3.2 Gb/s

3.2 Gb/s

3.2 Gb/s

3.2 Gb/s

3.2 Gb/s

SRAM

FPGA

FLASH

FPGA

Programmable Logic

SCA

Temperature,
voltage & current
monitoring

Redundant slow
control from DCS
through CAN bus

Power board
monitoring and
control

• Direct connections to sensors control/clock and data lines.
• Fiber optic connection toward the CRU using the GBT chipset (3 GBTx + 1 SCA chip).
• CAN bus as emergency path to the DCS system (main path through CRU and GBT).

Figure 57: Block diagram of the Readout Unit’s fiber links, including the mapping between GBTx chips and VTRx/VTTx fiber
transceivers.

42

The stave has one clock line (unidirectional, RU→stave) and one control line (bidirectional) that are
common to all ALPIDE chips, and nine data lines (unidirectional, stave→RU) that are connected to individ-
ual ALPIDE chips. Section 2.3 describes the ALPIDE interfaces.

Normally, all communication between the RU and the outside world — DAQ, slow controls, timing
and trigger — takes place through the radiation-tolerant GBT (GigaBit Transceiver) fiber links. There is a
backup path for slow controls through a CANbus interface. In addition, there is a port for a “busy” signal;
this can be used to communicate the RU’s busy status to a “Busy Unit” but could be used for another purpose.

As shown in Figure 57, the RU has three GBTx chips to support GBT fiber links. These support a total
of two fiber inputs and three fiber outputs, which are driven/received by a combination of VTRx (transmit-
ter+receiver pair) and VTTx (transmitter pair) modules. All optical interfaces use multimode fiber.

The GBTx, VTRx, VTTx, and GBT-SCA (Slow Controls Adapter) are all produced and supported by
CERN as part of the Versatile Link project.

The RU receives trigger information from FELIX over a GBT link.

3.3.1 GBT Interface
The current RU firmware only uses one GBT TX/RX pair. This pair uses a single VTRx module and the

first GBTx on the RU (“GBTx 0”).
The GBT link carries the following functions:

• Clock: the clock recovered from the RX link is used as the RU clock for FPGA logic and the GTH
transceivers on the FPGA.

• GBTx control: the IC field of the RX GBT frame is interpreted by the GBTx ASIC and used for
configuration and monitoring. This communication is based on the HDLC protocol. Responses are
returned on the IC field of the TX GBT frame. The protocol is described in Figure 59.

• GBT-SCA control: the EC field of the RX GBT frame is transmitted to the GBT-SCA ASIC, which is
used for slow controls on the RU (ADC, DAC, GPIO, JTAG). Responses are returned on the EC field
of the TX GBT frame. The protocol is described in Figure 60.

• Trigger: the Kintex Ultrascale FPGA firmware recognizes special trigger words on the data-valid and
data fields of the RX GBT frame. The format is described in Figure 58.

• Data: the Kintex Ultrascale FPGA transmits ALPIDE data using the data-valid and data fields of the
TX GBT frame. The format is described in Figure 58.

3.3.2 I2C Interface to Power Boards
The Power Boards power the staves: they provide analog and digital supplies and bias voltage. Each

Power Board is split into two Power Units. Each Power Unit can supply 8 analog, 8 digital, and 8 bias
channels, and is controlled through two I2C buses (a “main” and a “aux” bus). One RU can control the four
I2C buses on one Power Board: short ribbon cables connect the RU to the Power Board, and I2C blocks in
the Kintex Ultrascale FPGA firmware interface the Wishbone bus to the Power Board.

3.3.3 RU interfaces to slow controls
The primary slow control interface is through the GBT links. The sPHENIX slow controls system will

communicate with the RU through FELIX; the RU then controls the stave(s) and power board(s). A backup
interface exists through the CANbus. Up to 20 RUs can share a single CANbus branch.

Remote reprogramming of the RU FPGAs will be supported: the GBT-SCA can act as a JTAG master
that can be remotely controlled over the GBT link.

43

Figure 58: Trigger and data protocols for the data valid (DV) and data fields of the GBT frame. This corresponds to the RU
firmware used at the 2018 test beam. Each DATA word contains a lane number and 9 ALPIDE data bytes from that lane. IDLE
words may be inserted between DATA words.

44

Figure 59: The HDLC packet definitions for GBTx control over the IC link.

Figure 60: The HDLC packet definitions for GBT-SCA control over the EC link.

45

Figure 61: Block diagram of the functions of the GBT-SCA ASIC.

46

Instructions for communication with RUs (via SWT)

Preparation

1. Log into the FELIX-server.

2. Setup FELIX environment and configuration.

(a) Make sure FELIX FPGA is programmed and all RU are power on.
(b) Initialize FELIX by running:

flx-init

(c) Setup GBT configuration, e.g:
flx-config load ~/ycorrales/test.cfg

This command loads hard-code values to some register options for enabling and setting the
down-link GBT [0-3] to SWT mode. All the rest of down-link GBTs are configured in TRG
mode and disable by default.

Examples
Navigate to the felix-mvtx repository and the folder software/py
(~/ycorrales/felix-mvtx/software/py in felix-server).

• The next command will let you read the version number of the FELIX (not implemented yet)
and all RDO defined in the configuration file (../config/testbench_mvtx.yml)
./testbench_mvtx.py version

• The next command will let you read the unique number of the XCKU FPGA
./testbench_mvtx.py dna

Interaction with the SCA/PA3
The SCA and PA3 can be communicated with without enabling the SWT mode of the FELIX GBT links.
But make sure that the links connected to GBTx0 are enabled.

Reports ADC values of the RU board.

./testbench_mvtx.py cru sca log_adcs

Reports the version of the PA3.

./testbench_mvtx.py cru pa3 get_version

Instructions for updating bitfiles of Readout Units

Preparation

1. Log into the FELIX-server.

47

2. If you do not already have it, clone this repository by running:
git clone https://gitlab.cern.ch/sphenix-mvtx/felix-mvtx.git

3. From felix-mvtx/software/py

• Enter FELIX environment and configuration
• Select the testbench[|_xyz].py file relative to the FELIX the RUs are connected to.
• Identify the FLX gbt channel the RUs are connected to.
• If you need to update only the part of RUs bitifles connected, update the yml corresponding

to the selected testbench (in ../config) with the correct GBT channels. The parameter to edit
is the LINK_DICT.

4. Make sure all the RUs are powered on.

5. Run
./testbench[_xyz].py log_input_power

Make sure that the current they draw is around 1.6 A (from 1.5 A to 1.8 A).
This means that the main FPGA (XCKU) is programmed and that you can use the XCKU FIFO
procedure. If it is around 1.0 A, you need to follow the PA3 I2C procedure.

Flashing the bitfile (via XCKU FIFO)

This paragraph describes the recommended way of loading the bitfile. It will take around 1 minute for
each RU.

• Run:
./testbench[|_xyz].py flash_all_rdo_bitfiles <BITFILE> \
[<bitfile start block list>] [<scrubfile start block list>] \
--use_ultrascale_fifo=True

NOTE: the bitfiles are available in the felix-server in
/home/maps/ycorrales/RU_bitstrem/RUv2_MVTX_build_0p9p0/. You will find 4 bitfiles
for each githash, ending in .bit, _bs.bit, _bs_ecc.bit, _ecc.bit. You need to enter
the BITFILE_PATH to any of the four bitfiles: the script will select the correct type for you. To
generate the 4 bitfiles after generating the main bitstream in RU_mainFPGA, Run:
make create_ecc_bitfiles

NOTE: the --use_ultrascale_fifo=True, default, option requires a bitfile with the wb2fifo module
implemented. It is present from RU v0.1.7, it is NOT present in the powerunit_controller
v0.2 and earlier: follow the PA3 I2C procedure.

NOTE: the <bitfile start block list> and <scrubfile start block list> are the addresses
of the bitfiles on the flash. They can be either a value or a list of values (with length, the same as
the RU list). They have to be TWO DIFFERENT VALUES per RU and they have to be bigger
than 0x100. Use 0x100 and 0x200 as default and increase them by 0x100 if the whole procedure
does not work (keep in mind that they cannot be overlapping).

48

Flashing the bitfile (via PA3 I2C)

This paragraph describes the fallback way of loading the bitfile. It will take around 10 minutes for
each RU.

• Run:
./testbench[|_xyz].py flash_all_rdo_bitfiles <BITFILE> \
[<bitfile start block list>] [<scrubfile start block list>] \
--use_ultrascale_fifo=False

Flashing the golden bitfile (via XCKU FIFO)

The flash memory contains a "golden" bitfile which can be used in case of problems with a recently
loaded bitfile in the main bitfile location. The goldfile location shouldn’t overlap the locations of the
main bitfile and scrubfile locations. If a goldfile has previously been loaded, its location will automat-
ically reused in the command below (i.e. optional argument --goldfile_block is not needed). In
order to (re-) load this golden image (and an associated scrubfile image), use the following command:

• Run:
./testbench[|_xyz].py flash_all_rdo_goldfiles <BITFILE_PATH> \
[--goldfile_block=<goldfile start block list>] \
--gold_scrubfile_block=<goldscrubfile start block list> \
[--use_ultrascale_fifo=True]

Loading the bitfile into the FPGA • Run:
./testbench[|_xyz].py program_all_xcku

49

MVTX_RDO_IBTB_SCH

-

MVTX

12/13/17

Alex Tkatchev

Inner Barrel Transition Board

Los Alamos National Laboratory

<Check Date>

<Inst Ticket Date>

<Inst Ticket #>

B

1

1

SCALE:

REV:

SIZE:

EXPERIMENT:

A

B

C

D

DRAWN:

DATED:

DATED:

CHECKED:

QUALITY CONTROL

DATED:

DATED:

INST TICKET #

COMPANY:

TITLE:

DRAWING NO:

1

2

3

4

5

6

ECO NO:

LTR

APPROVED:

DATE:

REVISION RECORD

SHEET: OF

<SCALE>

<Checked By>

<QC By>

<QC Date>

SHEET NAME:

LAST SAVED:

<undefined>

1/8/2018

D

C

B

A

Alex Tkatchev

GND

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17

A18

A19

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

B16

B17

B18

B19

G1

G2

J2

UEC5-019-1-X-D-RA-1-A

GND

GND

1

2

3

4

5

6

7

8

9

10

G1

G2

J6

UCC8-010-1-X-S-1-A

GND

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17

A18

A19

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

B16

B17

B18

B19

G1

G2

J3

UEC5-019-1-X-D-RA-1-A

GND

GND

1

2

3

4

5

6

7

8

9

10

G1

G2

J7

UCC8-010-1-X-S-1-A

GND

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17

A18

A19

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

B16

B17

B18

B19

G1

G2

J4

UEC5-019-1-X-D-RA-1-A

GND

GND

1

2

3

4

5

6

7

8

9

10

G1

G2

J8

UCC8-010-1-X-S-1-A

GND

GND

1

2

3

4

5

6

7

8

9

10

G1

G2

J9

UCC8-010-1-X-S-1-A

GND

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17

A18

A19

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

B16

B17

B18

B19

G1

G2

J5

UEC5-019-1-X-D-RA-1-A

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

J10-A

QMS-104-01-XX-D-EM2

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

J10-B

QMS-104-01-XX-D-EM2

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

J10-C

QMS-104-01-XX-D-EM2

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

J10-D

QMS-104-01-XX-D-EM2

C
4

1
u
f

R
2

4
7
k

C
1

1
u
f

C
2

1
u
f

C
3

1
u
f

C
5

1
u
f

C
6

1
u
f

R
1

4
7
k

C
7

1
u
f

R
3

4
7
k

C
8

1
u
f

C
9

1
u
f

C
1
0

1
u
f

C
1
1

1
u
f

C
1
2

1
u
f

R
4

4
7
k

C
1
3

1
u
f

R
5

4
7
k

C
1
4

1
u
f

C
1
5

1
u
f

C
1
6

1
u
f

C
1
7

1
u
f

C
1
8

1
u
f

R
6

4
7
k

C
1
9

1
u
f

R
7

4
7
k

C
2
0

1
u
f

C
2
1

1
u
f

C
2
2

1
u
f

C
2
3

1
u
f

C
2
4

1
u
f

R
8

4
7
k

J2_IB_D0_N

J2_IB_D0_P

J2_IB_D1_N

J2_IB_D1_P

J2_IB_D2_N

J2_IB_D2_P

J2_IB_D3_N

J2_IB_D3_P

J2_IB_D4_N

J2_IB_D4_P

J2_IB_D5_N

J2_IB_D5_P

J2_IB_D6_N

J2_IB_D6_P

J2_IB_D7_N

J2_IB_D7_P

J2_IB_D8_N

J2_IB_D8_P

J2_IB_DCLK_N

J2_IB_DCLK_P

J2_IB_DCTRL_N

J2_IB_DCTRL_P

J3_IB_D0_N

J3_IB_D0_P

J3_IB_D1_N

J3_IB_D1_P

J3_IB_D2_N

J3_IB_D2_P

J3_IB_D3_N

J3_IB_D3_P

J3_IB_D4_N

J3_IB_D4_P

J3_IB_D5_N

J3_IB_D5_P

J3_IB_D6_N

J3_IB_D6_P

J3_IB_D7_N

J3_IB_D7_P

J3_IB_D8_N

J3_IB_D8_P

J3_IB_DCLK_N

J3_IB_DCLK_P

J3_IB_DCTRL_N

J3_IB_DCTRL_P

J4_IB_D0_N

J4_IB_D0_P

J4_IB_D1_N

J4_IB_D1_P

J4_IB_D2_N

J4_IB_D2_P

J4_IB_D3_N

J4_IB_D3_P

J4_IB_D4_N

J4_IB_D4_P

J4_IB_D5_N

J4_IB_D5_P

J4_IB_D6_N

J4_IB_D6_P

J4_IB_D7_N

J4_IB_D7_P

J4_IB_D8_N

J4_IB_D8_P

J4_IB_DCLK_N

J4_IB_DCLK_P

J4_IB_DCTRL_N

J4_IB_DCTRL_P

J5_IB_D8_N

J5_IB_D8_P

J5_IB_DCLK_N

J5_IB_DCLK_P

J5_IB_DCTRL_N

J5_IB_DCTRL_P

J2_IB_D8_N

J2_IB_D8_P

J2_IB_D7_N

J2_IB_D7_P

J2_IB_D6_N

J2_IB_D6_P

J2_IB_D5_N

J2_IB_D5_P

J2_IB_DCTRL_N

J2_IB_DCTRL_P

J2_IB_D4_N

J2_IB_D4_P

J2_IB_D3_N

J2_IB_D3_P

J2_IB_D2_N

J2_IB_D2_P

J2_IB_D1_N

J2_IB_D1_P

J2_IB_DCLK_P

J2_IB_DCLK_N

J2_IB_D0_N

J2_IB_D0_P

J3_IB_DCTRL_N

J3_IB_DCTRL_P

J3_IB_D8_N

J3_IB_D8_P

J3_IB_D7_N

J3_IB_D7_P

J3_IB_D6_N

J3_IB_D6_P

J3_IB_D5_N

J3_IB_D5_P

J3_IB_D4_N

J3_IB_D4_P

J3_IB_D3_N

J3_IB_D3_P

J3_IB_DCLK_P

J3_IB_DCLK_N

J3_IB_D2_N

J3_IB_D2_P

J3_IB_D1_N

J3_IB_D1_P

J3_IB_D0_N

J3_IB_D0_P

J4_IB_D8_N

J4_IB_D8_P

J4_IB_D7_N

J4_IB_D7_P

J4_IB_D6_N

J4_IB_D6_P

J4_IB_D5_N

J4_IB_D5_P

J4_IB_DCTRL_N

J4_IB_DCTRL_P

J4_IB_DCLK_P

J4_IB_DCLK_N

J5_IB_DCLK_P

J5_IB_DCLK_N

J4_IB_D0_N

J4_IB_D0_P

J5_IB_D8_N

J5_IB_D8_P

J4_IB_D1_N

J4_IB_D1_P

J4_IB_D3_N

J4_IB_D3_P

J4_IB_D2_N

J4_IB_D2_P

J4_IB_D4_N

J4_IB_D4_P

J5_IB_DCTRL_N

J5_IB_DCTRL_P

Figure 62: MVTX Readout Unit Inner Barrel Transition Board Schematic

50

Figure 63: MVTX Readout Unit Inner Barrel Transition Board Fabrication Drawing

51

Figure 64: RDOv1 Modification Records

52

Figure 65: RDOv1 GT Mapping notes 1

53

Figure 66: RDOv1 GT Mapping notes 2

54

Figure 67: RDOv1 GT Mapping scratch pad

55

4 Back End Electronics
4.1 Description

The sPhenix MVTX detector will use the Front-End Link eXchange (FELIX) system (developed for
ATLAS upgrade) as a Data Aggregation, Data Formatting, and Data Acquisition infrastructure. The FELIX
system will distribute Clock, Slow Control, and Trigger to the RU and ALPIDE.

FELIX will serve as a PC-based gateway interfacing custom radiation tolerant optical links to PCIe
Gen3. Figure 68

Figure 68: FELIX Block Diagram

56

Figure 69 shows FELIX firmware architecture which primarily consists of 1) GBT-FPGA core, also
referred to as “GBT wrapper,” 2) the Central Router for internal data multiplexing, 3) the Timing and
Trigger TTC decoder and 4) the DMA engine and PCIe engine referred to as “Wupper.” The full list of
top-level firmware modules is given in table 3.

The number of GBT links in the FELIX firmware, and other implementation-time options (listed in
Table 4), are set in the implementation script do_implementation_BNL711.tcl. These options are set as
generic parameters in the firmware. This allows the same firmware project to be used to generate bitstreams
with different features, or for different hardware.

Figure 69: FELIX Firmware Diagram

4.2 GBT wrapper
The GBT wrapper is the bidirectional interface connecting the RU to FELIX via an optical link. The

IP core was developed by CERN as part of the GBT-FPGA project and later enhanced by Kai Chen. The
clocking methodologies will be described at a later time QPLL vs. CPLL. The difference between the GBT
mode and full mode will also be explained at a later time. The MVTX detector will use GBT protocol.

57

Table 3: Top-level modules in the FELIX firmware.

name number of instances description
upstream_fanout_selector 1 mux used to enable/disable sending triggers to FE-

LIX_gbt_wrapper_KCU inputs
FELIX_gbt_wrapper_KCU 1 FPGA implementation of GBT protocol
downstream_fanout_selector 1 mux connecting the FELIX_gbt_wrapper_KCU out-

puts and gbt_inbuf inputs
gbt_inbuf GBT_NUM buffers and packs data words from GBT inputs
rrarbiter 1 arbitrates data transfer from gbt_inbuf buffers to

Wupper input FIFO
wupper 2 PCIe/DMA engine
register_map_sync 2 clock domain crossing between PCIe clock and 40

MHz clock
clock_and_reset 1 instantiates MMCM clock managers, generates reset

when clock is lost
housekeeping_module 1 interface between register map and onboard devices

(I2C, enable pins)
pex_init 1 initialize PEX8732 PCIe switch (I2C, hard-coded)

not used for MVTX
HDLC_TXRX_WRAPPER 1 interfaces GBT slow control links (IC/EC) to the FE-

LIX register map
debug_port_module 1 output certain signals on test points
ttc_wrapper 1 interface to ADN2814 CDR, decodes ATLAS TTC

protocol
TTCdataSwitch 1 switch between received TTC data and an emulator
ttc_busy 1 drives busy output
LMK03200_wrapper 1 initialize LMK03200 jitter cleaner (SPI, hard-

coded)

58

Table 4: Options in the do_implementation_BNL711.tcl script.

name typical value description
CARD_TYPE 711 code indicating the board type (VC-709, HTG-710,

FLX-711), selects FPGA-specific (Virtex-7 vs. Kin-
tex Ultrascale) behavior

GENERATE_GBT true generate the firmware blocks in the GBT data path
(rrarbiter, gbt_inbuf, FELIX_gbt_wrapper_KCU,
upstream_fanout_selector)

DEBUG_MODE false in debug_port_module.vhd, enable debug output to
test points

GBT_NUM 6 number of GBT links
PLL_SEL CPLL PLL (CPLL or QPLL) type for the GTH transceivers

used for GBT
USE_BACKUP_CLK true use onboard fixed oscillator (vs. TTC clock)
AUTOMATIC_CLOCK_SWITCH false automatic switching between onboard and TTC

clocks
NUMBER_OF_INTERRUPTS 8 number of interrupts per Wupper PCIe/DMA engine
NUMBER_OF_DESCRIPTORS 2 number of descriptors per Wupper PCIe/DMA en-

gine
PCIE_PLACEMENT SLR0 which side of the FPGA to place the second PCIe

endpoint (differs between FELIX v1.5 and v2.0)

The wrapper integrates several GBT links. Figure 70 shows a block diagram of a single GBT link or
the actual channel. It is composed of a GBT and GTH IP. The GBT IP consists of GBT Tx (that scrambles
and encodes the transmitted parallel data), and GBT Rx (that aligns, decodes and descrambles the incoming
data stream) which implement the GBT protocol. The GTH IP consists of the Multi-Gigabit Transceiver
(MGT) (that serializes, transmits, receives and de-serializes the data). The MGT is the dedicated Serial-
izer/Deserializer (SerDes) in the FPGA . CPLL and QPLL are inside the MGT. Figure 71 shows a detailed
block diagram of the GBT and GTH IP. The following section describes each block and the GBT frame
shown in figure 105

DC-balance of the data being transmitted over the optical fiber is ensured by scrambling the data. For
forward error correction the scrambled data and the header are Reed-Solomon encoded before serialization.
The 84-bits (80 bits data, 2 bits IC and 2 bits EC) are first processed by the scrambler, the header is then
added (4 bits), the Reed- Solomon (RS) encoding and interleaving takes place and finally the data is serial-
ized. While the scrambler maintains the word size, the RS encoder adds the 32-bit Forward Error Correction
(FEC) field adding up to a total frame length of 120 bits. This leads to an overall line code efficiency of
84/120 = 70 percent. At the receiver end the inverse operations are repeated in the reverse order. The fact
that RS encoding and decoding are the first and the last operations to be done respectively at the transmitter
and receiver (before transmission and after reception) ensures that transmission errors do not get multiplied
by the scrambler operation.

4.3 Data Processing

59

Figure 70: GBT Wrapper

Figure 71: GBT TX RX Block Diagram

60

Figure 72: FELIX MVTX Datapath

Figure 73: Detailed FELIX MVTX Datapath with FIFO

Figure 74: FELIX MVTX Clock Domains

61

4.4 Wupper
The Wupper core is a module of the FELIX firmware that provides Direct Memory Access for the 256

bit wide AXI4-Stream interface of the Xilinx Kintex Ultrascale XCKU115 FPGA Gen3 Integrated Block
for PCI Express (PCIe) endpoint IP. The main purpose of Wupper is to handle data transfers from a user
interface, i.e a FIFO (croutFIFO), to and from the host PC memory (server that holds FELIX). A standard
FIFO (croutFIFO) is used with the same width as the Xilinx AXI4-Stream interface (256 bits) and runs at
250MHz. The event header state machine shown in Figure 69 writes to the croutFIFO. Wupper handles
the transfer into Host PC memory, according to the addresses specified in the DMA descriptors. Several
descriptors can be queued, up to a maximum of 8, and they will be processed sequentially one after the
other. The other functionality supported by Wupper is the access to control and monitor registers inside the
FPGA, and the surrounding electronics, via a simple register map.

Figure 75: Wupper Package Overview

The Wupper core moves data bidirectionally to a memory without CPU intervention. This method is
used for handling large amounts of data, which is crucial for throughput intensive applications. During a
DMA transfer, the DMA control core will take control according to the information provided by a DMA
descriptor, and by flagging completion of operations in a per-descriptor status register.

The Xilinx PCIe EndPoint IP core is configured as a PCI express Gen3 (8.0GT/s) End Point with 8 lanes
and the Physical Function (PF0) max payload size is set to 1024 bytes. AXI-ST Frame Straddle is disabled
and the client tag is enabled. All other options are set to default, the reference clock frequency is 100MHz
and the only option for the AXI4-Stream interface is 256 bit at 250MHz

Each Xilinx PCIe endpoint IP creates a memory map containing the three PCIe BARs specified in the
IP configuration. Each BAR requests a specific region of the host PC RAM. The BARs are divided in three
regions: BAR0, BAR1 and BAR2. BAR stands for Base Address Region. Every BAR has 1 MB of address
space. Please refer to the PCIe Appendix for additional details.

BAR0 contains registers associated with DMA, like the DMA descriptors. The descriptors specify
the addresses, transfer direction, size of the data and an enable line. BAR1 is reserved for the interrupt
mechanism and consists of 8 vectors. BAR2 is used for Control and monitoring to user applications. Inside
the Wupper core a DMA read/write process, sends and receives AXI4 commands over the AXI4-Stream
bus. The PCIe translates this into differential electrical signals.

Wupper manages a set of DMA descriptors, with an address, a read/write flag, the transfer size (number
of 32 bit words) and an enable line. These descriptors are mapped as normal PCIe memory or IO registers.
Besides the descriptors and the enable line (one per descriptor), a status register for every descriptor is pro-
vided in the register map. In accordance with the AXI4-Stream the interface does not contain any addresses
but instead, address and other information are supplied in the header of each PCIe Transaction Layer Packet

62

Figure 76: Wupper PCIe interface

(TLP). Please see PCIe and AXI appendix, where more details regarding TLP are discussed.
Figure 81 shows the Wupper block diagram which consists of two primary parts DMA_control and

DMA_read_write, which are described in detail later in this section. These handle bidirectional data transfer
through DMA, and register reads and writes. The Wupper core can also fire MSI-X (Message Signaled
Interrupt eXtended) type interrupts by means of the interrupt controller.

The throughput achievable is the theoretical maximum throughput of 64 Gb/s of an 8-lane Gen3 PCIe
interface. However, the 16-lane PCIe interface of the FELIX provides a theoretical maximum throughput
of 128Gb/s. This is supported by using two instances of the Wupper engine and by splitting the 16 lanes in
two sets of 8 lanes, with each set handled by a Wupper engine.

Each DMA transfer To and From Host is achieved by means of setting up descriptors on the server side,
which are then processed by Wupper. The descriptors are set in the BAR0 section of the register map. Please
see excerpt below.

4.4.1 DMA Operation
Every descriptor has a set of registers (summarized in Table 5), with the following specific functions:

• DMA_DESC_x: the register containing the start (start address) and the end (end address) memory
addresses of a DMA transfer; both handled by the server (software API).

• DMA_DESC_xa: integrates the information above by adding (i) the status of the read pointer on the
server side (rd pointer), (ii) the wrap around functionality enabling (wrap around), (iii) the FromHost
(“1”) and ToHost (“0”) transfer direction bit (read write), and (iv) the number of 32 bits words to be
transferred (num words)

• DMA_DESC_STATUS: status of a specific descriptor including (i) wrap around information bits
(even pc and even dma), (ii) completion bit (desc done, (iii) DMA pointer current address (current
address)

• DMA_DESC_ENABLE: the descriptors enable register (dma desc enable), one bit per descriptor

In the MVTX software, the DMA is usually initialized through the dma_to_host() function of the
FlxCard library, which is shown in Listing 3.

Endless DMA with a circular buffer and wrap around The DMA is configured in endless DMA mode
where the DMA wraps around at the start address once the end address has been reached. In other words
the DMA buffer is full, so if the DMA is not read out it will over write the data at the starting address. The
functionality is enabled by setting the wrap around but to ‘1’.

63

Table 5: DMA descriptor definition. The descriptor fields (DMA_DESC_x and DMA_DESC_xa) are written by software; with the
exception of RD_POINTER, they are set before the descriptor is enabled. The status fields (DMA_DESC_STATUS_x) are written
by the Wupper firmware and update while the descriptor is enabled.

Address Name/Field Bits Type Description
0x0000 DMA_DESC_0

END_ADDRESS 127:64 W End Address
START_ADDRESS 63:0 W Start Address

0x0010 DMA_DESC_0a
RD_POINTER 127:64 W server Read Pointer
WRAP_AROUND 12 W Wrap around
READ_WRITE 11 W 1: FromHost/ 0: ToHost
NUM_WORDS 10:0 W Number of 32 bit words

. . .
0x0200 DMA_DESC_STATUS_0

EVEN_PC 66 R Even address cycle server
EVEN_DMA 65 R Even address cycle DMA
DESC_DONE 64 R Descriptor Done
CURRENT_ADDRESS 63:0 R Current Address

. . .
0x0400 DMA_DESC_ENABLE 7:0 W Enable descriptors 7:0. One bit per de-

scriptor. Cleared when Descriptor is
handled.

typedef struct
{

volatile u_long start_address; /* low half, bits 63:00 */
volatile u_long end_address; /* low half, bits 127:64 */
volatile u_long tlp :11; /* high half, bits 10:00 */
volatile u_long read : 1; /* high half, bit 11 */
volatile u_long wrap_around : 1; /* high half, bit 12 */
volatile u_long reserved :51; /* high half, bits 63:13 */
volatile u_long read_ptr; /* high half, bits 127:64 */

} dma_descriptor_t;

typedef struct
{

volatile u_long current_address; /* bits 63:00 */
volatile u_long descriptor_done : 1; /* bit 64 */
volatile u_long even_addr_dma : 1; /* bit 65 */
volatile u_long even_addr_pc : 1; /* bit 66 */

} dma_status_t;

Listing 1: DMA descriptor structs in software (from FlxCard.h)

64

type dma_descriptor_type is record
start_address : std_logic_vector(63 downto 0);
current_address : std_logic_vector(63 downto 0);
end_address : std_logic_vector(63 downto 0);
dword_count : std_logic_vector(10 downto 0);
read_not_write : std_logic; --1 means this is a read descriptor, 0: write

descriptor↪→

enable : std_logic; --descriptor is valid
wrap_around : std_logic; --1 means when end is reached, keep enabled

and start over↪→

evencycle_dma : std_logic; --For every time the current_address
overflows, this bit toggles↪→

evencycle_pc : std_logic; --For every time the pc pointer overflows,
this bit toggles.↪→

pc_pointer : std_logic_vector(63 downto 0); --Last address that the PC has
read / written. For write: overflow and read until this cycle.↪→

end record;

type dma_status_type is record
descriptor_done: std_logic; -- means the dma_descriptor in the array above has

been handled, the enable field should then be cleared.↪→

end record;

Listing 2: DMA descriptor structs in firmware (from pcie_package.vhd). Note the division between “descriptor” and “status”
differs from the software definition.

65

/***/
void FlxCard::dma_to_host(u_int dma_id, u_long dst, size_t size, u_int flags)
/***/
{

DEBUG_TEXT(DFDB_FELIXCARD, 15, "FlxCard::dma_to_host: Method called with dma_id =
" << dma_id << ", dst = 0x" << HEX(dst) << ", size = " << size << ", flags =
" << flags);

↪→

↪→

dma_stop(dma_id);

m_bar0->DMA_DESC[dma_id].start_address = dst;
m_bar0->DMA_DESC[dma_id].end_address = dst + size;
m_bar0->DMA_DESC[dma_id].tlp = m_maxTLPBytes / 4;
DEBUG_TEXT(DFDB_FELIXCARD, 20, "FlxCard::dma_to_host: m_bar0->DMA_DESC[" <<

dma_id << "].tlp = " << m_maxTLPBytes / 4);↪→

m_bar0->DMA_DESC[dma_id].read = 0;
m_bar0->DMA_DESC[dma_id].wrap_around = (flags & FLX_DMA_WRAPAROUND) ? 1 : 0;
m_bar0->DMA_DESC[dma_id].read_ptr = dst;

if(m_bar0->DMA_DESC_STATUS[dma_id].even_addr_pc ==
m_bar0->DMA_DESC_STATUS[dma_id].even_addr_dma)↪→

{
// Make 'even_addr_pc' unequal to 'even_addr_dma', or a (circular) DMA won't

start!?↪→

--m_bar0->DMA_DESC[dma_id].read_ptr;
++m_bar0->DMA_DESC[dma_id].read_ptr;

}

m_bar0->DMA_DESC_ENABLE |= 1 << dma_id;
DEBUG_TEXT(DFDB_FELIXCARD, 15, "FlxCard::dma_to_host: DMA started");

}

Listing 3: DMA initialization command. This is called by dmaStart() in daq_device_felix, with arguments
dma_to_host(_dma_index, _cmemPhysAddr, _buffer_size, FLX_DMA_WRAPAROUND).

66

The server software provides another address name (PC readpointer) which indicates where the software
last read out the memory. After wrapping around the DMA core will transfer To Host memory until the PC
read pointer is reached. The server read pointer is updated more often than the wrap-around time of the
DMA.

In order to determine whether Wupper is processing an address behind or in front of the server, Wupper
keeps track of the number of wrap around occurrences. In the DMA status registers the even cycle bits
displays the status of the wrap-around cycle. In every even cycle (starting from 0), the bits are 0, and every
wrap around the status bits will toggle. The even pc bit flags a PC read pointer wrap-around, the even dma
a Wupper wrap-around. By looking at the wrap-around flags the server software can also keep track of its
own wrap-arounds. Note that while in the endless DMA mode (wrap around bit set), the PC read pointer is
be maintained by the server software and kept within the start and end address range for Wupper to function
correctly. The diagram below shows the two pointers racing each other, and the different scenarios in which
they can be found with respect to each other.

Figure 77: Endless DMA To Host mode

Figure 77 shows Endless DMA buffer and pointers representation diagram in ToHost mode

• A : start condition, both the server and the DMA have not started their operation.

• B : normal condition, the PC read pointer stays behind the DMA’s current address

• C : normal condition, the DMA’s current address has wrapped around and has to stay behind the PC
read pointer

• D : the server is reading too slow, the DMA is stalled because the server read pointer is not advancing
fast enough, the DMA current address has to stay behind.

Figure 78 Shows Endless DMA buffer and pointers representation diagram in FromHost mode

• A : start condition, both the server and the DMA have not started their operation.

• B : normal condition, the DMA’s current address stays behind the PC read pointer

67

Figure 78: End less DMA From Host mode

• C : normal condition, the PC read pointer has wrapped around and has to stay behind the DMA’s
current address

• D : the server is writing too slow, the DMA is stalled because the server read pointer is not advancing
fast enough, the DMA current address has to stay behind.

4.4.2 Interrupts
The MSI-X Interrupt table contains eight interrupts; this number can be extended by a generic parameter

in the firmware. Four of the interrupts, [0..3], are dedicated to Wupper, four interrupts, [4..7], are called from
the logic implemented before the wupper. The interrupts are detailed in the Table below.

Table 6: PCIe interrupts

Interrupt Name Description
0 FromHost wrap around This interrupt is fired when the FromHost descriptor

reaches the end address, or wraps around
1 ToHost wrap around This interrupt is fired when the ToHost descriptor

reaches the end address, or wraps around
2 ToHost Available Fired when data becomes available in the ToHost FIFO

(falling edge of ToHostFifoProgEmpty)
3 FromHost Full Fired when the FromHost FIFO becomes full (rising edge

of FromHostAppFifoProgFull)
4 Test interrupt #4 Fired when writing data to address BAR2 + 0x7800
5 crDownXoff ToHost combined full flags (CR xoff)
6 ToHost Prog Full Fired when the ToHost FIFO becomes filled above a

programmable threshold
7 ToHost Full Fired when the ToHost FIFO becomes full

Table 6 shows Interrupts 0 to 3 are generated by dma_control when controlling the DMA controller

68

and handling the descriptors. Interrupt 0 and 1 have the same functionality, but serve in the other direction
(ToHost and FromHost). These interrupts fire when the END ADDRESS in the corresponding descriptor
was reached. In endless DMA mode, interrupt 0 and 1 are set every time the END ADDRESS is reached,
indicating that the DMA controller wraps back to START ADDRESS, but continues operation. Interrupt 2
is fired when enough data has arrived in the ToHost fifo to fill at least one TLP of data. Interrupt 3 is fired
when the FromHost fifo reaches the prog full state, this is a usual thing to happen as the threshold of this
fifo is set at a low level.

The server software does not need to take any action on this interrupt as the Wupper core will regulate
itself. Interrupt 4 is a special test interrupt that can be fired by writing the interrupt test register in the register
map. Interrupt 5 is fired when one of the channel (ELINK) fifo‘s becomes full, at this point also the XOFF
bit is set on the lemo connector on the TTCfx v3 board. Interrupt 6 and 7 indicate the full flag (and prog full
which has a lower threshold but has the same functionality) of the ToHost fifo was set.

4.4.3 Xilinx PCIe EndPoint Core AXI4-Stream interface
The interface has the advantage that it has two separate bidirectional AXI4-Stream interfaces. The two

interfaces are the requester interface, with which the FPGA issues the requests and the PC replies, and the
completer interface where the PC takes initiative. The Completer reQuest cq and Completer Completer are
typically used for register access. The Requester reQuest and Requester Completer are used for the high
speed DMA access.

Figure 79: Xilinx PCIe CQ CC RC RQ

—————————————————————————– completer
interface
under con-
struction

completer
interface
under con-
struction

Completer Interface
This interface maps the transactions (memory, I/O read/write, messages, Atomic Operations) received

69

bus Description Direction
axis_rq Requester reQuest. This interface is used for DMA, the FPGA

takes the initiative to write to this AXI4-Stream interface and the
PC has to answer.

FPGA→ PC

axis_rc Requester Completer. This interface is used for DMA reads
(from PC memory to FPGA), this interface also receives a reply
message from the PC after a DMA write.

PC→ FPGA

axis_cq Completer reQuest. This interface is used to write the DMA de-
scriptors as well as some other registers.

PC→ FPGA

axis_cc Completer Completer. This interface is used as a reply inteface
for register reads, as well as a reply header for a register write.

FPGA→ PC

Table 7: AXI4-Stream streams

from the PCIe link into transactions on the Completer reQuest (CQ) interface based on the AXI4-Stream
protocol. The completer interface consists of two separate interfaces, one for data transfers in each direc-
tion.The CQ interface is for transfer of requests (with any associated payload data) to the user application,
and the Completer Completion (CC) interface is for transferring the Completion data (for a Non-Posted re-
quest) from the user application for forwarding on the link. The two interfaces operate independently. That
is, the integrated block can transfer new requests over the CQ interface while receiving a Completion for a
previous request. —————————————————————————–

A transaction layer packet (TLP) is transferred on each of the AXI4-Stream interfaces as a descriptor
followed by payload data (when the TLP has a payload). The descriptor has a fixed size of 16 bytes on the
request interfaces and 12 bytes on the completion interfaces.

On its transmit side (towards the link), the integrated block assembles the TLP header from the parame-
ters supplied by the user application in the descriptor.

On its receive side (towards the client), the integrated block extracts parameters from the headers of
received TLP and constructs the descriptors for delivering to the user application.

When a payload is present, Dword-aligned mode and Address-Aligned Mode are two options for align-
ing the first byte of the payload with respect to the datapath. The DMA uses Dword-aligned mode, the
descriptor bytes are followed immediately by the payload bytes in the next Dword position, whenever a
payload is present.

4.4.4 Firmware Components
The two main parts dma_control and dma_read_write are described above this section will highlight

more detail regarding each block in Figure 82.
The Wupper Core is divided into two parts:

1. DMA Read Write This entity contains the process to parse the DMA descriptors and transfer the data
from the FIFO to the AXI stream bus and vise versa.

The DMA read and write module handles the transfer from the FIFO‘s according to the direction speci-
fied by the descriptors. If data shifts into the down FIFO, a non-empty flag will be asserted to start the DMA
write process, this direction of the flow is defined as the “down link”. This process reads the descriptors and
creates a header with the information. The header is added when the data shifts out of the down FIFO. For
the reversed situation, the data with a header is read from the PC memory. This direction of the flow is then

70

Figure 80: Block Diagram Client Interface: Left side is the PC/software interface, right side (client) is the FPGA/firmware interface

71

Figure 81: Wupper Block Diagram

Figure 82: Wupper Inheritance Diagram

72

defined as “up link”. The information in the header will be parsed by the DMA control and the data fed to
the up FIFO.

This DMA Read Write entity contains two state machines that control the AXI-Stream signals for the
axis_rc Requester Completer (PC to FPGA) and axis_rq Requester reQuest (PC to FPGA) interfaces:

• ToHost / add_header: The first state machine drives the axis_rq interface to either request data from
the PC (for a read-mode DMA descriptor) or send data to the PC (for a write-mode DMA descriptor).
The descriptors are read and a header according to the descriptor is created. If the descriptor is a
ToHost descriptor, the payload data is read from the FIFO and added after the header.

• FromHost / strip_hdr: The second state machine responds to the axis_rc interface, and processes
the data received in response to a request sent by add_header. The header of the received data is
removed and the length is checked; then the payload is shifted into the FIFO.

Figure 83 shows the DMA ToHost process reads the current descriptor and requests a read or write to
the server memory. If the descriptor is set to ToHost, it also initiates a FIFO read and adds the data into the
payload of the PCIe TLP (Transaction Layer Packet). When the descriptor is set to FromHost this process
only creates a header TLP with no payload, to request a certain amount of data from the server memory that
fits in one TLP.

Figure 83: DMA flow for the axis_rq (to PC) interface. This is implemented partly in the add_header state machine of
dma_read_write and partly in dma_control.

The add_header state machine, diagrammed in Figure 84, transitions out of IDLE state if axis_rq.tready
is asserted by the PCIe endpoint, the active DMA descriptor is enabled (enable is set high), and the relevant
FIFO is ready (if the descriptor is in read mode, the FIFO for data transfer to the user application is not full;
if the descriptor is in write mode, the FIFO for data transfer from the user application is not empty). When

73

this happens, the descriptor_done field of the descriptor is For a read-mode descriptor, the state machine
transitions to START_READ state and drives the axis_rq interface is driven with a memory read transaction
as shown in Figure 85. Only the descriptor is sent, so the transaction is always a single AXI transfer (tlast
is immediately asserted). For a write-mode descriptor, the state machine transitions to START_WRITE state
and drives the axis_rq interface is driven with a memory write transaction as shown in Figure 86. The
START_WRITE state drives the first AXI transfer, which contains the descriptor and the first 128 bits of data
(four dwords). If more data needs to be transferred, the state machine transitions to CONT_WRITE state and
sends 256 bits of data in each AXI transfer.

Figure 84: dma_read_write_ add_header

Figure 88 shows the DMA FromHost process checks the size of the payload against the size in the TLP
header, the data will be pushed into the FromHost FIFO.

The strip_hdr state machine, diagrammed in Figure 89, transitions out of IDLE state and into PUSH_DATA
state if axis_rc.tvalid is asserted by the PCIe endpoint. This initiates a data transfer as shown in Figure
90. The state machine reads the dword count from the descriptor (shown in Figure 91), and pushes data into
the FIFO for data transfer to the user application until the correct number of dwords have been read or the
PCIe endpoint asserts tlast (in correct operation, both things should happen at the same time).

2. DMA Control This is the entity in which the descriptors are parsed and fed to the engine, and where
the status register of every descriptor can be read back through PCIe. DMA control contains a register map,
with addresses to the descriptors, status registers and external registers for the user application. Depending
on the address range of the descriptor, the pointer of the current address is handled by DMA Control and
incremented every time a TLP completes. DMA Control also handles the circular buffer DMA if this is
requested by the descriptor. DMA control contains a register map, with addresses to the descriptors, status
registers and external registers for the user space register map.

The DMA Control process always responds to a request with a certain req type from the server. It
responds only to IO and Memory reads and writes; for all other request types it will send an unknown
request reply. If the data in the payload contains more than 128 bits, the process will send a “completion
abort” reply and go back to idle state. The maximum register size has been set to 128 bits because this is a

74

Figure 85: Memory Read Transaction on the Requester Request Interface (Dword-Aligned Mode, 256-Bit Interface)

75

Figure 86: Memory Write Transaction on the Requester Request Interface (Dword-Aligned Mode, 256-Bit Interface)

Figure 87: Requester request descriptor format. The request type is “0000” for a memory read and “0001” for a memory write.
The address is the physical memory address of the first dword referenced by the request. The dword count is the number of 32-bit
dwords to be read or written. The add_header state machine in Wupper sets all other fields to 0.

76

Figure 88: DMA flow for the axis_rc (to FPGA) interface. This is implemented in the strip_hdr state machine of dma_read_write.

Figure 89: dma_read_write_ strip_header

77

Figure 90: Transfer of a Completion with Data on the Requester Completion Interface (Dword-Aligned Mode, 256-Bit Interface)

Figure 91: Requester completion descriptor format. Wupper reads the dword count, which is the number of 32-bit dwords in the
AXI packet. The strip_hdr state machine in Wupper ignores all other fields.

78

useful maximum register size; it is also the maximum payload that fits in one 250 MHz clock cycle of the
AXI4-Stream interface.

Figure 92: Flow of a register read or write. This is implemented in dma_control.

One part of dma_control (inside the comp process) is responsible for updating the descriptor status, as
shown in Figures 77 and 78, in response to DMA reads and writes requested by dma_read_write.

Several process statements maintain the register map. Reads and writes to the register map are handled
in the process regrw, which is clocked at clkDiv6 (1/6 of the 250 MHz PCIe endpoint clock, therefore
nominally 41.7 MHz). Since the state machine runs at the full PCIe endpoint clock, two processes handle
the synchronization between clock domains. regSync40 translates the read/write requests from the PCIe
endpoint clock to clkDiv6, and regSync250 translates the data and handshake responses to the PCIe end-
point clock. The DESCRIPTOR_ENABLE register is a special case: it is written on the PCIe endpoint clock but
read at clkDiv6.

The state machine in this unit (diagrammed in Figure 93) responds to the axis_cq Completer reQuest
(PC to FPGA) interface and drives the axis_cc Completer Completer (FPGA to PC) interface. The idle
state identifies the incoming descriptor following the Completer Request Descriptor Format for Memory
from pg156 Figure 94; the transaction follows the timing diagrams of Figure 95 (for a register write) or
Figure 96 (for a register read). If the request type is a memory or I/O read or write, the state machine
transitions to the READ_REGISTER or WRITE_REGISTER_READ state as appropriate. In the READ_REGISTER
state, the state machine requests a read from the register map and packs the requested register data onto the
axis_cc interface as shown in Figure 97. The state machine transitions to the WAIT_RW_DONE state when
the register map responds and the server asserts axis_cc.tready. In the WRITE_REGISTER_READ state, the
state machine requests a read from the register map2, and transitions to the WRITE_REGISTER_MODIFYWRITE

2This is necessary since the write may only affect part of the 128-bit register. To avoid changing the remainder of the register,
the current value must first be read.

79

state when the register map responds. In the WRITE_REGISTER_MODIFYWRITE state, the new value of the
register is written to the register map, and the completion is packed onto the axis_cc interface as shown
in Figure 97. The state machine transitions to the WAIT_RW_DONE state when the register map responds and
the server asserts axis_cc.tready. In the WAIT_RW_DONE state, the state machine waits until the register
map deasserts the done signal that was asserted in the previous state, then the state machine returns to IDLE
state. The axis_cq.tready signal is deasserted in all states other than IDLE, blocking the PCIe endpoint
from putting additional transactions on the axis_cq interface until the current one has been handled.

Figure 93: dma_control completer

Figure 94: Completer Request Descriptor Format for Memory I/O

pcie_ep_wrap.vhd Wrapper unit for the Xilinx UltraScale Gen3 Integrated Block for PCI Express v4.1
IP, and the clock generator

80

Figure 95: Memory Read Transaction on the Completer Request Interface (Dword-Aligned Mode, Interface Width = 256 Bits)

81

Figure 96: Memory Read Transaction on the Completer Request Interface (Dword-Aligned Mode, Interface Width = 256 Bits)

82

Figure 97: Transfer of a Normal Completion on the Completer Completion Interface (Dword-Aligned Mode, 256-Bit Interface)

intr_ctrl.vhd Implements the creation of MSIx interrupts. It may be triggered by either of the input bits
in interrupt_call or dma_interrupt_call.

pcie_ctl.vhd Contains a process to initialize some registers in the PCI express Gen3 core. Additionally it
reads the BAR0 BAR1 and BAR2 registers and outputs their values to be used by dma_control.

pcie_slow_clock.vhd Creates a slow clock of 40 MHz (41.667) by dividing the 250MHz clock by 6.

_fifo_din <= x"DEADBEEF"&cnt&x"00001111"&cnt&x"22223333"&cnt&x"44445555"&cnt;

Listing 4: simulation commands

The file /etc/init.d/drivers_flx allocates a 4 G space for the data. By passing the gfpba_size to the cmem
driver. You can make a larger memory space by changing the gfpbpa_size parameter.

Each PCIe instance of Wupper takes 1G of the 4 G space by default. You can get each instance to
allocate more by running fdaq with flag -b and desired buffer size.

A control buffer is also allocated that stores various control information for the descriptor.
PCIe0 and PCIe1 are aliased in firmware to the two Wupper cores

/etc/init.d/drivers_flx - Change gfpba_size and then reboot
flx-dma-stat -d 0 - Verifies the PCIe0 (Wupper instance)
flx-dma-stat -d 1 - Verifies the PCIe1 (Wupper instance)

cat /proc/mem_rcc

83

Figure 98: Simulation results

Figure 99: Simulation results

84

Figure 100: Simulation results

Figure 101: Simulation results

85

Figure 102: Simulation results

address_type_s <= s_axis_cq.tdata(1 downto 0);
register_address_s <= s_axis_cq.tdata(63 downto 2)&"00";
dword_count_s <= s_axis_cq.tdata(74 downto 64);
request_type_v := s_axis_cq.tdata(78 downto 75);
request_type_s <= request_type_v;
requester_id_s <= s_axis_cq.tdata(95 downto 80);
tag_s <= s_axis_cq.tdata(103 downto 96);
target_function_s <= s_axis_cq.tdata(111 downto 104);
bar_id_s <= s_axis_cq.tdata(114 downto 112);
bar_aperture_s <= s_axis_cq.tdata(120 downto 115);
transaction_class_s <= s_axis_cq.tdata(123 downto 121);
attributes_s <= s_axis_cq.tdata(126 downto 124);
register_data_s <= s_axis_cq.tdata(255 downto 128);

Listing 5: simulation commands

86

cat /etc/init.d/drivers_flx

Fdaq -d 0 -b 2048 Selects PCIe0 (Wupper instance 0), sets 2Gigs of the 4 Address Space
Fdaq -d 1 -b 0248 Selects PCIe1 (Wupper instance 1), sets 2G of the 4G Address Space

check this insmod felix.ko? gfpbpa_size 2048

Figure 103: Default Descriptor

Simulation
The directory firmware/simulation/pcie dma top contains all necessary files to run the simulation in

Mentor Graphics Modelsim or Questasim The directory contains a file modelsim.ini with some standard
information, it is assumed that one have the Xilinx Unisim VCOMPONENTS library compiled and the
location is defined in the environment variable $XILLIB.

Also the Library “work” has to be created in the project directory. The simulation project also relies
on a simulation model of the FIFOcore, which will be generated when the cores in the Vivado project are
generated. The file that should be generated is ../../Projects/pcie dma top/pcie dma top.srcs/sources 1/ip/fifo
generator 0 /fifo generator 0 funcsim.vhdl

Like the Vivado project, also the Questasim project is generated and operated using .tcl scripts. To create
and run the project execute the following commands from the Questasim console:

4.5 Device Drivers
The FELIX server software consists of four primary parts. 1) cmem_rcc.c, a device driver that allocates

large contiguous data buffers for data transfers from PCIe card interface to the host DMA (Direct Memory

87

cd firmware/simulation/Wupper/
#Create the project:
do project.do
#Start the simulation and load the waveforms:
do VSim_Functional.tcl
#Add stimuli to the AXI bus
do start.do
run 1us

Listing 6: simulation commands

Access). 2) flx.c, device driver for the FELIX PCIe interface. 3) FlxCard.cpp the user space library that
interfaces into the flx.c device driver, as well as serve as the configuration interface to various I2C and
SPI devices on the FELIX hardware. 4) daq_device_felix.cc interface between sPHENIX Data acquisition
RCDAQ and low level FELIX driver driver software (cmem_rcc.c and flx.c). The drivers are stored in
felix/software/drivers_rcc/src.

Figure 104: FELIX Software block Diagram

Another device driver is also available but not used in since it was primarily developed for debugging
and testing purposes, this is the io driver, derived from the io rcc driver, which provides access to PCIe
configuration and BAR registers and can also be used to write to and read from the buffer allocated by
cmem.

For loading the drivers (root privileges required) cd to DIRECTORY and type ./drivers felix start. The
script also creates the device files /dev/felix/, /dev/cmem and /dev/io. ./felix stop results in unloading of the

88

drivers and removal of the device files. After loading the drivers for each driver there is a file in the /proc
filesystem: /proc/felix, /proc/cmem and /proc/io respectively. The driver associated with the file is invoked
upon reading from one of these files and will output some information. With a “cat” shell command this
output can be displayed. Using the “echo” command, e.g..: echo “debug” > /proc/felix these files can be
used for controlling the driver, in the example the debug mode is switched on. Upon loading and unloading
the drivers output some log information, which can be inspected by means of the “dmesg” command.

Driver loading and unloading A driver can be loaded as follows, assuming that the user has the necessary
sudo rights: cd driver_location sudo insmod ./driver_name.ko

Unloading the driver, in case of the felix driver (use rmmod cmem or rmmod io for the cmem or io
driver) is done in this way: sudo rmmod felix

Device Drivers Common Methods This section will describe the methods in common between the cmem_rcc.c
and flx.c device driver. Figure 104 shows a block diagram of how the two low level device drivers com-
municate with FELIX as well as the rcdaq plugin daq_device_felix.cc. The second point that the diagram
tries to depict is how the data is moved between kernel and user space by way of the file operations struct.
The file operations struct is how the driver sets up the connections to device numbers. The struct is defined
in <linux/fs.h>, and is a collection of pointers. Each open file represented by the file struct is associated
with its own set of functions (by including a field called f_op that points to a file_operations structure). The
operations mostly implement system calls and are therefore, named open, read, and so on. Consider it to be
an “object” and the functions operating on it to be its “methods.”

static struct file_operations fops =
{

.owner = THIS_MODULE,

.unlocked_ioctl = cmem_rcc_ioctl,

.open = cmem_rcc_open,

.mmap = cmem_rcc_mmap,

.release = cmem_rcc_release,

.read = cmem_rcc_proc_read,

.write = cmem_rcc_proc_write,
};

Listing 7: struct file_operations for cmem_rcc.c

For interaction with the driver by a user program is to first obtain a file descriptor by means of an
open system call for either /dev/felix, u_int FlxCard::number_of_cards(void) in FLXCard.cpp. /dev/cmem,
daq_device_felix::cmemAllocate in daq_device_felix.cc.

module_init() and module_exit are kernel macros that inform the kernel to invoke these functions once
the module is loaded or removed using insmod/modprobe command. The init macro adds a section to
the modules object code where the module’s initialization function is to be found. The init functions also
contains kernel registration function. The module_exit macro informs the kernel of the location of the clean
up code. The two functions called by the kernel macros are described below.

The kernel module can accept parameters from the command line using insmod/modprobe. The param-
eters are declared using the mode_param_macro which is defined in moduleparam.h. module_param which
is in both device drivers (example in Listing 10) takes three parameters: the name of the variable, its type,

89

struct file_operations fops =
{

.owner = THIS_MODULE,

.mmap = flx_mmap,

.unlocked_ioctl = flx_ioctl,

.open = flx_open,

.read = flx_read_procmem,

.write = flx_write_procmem,

.release = flx_Release,
};

Listing 8: struct file_operations for flx.c

fd = open("/dev/flx", O_RDWR);
_cmemHandle = open("/dev/cmem_rcc", O_RDWR

Listing 9: Obtain File Descriptor

and a permissions mask to be used for an accompanying sysfs entry.

module_param (debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "1 = enable debugging 0 = disable debugging");

Listing 10: struct fmodule params

Contiguous Memory Allocation driver cmem_rcc.c is the Linux device driver and library that provide
the user with means of allocating buffers of contiguous memory for DMA operations. The driver supports
__get_free_pages system call, in which memory is allocated from the pool managed by Linux (available
on any Linux kernel). The disadvantage is that __get_free_pages cannot allocate memory buffers above a
certain size. For 2.4 kernels this limit is 2 MB. The driver also supports BigPhysArea patch (BPA), which
is an extension of the functionality of the kernel not included in the Linux distribution. The CERN Linux
support team has decided to includes BPA into all CERN kernels. The main advantage is that BPA does
not limit the size of a contiguous buffer but some memory has to be put aside at boot time (by means of a
kernel command line parameter).If BPA is not installed, cmem_rcc can still be used for memory allocation
via __get_free_pages. For MVTX, cmem_rcc is configured to use __get_free_pages.

The number of buffers (of either type) is limited by the size of some tables in the driver. The dimension of
these tables is set by the parameter MAX_BUFFS in cmem_rcc_drv.h. If the default value (currently 1000)
is not sufficient it can be increased to the required number of buffers. A change to this parameter requires
a re-compilation of the entire package. This function static int cmem_rcc_init passes the “size” parameter

90

module_param (gfpbpa_size, long, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(gfpbpa_size, "The amount of RAM in MB that will be used for the

internal-BPA (get_free_pages variant)");↪→

module_param (gfpbpa_quantum, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(gfpbpa_quantum, "The size (in MB) of a page allocated via

get_free_pages for the internal-BPA (get_free_pages variant)");↪→

Listing 11: module param used to pass arguments to driver using insmod call

to the driver where it gets converted to an “order” which is defined as the base two logarithm of the number
of pages to be allocated. The default page size of Linux is 4KB. The maximum value of order for 2.4 and
2.6 kernels is 9 (corresponding to 512 pages = 2 MB). On 2.6 kernels the command “more /proc/buddyinfo”
tells you how many blocks of each order are available. The conversion from size to order guarantees that
the buffer will at least be size bytes long; it may, however, be larger. The function will fail for size > 2 MB
but can also fail for smaller values if a contiguous buffer of the requested size can not be found.

Information about allocated buffers is maintained in two places. First, the static array buffer_table in
cmem_rcc contains the detailed information on the memory addresses and sizes of all buffers that have been
allocated. Second, whenever the /dev/cmem_rcc device file is opened, the private_data field of the file
descriptor contains a list of buffer table indices; this is the list of buffers that is associated with the call-
ing program. This list is initialized in cmem_rcc_open and is updated whenever buffers are requested or
released through ioctl calls. When the file descriptor is released (typically when the calling program termi-
nates), this list is used (via cmem_rcc_release) to clean up all buffers that were allocated for that program
and are no longer in use.

static int cmem_rcc_init(void) - allocates 1MB of virtual memory by using ioremap function which
builds a new page table. The function returns a special virtual address that can be used to access the spec-
ified physical address range. The function also calls gfpbpa_init which allocates a contiguous buffer by
means of the __get_free_pages system call. The function also dynamically requests a major numbers using
alloc_chrdev_region() function. Lastly, the function allocates memory for a buffer table and sets all entries
to 0 and registers the using the cdev_add function.

static void cmem_rcc_cleanup(void) - closes the package and releases the access to the device file. Seg-
ments that have not been freed will be de-allocated unless they have been locked.

static int cmem_rcc_open(struct inode *inode, struct file *file) - This is called when the /dev/cmem_rcc
device file is opened. Reserves and initializes space to store a list of memory buffers. This list is stored in
the private_data field of the file descriptor.

static int cmem_rcc_release(struct inode *inode, struct file *file) - This is called when a file descriptor
for /dev/cmem_rcc is released. The list of buffers associated with this file descriptor is read from the de-
scriptor, and all of those buffers are freed.

static long cmem_rcc_ioctl(struct file *file, u_int cmd, u_long arg) - case statement which evaluates the

91

value of the command that is passed in.

CMEM_RCC_GET - used to retrieve the parameters of a buffer. The structure cmem_rcc_t is defined
in cmem_rcc_common.h it is mapped to uio_desc which is used by the copy_from_user system call. The
system call is described in asm/uaccess.h and moves data to and from user space by way of kernel space for
virtual memory. The system call is very similar to memcopy where the first parameter is the destination, the
second is the source, and the third is the number of bytes that will be sent. The function takes in cmem_rcc_t
described below as the destination and the _cmemDescriptor from the daq_device_felix.cc plugin. The
interrupt state is saved and the buffer table is reserved. The plugin passes TYPE_GFPBPA therefore the
else if clause will execute and the function in cmem_rcc.c membpa_alloc_pages is called. Since the device
driver is doing DMA it has to talk to hardware connected to the interface bus which in this case is PCIe
and uses physical addresses and the program code has to use virtual addresses therefore, the virt_to_bus
system call is used which performs a simple conversion between kernel logical addresses and bus addresses.
virt_to_page takes a kernel logical address and returns its associated struct page pointer.

typedef struct
{
unsigned int paddr; //The physical address the buffer
unsigned int uaddr; //The used virtual address the buffer
unsigned long kaddr; //The kernel virtual address the buffer
unsigned int size; //The size of the buffer
unsigned int order; //The encoded size of GFP buffers
unsigned int locked; //A flag indicating if the buffer is locked
unsigned int type; //The type of the buffer (TYPE_BPA or TYPE_GFP)
unsigned int handle; //The segment identifier
char name[CMEM_MAX_NAME]; //The name of the buffer
{ cmem_rcc_t;

Listing 12: struct cmem_rcc_t

CMEM_RCC_SETUADDR - takes a user address passed in through the ioctl call, and records it in the
buffer table. The source for this ioctl call is shown in Listing 13.

copy_from_user(&uio_desc, (void *)arg, sizeof(cmem_rcc_t))
// Check if the handle makes sense

if (buffer_table[uio_desc.handle].used == 0)
buffer_table[uio_desc.handle].uaddr = uio_desc.uaddr;

Listing 13: CMEM_RCC_SETUADDR

CMEM_RCC_FREE - returns a buffer to the pool of free memory.

92

CMEM_RCC_LOCK - locks a buffer. Once a buffer is locked it can no longer be freed with the
CMEM_BPASegmentFree() or CMEM_BPASegmentFree() functions. It also does not get de-allocated by
the garbage collector in the driver if the application that created the buffer exits. Usually buffers should not
be locked as this may lead to memory leaks. This function is provided for the rare case were, e.g. during the
boot process, one application has to allocate a buffer that will be used by other applications later on.

CMEM_RCC_UNLOCK - unlocks a buffer.

CMEM_RCC_structure_DUMP - dumps the system parameters of all currently open buffers. You can
get the same information with the command “more /proc/cmem_rcc”.

CMEM_RCC_GETPARAMS

static int cmem_rcc_mmap(struct file *file, struct vm_area_struct *vma) -allows the mapping of device
memory directly into a user process address space static ssize_t cmem_rcc_proc_write(struct file *file, const
char *buffer, size_t count, loff_t *startOffset) static ssize_t cmem_rcc_proc_read(struct file *file, char *buf,
size_t count, loff_t *startOffset)

static int membpa_init2(int priority, u_int btype) static void *membpa_alloc_pages(int count, int align,
int priority, u_int btype) static void membpa_free_pages(void *base, u_int btype) static int gfpbpa_init(void)

FELIX PCIe device driver flx.c is a PCIe device driver for the FELIX PCIe interface. Supports the
detection of FELIX cards on the basis of the PCIe bus enumeration by reading the Device ID and Vendor
ID (DID/VID), specified by the Xilinx PCIe IP endpoint, handles interrupts and provides a number of ioctl
functions.

The driver is registered with the kernel using the pci_driver struct. The name can be verified in /sys/bus/pci/drivers/
when the driver is in the kernel. The pcie_device id struct is used to define a list of PCI devices that a driver
supports. The structure needs to be exported to user space to using the MODULE_DEVICE_TABLE how-
ever it has been disabled to prevent the driver from auto loading as pointed out by the comments in the code.

Similar to the cmem_rcc driver module_init and module_exit are used to inform the kernel that felix_init()
should be called when the module is loaded, and felix_exit should be called when the module is removed.

The devices supported by the flx.c device driver are specified by the pci device id struct, for each device
the vendor id and the device id is specified:

The probe function is called by the PCI core when it has a struct pci_dev that the driver wants to control.
A Pointer to the pci_device_id struct that the PCI core used to make this decision is also passed to this
function. The remove is a pointer to the PCI core pci_dev structure that is called when the device is removed
from the system or the driver module is being unloaded. The flx_Probe and flx_Remove functions are are
made known to the kernel as functions to be called at these times by means of the pci_driver struct, as
shown in Listing 16.

The flx_probe function does the following: The device driver is enabled by a call to the pci_enable_device
function. Once the device driver enables the device it reads the configuration registers in the PCI controller
using the pci_read_config_dword function. The pci_resource_start function returns the address of the re-
gion information of where the device has been mapped. The ioremap_nocache remaps a physical address
range into the processors virtual address space without caching the data, making it available to the kernel.
PCI offers two extensions of Message signal Interrupts (MSI and MSI-X) are an in-band method of signal-

93

/***/
static int cmem_rcc_mmap(struct file *file, struct vm_area_struct *vma)
/***/
{

u_long offset, size;

kdebug(("cmem_rcc(cmem_rcc_mmap): cmem_rcc_mmap called\n"));
#if LINUX_VERSION_CODE < KERNEL_VERSION(3,7,0)

vma->vm_flags |= VM_RESERVED;
#else

vma->vm_flags |= VM_DONTEXPAND;
vma->vm_flags |= VM_DONTDUMP;

#endif
vma->vm_flags |= VM_LOCKED;
kdebug(("cmem_rcc(cmem_rcc_mmap): vma->vm_end = 0x%016lx\n",

(u_long)vma->vm_end));↪→

kdebug(("cmem_rcc(cmem_rcc_mmap): vma->vm_start = 0x%016lx\n",
(u_long)vma->vm_start));↪→

kdebug(("cmem_rcc(cmem_rcc_mmap): vma->vm_offset = 0x%016lx\n",
(u_long)vma->vm_pgoff << PAGE_SHIFT));↪→

kdebug(("cmem_rcc(cmem_rcc_mmap): vma->vm_flags = 0x%08x\n",
(u_int)vma->vm_flags));↪→

size = vma->vm_end - vma->vm_start;
offset = vma->vm_pgoff << PAGE_SHIFT;

#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,18)
if (remap_page_range(vma, vma->vm_start, offset, size, vma->vm_page_prot))

#else
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, size, vma->vm_page_prot))

#endif
{

kerror(("cmem_rcc(cmem_rcc_mmap): function remap_page_range failed \n"));
return(-CMEM_RCC_MMAP);

}
kdebug(("cmem_rcc(cmem_rcc_mmap): vma->vm_start(2) = 0x%016lx\n",

(u_long)vma->vm_start));↪→

vma->vm_ops = &cmem_rcc_vm_ops;
kdebug(("cmem_rcc(cmem_rcc_mmap): cmem_rcc_mmap done\n"));
return(0);

}

Listing 14: cmem_rcc_mmap

94

#define PROC_MAX_CHARS 0x10000
#define PCI_VENDOR_ID_FLX_FW 0x10ee
#define PCI_DEVICE_ID_FLX_FW1 0x7038
#define PCI_DEVICE_ID_FLX_FW2 0x7039

static struct pci_device_id FLX_IDs[] =
{

{ PCI_DEVICE(PCI_VENDOR_ID_FLX_FW, PCI_DEVICE_ID_FLX_FW1) },
{ PCI_DEVICE(PCI_VENDOR_ID_FLX_FW, PCI_DEVICE_ID_FLX_FW2) },
{ 0, },

};

Listing 15: Vendor ID

// needed by pci_register_driver fcall
static struct pci_driver flx_PCI_driver =
{

.name = "flx",

.id_table = FLX_IDs,

.probe = flx_Probe,

.remove = flx_Remove,
};

Listing 16: flx_PCI_driver

95

ing an interrupt to the host system. In-band meaning exchanging special messages that indicate interrupts
(emulated pin assertion or de-assertion) through the main data path (software) as oppose to the traditional
out-of-band dedicated interrupt pin. The primary difference between MSI (PCI 2.2) and MSI-X (PCI 3.0) is
the former supports up to 32 interrupts and the latter permits devices to allocate up to 2048 interrupts. The
pci_find_capability function verifies PCI message signal interrupt capability, and the remainder of the code
uses the function called out above to obtain the message signal interrupt Base address register configurations
and sets up the msix table structure.

The flx_init function does the following: It initializes interrupt request count mask and flags to 0, regis-
ters the pci driver using the pci_register_driver which points to the flx_pci_driver struct. Device numbers are
special device files or nodes in the file-system tree; they are located in the /dev directory. Device numbers
are divided into two groups major and minor. The major number identifies the driver associated with the
device. The minor number is used by the kernel to determine exactly which device is being to referred to.
alloc_chrdev_region dynamically obtains the device number from the kernel. first_dev is an output-only
parameter that will, on successful completion, hold the first number in the allocated range. FIRSTMINOR
should be the requested first minor number to use; it is 0 . The MAXCARDS parameter is the total number
of contiguous device numbers requested. The devName of the device that should be associated with this
number range; it will appear in /proc/devices and sysfs. The kernel internally represents the devices by
using the cdev struct. If alloc_chrdev_region is successful cdev_alloc() is set to flx_cdev and flx_cdev is
pointed to the fops struct. cdev_add is used to inform the kernel that cdev has been setup. flx_cdev is the
cdev structure, first_dev is the first device number to which this device responds, and 1 is the number of
device numbers that should be associated with the device. Device drivers typically export information via
the software-created /proc filesystem Each file under /proc is tied to a kernel function that generates the files
“contents” on the fly when the file is read. The proc_create function creates a read only entry into the proc
file system and the proc_read_text function is used to allocate the maximum output

flx_init takes care of registering the driver by means of a call to pci register driver. flx_init also cre-
ates /proc/flx by calling create proc entry and associates the felix_read_procmem and felix_write_procmem
functions with it. Upon reading from /proc/flx (e.g. more /proc/flx) felix_read_procmem is called, which
provides information about the status of the hardware. Upon writing to /proc/flx (e.g. echo debug >/proc/flx),
felix_write_procmem is called, which enables the user to enable or disable debugging or error logging.
These options are listed in Table 8; these options (and msiblock) are also settable when the module is
loaded.

struct file_operations fops =
{

.owner = THIS_MODULE,

.mmap = flx_mmap,

.unlocked_ioctl = flx_ioctl,

.open = flx_open,

.read = flx_read_procmem,

.write = flx_write_procmem,

.release = flx_Release,
};

Listing 17: file_operations structure

96

Table 8: Options for the FELIX driver.

Parameter Name User Interface Description
debug /proc/flx and insmod Setting the parameter to 1 enables verbose debug output to

/var/log/messages. This can be done as follows:
insmod flx.ko debug=1
echo debug >/proc/flx

Setting the parameter to 0 disables verbose debug output to
/var/log/messages. This can be done as follows:
insmod flx.ko debug=0
echo nodebug >/proc/flx
Default: disabled

errorlog /proc/flx and insmod Setting the parameter to 1 enables verbose error output to
/var/log/messages. This can be done as follows:
insmod flx.ko errorlog=1
echo elog >/proc/flx

Setting the parameter to 0 disables verbose error output to
/var/log/messages. This can be done as follows:
insmod flx.ko errorlog =0
echo noelog >/proc/flx
Default: enabled

msiblock insmod This parameter controls the number of MSI-X interrupts that the
FELIX card can handle. It can be selected in the range 1 - 8.

97

Interaction with the driver from user space takes place using /dev/felix. Upon opening the device felix
open is called, a close causes calling of felix Release. The ioctl and mmap system calls result in felix ioctl
and felix mmap being called respectively, if these system call are supplied with the file descriptor obtained
from opening /dev/felix. Reading from and writing to /dev/felix is not supported by the driver.

In flx_open memory is allocated for a struct of type card params t and the private data pointer of the
struct associated with the file descriptor is set to point to the card params t struct:

The private_data associated with the file descriptor is used to pass the card information (BAR ad-
dresses and extents) between the user-mode software and the kernel driver. This allows the arg field of
the ioctl call to be used for information specific to the ioctl call (in contrast with cmem_rcc, where every
ioctl call involving buffer information must pass the buffer information struct in the arg). The program that
requested the card information is tracked using a static array owner[] in flx.

In felix release the memory allocated in felix open is freed.
Interrupt The FELIX cards use MSI-X interrupts in order to signal asynchronous events to the operating

system. Per installed card the driver supports up to 8 interrupts, enumerated from 0 to 7. The number of in-
terrupts is specified in the source of the driver by a constant (MAXMSI) and is determined by the firmware.
There is no specific dependence of the driver on the nature of the interrupts.

ioctl The ioctl function is called with a file descriptor, the ioctl name and, if applicable, a user parameter.
After opening the driver, the first ioctl function to be called is the SETCARD function, with a pointer to
a struct of type card_params_t as user parameter. The card number has to be stored in this struct before
calling the ioctl SETCARD function. The function copies the BAR0, BAR1 and BAR2 addresses as well as
the sizes of the memory areas associated with these base addresses to the struct. The addresses are physical
addresses. After mapping to virtual addresses the registers can be addressed directly from used space.

An interrupt causes a flag associated with it to be set and a process can wait for this to occur. By setting
all flags with the ioctl CANCEL_IRQ_WAIT function any process waiting for an interrupt can be woken
up. The user parameter of type int* sends data to the driver

CANCEL_IRQ_WAIT - wakes up processes currently waiting for the interrupt with the number speci-
fied in the integer pointed to from the FELIX card by setting the corresponding interrupt flag.

GETCARDS - returns the number of FELIX cards that have been found in the computer in the int vari-
able pointed to by the user parameter. The user parameter of type int* receives data from driver.

The contents of slot in the card params struct (type card params t) is set in the felix ioctl function,
using the SETCARD command shown in Listing 20. SETCARD allows user processes to obtain physical
addresses for the resources of the FELIX card.

The MSI-X interrupts are initialized in felix Probe. Currently there are 8 different interrupts, all with
vector pointing to the same function with name irqHandler. The function counts interrupt requests for each
of the 8 different interrupts. It also flags whether an an interrupt has been seen for each of the possible
interrupts. The counts and flags can be obtained by reading from /proc/felix. A thread waiting for an
interrupt that has itself registered on the wait queue (using ioctl) will be blocked until the interrupt occurs.
This is the code of irqHandler:

The code below in felix ioctl WAIT_IRQ case that causes blocking until the interrupt occurs, which is
signaled by the flag becoming equal to 1. wait_event_interruptible(waitQueue, irqFlag[card][interrupt] ==
1); irqFlag[card][interrupt] = 0;

98

/***/
int flx_mmap(struct file *file, struct vm_area_struct *vma)
/***/
{

u32 moff, msize;

// it should be "shared" memory
if ((vma->vm_flags & VM_WRITE) && !(vma->vm_flags & VM_SHARED))
{

kerror(("flx(flx_mmap): writeable mappings must be shared, rejecting\n"));
return(-EINVAL);

}

msize = vma->vm_end - vma->vm_start;
moff = vma->vm_pgoff;
kdebug(("flx(flx_mmap): offset: 0x%x, size: 0x%x\n", moff, msize));
moff = moff << PAGE_SHIFT;
if (moff & ~PAGE_MASK)
{

kerror(("flx(flx_mmap): offset not aligned: %u\n", moff));
return(-EINVAL);

}

#if LINUX_VERSION_CODE < KERNEL_VERSION(3,7,0)
vma->vm_flags |= VM_RESERVED;

#else
vma->vm_flags |= VM_DONTEXPAND;
vma->vm_flags |= VM_DONTDUMP;

#endif

// we do not want to have this area swapped out, lock it
vma->vm_flags |= VM_LOCKED;
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, msize,

vma->vm_page_prot) != 0)↪→

{
kerror(("flx(flx_mmap): remap page range failed\n"));
return(-EAGAIN);

}

vma->vm_ops = &flx_vm_ops;
return(0);

}

Listing 18: flx_mmap

99

/**/
int flx_open(struct inode *ino, struct file *file)
/**/
{

card_params_t *pdata;

%kdebug(("flx(flx_open): called\n"));
pdata = (card_params_t *)kmalloc(sizeof(card_params_t), GFP_KERNEL);
if (pdata == NULL)
{

%kerror(("flx(flx_open): error from kmalloc\n"))
return(-ENOMEM);

}

pdata->slot = 0;
file->private_data = (char *)pdata;
return(0);

}

Listing 19: flx_open

The flag set by irqHandler is reset here once execution continues after wait event.

4.6 Register Map
The control interface between the FELIX firmware and software is a set of configuration registers

mapped to three BARs (Base Address Register). BAR0 contains the DMA descriptors and DMA con-
trol registers, BAR1 contains the PCIe interrupt table, and BAR2 contains all other FELIX configuration
and status registers.

Both the firmware and software need to translate between register name and raw BAR address offset,
and this mapping must remain consistent when the register list is updated. This is accomplished by having
a single “register map” file and generating the necessary firmware and software files automatically based on
the current register map.

The register map file is written in YAML (Yet Another Markup Language), and is kept in the firmware
source tree (in sources/templates/). A Jinja template file exists for every firmware or software file that
depends on the register map. The template files are kept in sources/templates/) for the firmware and
regmap/source/) for the software. Each template file contains Jinja tags where register map information
needs to be substituted; static blocks of code (not dependent on the register map) are written in their native
language. A Python script (wuppercodegen/wuppercodegen/cli.py) reads the YAML register map file,
calculates the BAR address offsets for all registers, and substitutes the register information into the template
file.

4.7 Interfaces
Each FELIX will interface eight RUs over the radiation tolerant Fiber Optic Links implementing the

standard GBT protocol. The data will be aggregated and placed into the hosts memory through the DMA
and PCIE Gen 3 interface.

100

case SETCARD:
if (copy_from_user((void *) &temp, (void *)arg, sizeof(card_params_t)) !=

0)↪→

{
return(-EFAULT);

}
card = temp.slot;
if (card >= MAXCARDS)
{

return(-EINVAL);
}
if (cards[card].pciDevice == NULL)
{

return(-EINVAL);
}
if (mutex_lock_interruptible(&ownerMutex))
{

return(-ERESTARTSYS);
}
owner[card] = file;
mutex_unlock(&ownerMutex);

cardParams = (card_params_t *)file->private_data;
cardParams->slot = card;
cardParams->baseAddressBAR0 = cards[card].baseAddressBAR0;
cardParams->sizeBAR0 = cards[card].sizeBAR0;
cardParams->baseAddressBAR1 = cards[card].baseAddressBAR1;
cardParams->sizeBAR1 = cards[card].sizeBAR1;
cardParams->baseAddressBAR2 = cards[card].baseAddressBAR2;
cardParams->sizeBAR2 = cards[card].sizeBAR2;
// OK, we have a valid slot, copy configuration back to user
if (copy_to_user(((card_params_t *)arg), &cards[card],

sizeof(car_params_t)) != 0)↪→

{
return(-EFAULT);

}
break;

Listing 20: SETCARD option of felix ioctl

101

/***/
static irqreturn_t irqHandler(int irq, void *dev)
/***/
{

struct irqInfo_struct *info;

info = (struct irqInfo_struct*) dev;
irqCount[info->card][info->interrupt] += 1;
irqFlag[info->card][info->interrupt] = 1;
wake_up_interruptible(&waitQueue); //MJ: would it have any performance

advantages if we used one wait queue per card?↪→

return(IRQ_HANDLED);
}

Listing 21: irqreturn

FELIX will receive GBT frames from the RU see figure 105

Figure 105: Felix GBT Frame

Following the Standard GBT commands defined below
Data Valid=1 80 bit GBT word marked as Data
Data Valid=0 80 bit GBT word marked as Control
Control Commands IDLE SOP EOP SWT
TTC

4.7.1 Fiber Mapping
The mapping from GBT link number and FPGA pin is set in a constraint file (felix_gbt_minipod_BNL711_transceiver_16ch.xdc

or felix_gbt_minipod_BNL711_transceiver_24ch.xdc, depending on the number of links). The mapping
from FPGA pin to position on the MTP multifiber connectors is determined by the PCB connectivity be-
tween the FPGA and the MiniPOD optical modules, and fiber patch cables (provided by BNL with FELIX)
from the MiniPODs to the MTP connectors. The resulting mapping from GBT link number to fiber position
is shown in Figure 106.

4.8 Hardware
Xilinx Kintex Ultrascale XCKU115-FLVF1924-2-E

48 bi directional Fiber Optic Links
16 lane PCIE Gen3

102

Figure 106: Mapping of the GBT link numbers at the MTP-LC breakout box. This mapping assumes FELIX v1.5 is programmed
for 24 GBT links, and a 48-fiber cable is plugged into the top (further from motherboard) MTP connector on FELIX. Both maps
are drawn as if looking into the connectors on the breakout box.

Tx
U6

Rx
U33

Tx
U9

Rx
U36

Tx
U8

Rx
U35

Tx
U7

Rx
U34MTP

Upper

MTP
Lower

Left PCB side
(is right on floor planner)

right PCB side
(is left on floor planner)

P
C

Ie

To right
PCB side

Floor planner
133

132

131

128

127

126

Figure 107: Link and bank mapping on FELIX v1.5 (left) and v2.0 (right). Both figures show the FPGA and MiniPODs oriented
as on the PCB.

103

Timing Mezzanine site

4.8.1 Clock Distribution and Configuration
FELIX has two main clocks: the fabric clock, which drives the FPGA logic, and the GTH transceiver

reference clock, which sets the GBT line clock. The fabric clock is generated by the clock_and_reset
firmware module, and is derived from a fixed 200 MHz oscillator. The transceiver reference clock is input
directly to dedicated clock pins on the FPGA, and is generated by a jitter cleaner ASIC. The jitter cleaner
connections are listed in Table 9.

The jitter cleaner normally used is the SiLabs Si5345, which can be configured to use any of 3 inputs
or generate a free-running clock. The Si5345 is controlled by the FPGA through the I2C bus. The FELIX
software provides (in the FlxCard API) functions to control the I2C bus through register reads and writes,
and the utility flx-i2c allows I2C accesses from the command line.

The MVTX firmware distribution provides shell scripts that use flx-i2c to configure the Si5345.
Si5345_40p8mhz_BNL-711v1p5.sh configures for a free-running clock, while Si5345_40p8mhz_BNL-
711v1p5_EXTERNAL_IN02.sh configures for an input on a pair of FELIX test points. Generating a shell
script for a new configuration requires two steps: first the SiLabs ClockBuilderPro software is used to gen-
erate a C header file containing register values, then the script make_si5345script.awk parses the header file
and generates a shell script.

Figure 108: Mapping from jitter cleaners to GTH transceiver banks. The green banks are used for PCIe endpoints and are clocked
using an Si53154 jitter clock buffer, not shown.

4.9 Test and Validation

104

Table 9: Inputs and outputs for the Si5345 and LMK03200 jitter cleaners. The MVTX firmware uses the Si5345 OUT0 and OUT2
for the GBT transceivers.

Si5345
IN0 FPGA I/O bank 66
IN1 200 MHz SI530 oscillator
IN2 test points
IN3 feedback (tied to OUT9)
OUT0 FPGA GTH bank 127 REFCLK1 (for GBT)
OUT1 FPGA GTH bank 127 REFCLK0 (for GBT)
OUT2 FPGA GTH bank 132 REFCLK1 (for GBT)
OUT3 FPGA GTH bank 132 REFCLK0 (for GBT)
OUT4 FPGA GTH bank 228 REFCLK0 (for GBT)
OUT5 FPGA GTH bank 231 REFCLK1 (for GBT)
OUT6 FPGA GTH bank 231 REFCLK0 (for GBT)
OUT7 FPGA I/O bank 45 (for DDR module A)
OUT8 FPGA I/O bank 52 (for DDR module B)
OUT9 feedback (tied to IN3)
RSVD2/3 FPGA GTH bank 229 REFCLK1
RSVD4/5 FPGA GTH bank 233 REFCLK0

LMK03200
OSCIN FPGA (bank 66)
CLKOUT0 FPGA GTH bank 126 REFCLK1 (for GBT)
CLKOUT1 FPGA GTH bank 128 REFCLK0 (for GBT)
CLKOUT2 FPGA GTH bank 131 REFCLK1 (for GBT)
CLKOUT3 FPGA GTH bank 133 REFCLK0 (for GBT)
CLKOUT4 FPGA GTH bank 228 REFCLK1 (for GBT)
CLKOUT5 FPGA GTH bank 230 REFCLK1 (for GBT)
CLKOUT6 FPGA GTH bank 232 REFCLK1 (for GBT)
CLKOUT7 FPGA GTH bank 232 REFCLK0 (for GBT)

105

5 Data Acquisition System
The data acquisition (DAQ) for MVTX is being developed using the RCDAQ software package.

5.1 Description
5.1.1 RCDAQ

RCDAQ is the DAQ package used for sPHENIX R&D. The source repository is https://github.com/
sPHENIX-Collaboration/rcdaq. RCDAQ is primarily developed and maintained by Martin Purschke,
and the documentation can be found at www.phenix.bnl.gov/~purschke/rcdaq/rcdaq_doc.pdf.

RCDAQ shares the same event structure with standard PHENIX and sPHENIX DAQ, which is called
PRDF (PHENIX Raw Data Format)3.

5.1.2 FELIX Plugin
The MVTX-specific DAQ functionality is contained in a plugin, which is loaded by RCDAQ at runtime.

The plugin configures FELIX at start-of-run and end-of-run, copies data from the FELIX DMA buffer to
RCDAQ, and (optionally) triggers RCDAQ based on interrupts generated by FELIX.

The source repository is https://gitlab.cern.ch/sphenix-mvtx/felix_rcdaq/. The FELIX
plugin is developed and maintained by the MVTX team, and this document is the primary documentation.
Additional documentation is available at https://gitlab.cern.ch/sphenix-mvtx/felix_rcdaq/wikis/
home.

5.1.3 Data Format and Decoder
The MVTX data is decoded by an MVTX-specific decoder that reads in an MVTX packet, interprets the

hit information, and exposes the hit information through standard PRDF software interfaces.
The source repository for the decoder is https://github.com/sPHENIX-Collaboration/online_

distribution/ (for MVTX, files newbasic/oncsSub_idmvtxv0.h, newbasic/oncsSub_idmvtxv0.cc).
The decoder framework is maintained by Martin Purschke, and the MVTX decoder is developed and main-
tained by the MVTX team. This document is the primary documentation for the MVTX decoder.

5.1.4 Online Monitoring
The online monitoring framework for RCDAQ is called pmonitor. An application compiled against

pmonitor (a pmonitor “project”) can connect to a running RCDAQ instance or read in a PRDF file, and
display real-time information on decoded events.

The source repository for the pmonitor framework is https://github.com/sPHENIX-Collaboration/
online_distribution/ (subdirectory pmonitor). The pmonitor framework is maintained by Martin Purschke.

The pmonitor project for MVTX monitoring is in the same repository as the FELIX plugin: https:
//gitlab.cern.ch/sphenix-mvtx/felix_rcdaq/, subdirectory online_monitoring.

5.1.5 Offline Analysis
The offline analysis framework for sPHENIX is Fun4All. MVTX offline calibration and tracking are

implemented in Fun4All.
https://github.com/sPHENIX-Collaboration/analysis (MvtxTelescope/AnaTestbeamV1)
https://github.com/damcglinchey/coresoftware/tree/telescope (offline/packages/MvtxPrototype1,

offline/packages/mvtx, offline/packages/TrackBase)

3The format used in RCDAQ has slight differences from the PHENIX PRDF. From Martin:
“RCDAQ has, currently as a compile-time option, the ability to write what I like to think of as the ‘PHENIX legacy’ format that you
enable with the ‘#define WRITEPRDF’ in rcdaq.cc. You should not enable that. This supports PHENIX readout gear that encodes
‘legacy’ headers in firmware, most notably the HBD electronics that we used during the past testbeams.”

106

https://github.com/sPHENIX-Collaboration/rcdaq
https://github.com/sPHENIX-Collaboration/rcdaq
www.phenix.bnl.gov/~purschke/rcdaq/rcdaq_doc.pdf
https://gitlab.cern.ch/sphenix-mvtx/felix_rcdaq/
https://gitlab.cern.ch/sphenix-mvtx/felix_rcdaq/wikis/home
https://gitlab.cern.ch/sphenix-mvtx/felix_rcdaq/wikis/home
https://github.com/sPHENIX-Collaboration/online_distribution/
https://github.com/sPHENIX-Collaboration/online_distribution/
https://github.com/sPHENIX-Collaboration/online_distribution/
https://github.com/sPHENIX-Collaboration/online_distribution/
https://github.com/sPHENIX-Collaboration/online_distribution/tree/master/pmonitor
https://gitlab.cern.ch/sphenix-mvtx/felix_rcdaq/
https://gitlab.cern.ch/sphenix-mvtx/felix_rcdaq/
https://gitlab.cern.ch/sphenix-mvtx/felix_rcdaq/tree/master/online_monitoring
https://github.com/sPHENIX-Collaboration/analysis
https://github.com/sPHENIX-Collaboration/analysis/tree/master/MvtxTelescope/AnaTestbeamV1
https://github.com/damcglinchey/coresoftware/tree/telescope
https://github.com/damcglinchey/coresoftware/tree/telescope/offline/packages/MvtxPrototype1
https://github.com/damcglinchey/coresoftware/tree/telescope/offline/packages/mvtx
https://github.com/damcglinchey/coresoftware/tree/telescope/offline/packages/TrackBase

5.2 Functionality
5.2.1 RCDAQ and FELIX Plugin

Figure 109: Block diagram of RCDAQ and the FELIX plugin, showing the four RCDAQ threads dealing with data and trigger
(threads for web server and monitoring request listener are not shown). The two components of the FELIX plugin are highlighted in
blue. The “RCDAQ buffer” in the figure is really a ping-pong buffer: the readout thread writes data to a “fill buffer” while the output
threads transfer data from a “transport buffer.” Periodically (either when the fill buffer is full, or when an “adaptive buffering” time
threshold is reached), the function switch_buffer() switches the fill buffer and transport buffer.

RCDAQ provides basic functionalities like control panel, run start/stop, and I/O buffers. RCDAQ can be
controlled and monitored through the command-line, a local GUI, or a web GUI. Since the RCDAQ server
is controlled using the RPC (Remote Procedure Call) network protocol, the command-line and GUI clients
can run on separate computers from the server.

Separate threads handle readout, trigger, file output, and output to monitoring. Figure 109 illustrates the
communication between threads and with the FELIX plugin. RCDAQ stores run configuration by reading
in files and storing them in PRDF events.

All readout devices, including FELIX for MVTX, are implemented as plugins that are loaded dynam-
ically at runtime. The FELIX plugin extends three abstract RCDAQ classes, RCDAQPlugin, daq_device,
and Triggerhandler, which defines a series of virtual functions regulating how a device is initialized,
registered and read out.

Figure 110 shows the connection between the FELIX plugin and the low-level drivers. The low-level
device software is explained in Section 4.5.

felix_plugin This extends the RCDAQ class RCDAQPlugin, which is the interface for plugin instantiation.
create_device() parses the plugin arguments given to RCDAQ (through the rcdaq_client create_device

107

Figure 110: FELIX software block diagram. The interface between user-mode software (RCDAQ and the FELIX plugin) and
kernel-mode drivers (flx.c and cmem_rcc.c) is the fops methods defined in the drivers.

command). The plugin parameters are described in Table 10. felix_plugin does not directly interface to
or control FELIX; instead it instantiates daq_device_felix and felixTriggerHandler, which do.

daq_device_felix This extends the RCDAQ class daq_device, which is the interface for readout. This
interfaces with MVTX through the FELIX DMA buffer (allocated by cmem_rcc) and the FELIX registers
(accessed through FlxCard).

put_data() copies data from the FELIX DMA buffer into a PRDF packet. The other RCDAQ interface
methods implemented in daq_device_felix are init() and endrun() (called on rcdaq_client daq_begin
and rcdaq_client daq_end respectively). These methods start and stop the DMA engine, and switch the
“upstream fanout” and “downstream fanout” muxes in the FELIX data path. Much of this functionality is
adapted from the fdaq utility in the standard FELIX software distribution.

felixTriggerHandler This extends the RCDAQ class TriggerHandler, which is the interface for trigger-
ing (and is only implemented if the device is capable of triggering RCDAQ). This interfaces with the FELIX
interrupts through FlxCard.

wait_for_trigger()waits until a trigger is received from FELIX. This is a wrapper around FlxCard::irq_wait().

RCDAQ interface to device drivers This section will describe the rcdaq.cc interface to the daq_device_felix.cc
plugin and the flow of how it controls the rest of the user space libraries and device driver software described
above. The purpose is to inform the reader of the general signal/data flow prior to describing low level de-
tails. Therefore, the description is limited the function calls between the software packages and not a full
description of each function. The plugin receives the following commands from the command line, con-
structor, destructor, daq_begin, trigger, and daq_end, daq_.

There are five main events in the plugin control sequence. Each is described in detail below.

108

• When the FELIX device is created by rcdaq_client create_device daq_device_felix, the
plugin constructor is called.

• When the run is started by rcdaq_client daq_begin, the plugin initializes the DMA and starts
running the readout chain.

• During the run, the daq_triggerloop thread of RCDAQ waits for a trigger from the plugin. When a
trigger is received, the EventLoop thread of RCDAQ requests data from the plugin.

• When the run is stopped by rcdaq_client daq_end, the plugin stops the DMA and the readout
chain.

• When RCDAQ is shutdown by rcdaq_client daq_shutdown, the plugin destructor is called.

create_device An RCDAQ plugin is compiled as a shared object library (.so file), and is loaded us-
ing the command rcdaq_client load <plugin file>. In rcdaq_client.cc, the main() function
calls command_execute(). Via RPC, command_execute() tells rcdaq_server.cc to run the function
r_action_1_svc() with action DAQ_LOAD; this in turn calls the function daq_load_plugin(), which
loads the plugin via the C library function dlopen(). When the plugin is loaded, RCDAQ adds it to an
internal plugin list.

A readout device is initialized using the command rcdaq_client create_device <device name>.
In rcdaq_client.cc, the main() function calls command_execute(), which calls handle_device().
Via RPC, handle_device() tells rcdaq_server.cc to run the function r_create_device_1_svc(),
which loops through the plugin list and attempts to call the create_device() function for each plugin.

For felix_plugin, the arguments to create_device are defined as shown in Table 10. The typical
create_device command for MVTX is rcdaq_client create_device device_felix 1 2000 0 1
0 4 5.

Table 10: Arguments for the FELIX plugin.

index name typical value description
1 event type 1 event type for which the readout should run
2 subevent ID 2000 packet ID for PRDF
3 card number 0 card number (as interpreted by FlxCard::card_open())
4 buffer size 1 DMA buffer size (units of MB)
5 DMA index 0 not used, may be necessary for multiple DMAs
6 interrupt ID 4 PCIe interrupt ID used for trigger
7 flags 5 bitmask (see below)

flags(0) enable trigger
flags(1) fanoutEna (must be set to 0)
flags(2) externalEmu (must be set to 1)

create_device() also calls the constructor for daq_device_felix; if FELIX trigger is enabled (as is
usual), this in turn calls the constructor for felixTriggerHandler and registers felixTriggerHandler
as the trigger handler for RCDAQ.

The daq_device_felix constructor calls the function cmemAllocate() and the FlxCard method card_open().
cmemAllocate() in daq_device_felix.cc uses the CMEM_RCC_GET ioctl call of the cmem_rcc driver

to allocate a memory buffer of the size requested by the plugin parameter. This buffer is then mapped

109

to virtual memory using the system call mmap(), which acts through the mmap method of the cmem_rcc
file_operations interface. The obtained virtual address is then communicated back to the driver using the
CMEM_RCC_SETUADDR ioctl call of the cmem_rcc driver.

card_open() in FlxCard.cc uses the SETCARD ioctl call of the flx driver to obtain the BAR addresses
for the PCIe endpoint on FELIX, and maps the BARs to memory. It also uses the GET_TLP ioctl call of the
flx driver to get the TLP parameter.

daq_begin A RCDAQ run is started by the command rcdaq_client daq_begin. The main() func-
tion in rcdaq_client.cc calls command_execute(), which uses RPC to call r_action_1_svc() in
rcdaq_server.cc with an argument of DAQ_BEGIN. This calls daq_begin() in rcdaq.cc, which calls
the functions device_init(), which calls the init() function for every device in the device list, and
enable_trigger(), which calls the enable() method for the defined trigger handler.

In daq_device_felix, init() calls dmaStart() and (in FlxCard) irq_enable(). dmaStart() calls
dma_to_host() in FlxCard.cc, which maps BAR 0 (the DMA descriptor), then initializes descriptor 0,
and enables descriptor 0. irq_enable() in FlxCard.cc calls an ioctl method in flx.c which will select
UNMASK_IRQ of the case statement.

felixTriggerHandler::enable() does nothing, since the interrupt is already enabled by daq_device_
felix::init().

During the run While FELIX is receiving triggers, the daq_triggerloop thread of rcdaq.cc calls the
wait_for_trigger() function in felixTriggerHandler, which calls irq_wait() in FlxCard.c. irq_wait()
calls an ioctl method in flx.c which will select WAIT_IRQ of the case statement.

When wait_for_trigger() completes, the EventLoop thread of rcdaq.cc interprets this as a trigger
and calls put_data() for all defined devices. For daq_device_felix, put_data() copies data from the
FELIX DMA buffer into a PRDF packet. Figure 111 shows the source and destination buffers. put_data()
transfers the data as follows:

• Get the DMA write pointer (dma_status_t.current_address) and compare to the read pointer
(_prevAddr). If equal, do nothing, since there is no data; otherwise, proceed.

• Read the count from the DMA buffer, at the address _prevAddr. This is in units of 256-bit FELIX
words.

• Copy the count and data words out of the DMA buffer and into the RCDAQ buffer: the start address
is _prevAddr, the number of bytes to copy is (count+1)×32 (each FELIX word is 32 bytes). If the
data

• Increment the read pointer (_prevAddr) by 8× ceil((count+1)/8)×32: the DMA transfer size is 8
FELIX words, so we move to the next multiple of 8 in order to skip the padding words added by the
FELIX firmware. Now _prevAddr will point to the count from the next FELIX event.

• Add a 0xF000F000 “end of data” word to the packet, and add the padding required by RCDAQ.

daq_end The daq_end method within the rcdaq.cc call disable_trigger(), and device_endrun(). device_endrun()
will call the int daq_device_felix::endrun() in the plugin daq_device_felix.cc. The daq_device_felix::endrun(),
will call _flx->irq_disable(_interrupt_id), _flx->irq_cancel(_interrupt_id), where interrupt_id is 4 as defined
by the plugin parameters (see Table 10) in the start_felix_rcdaq_felixTrigger.sh. The two irq calls described
above will call void FlxCard::irq_disable(u_int interrupt) and void FlxCard::irq_cancel(u_int interrupt) in
FlxCard.cpp The FLXCard methods previously mentioned will call make an ioctl method in flx.c which will
select CANCEL_IRQ_WAIT and MASK_IRQ of the case statement.

110

Figure 111: Example of the data transfer between the DMA buffer and RCDAQ buffer. The FELIX buffer is drawn with a word
width of 256 bits (the width of the Central Router FIFO), and the RCDAQ buffer is drawn with a width of 32 bits. The transfer
strips off the padding in the FELIX buffer (necessary to align the data to the DMA transfer size) and adds padding to the RCDAQ
packet (necessary to align the packet to the 64-bit RCDAQ alignment unit).

daq_shutdown When RCDAQ is shut down, the destructors for all devices are called. The destructor for
the FELIX plugin stops any current run using the endrun() function (same as in daq_end), then closes
the FlxCard object using FlxCard::card_close() and releases the CMEM buffer using the system call
munmap() and the CMEM ioctl call CMEM_RCC_FREE.

5.2.2 Data Format
PRDF organizes events as a collection of packets coming from different readout devices. Fig. 112 shows

the content of a typical PHENIX raw event, which consists of 827 packets in total with different packet ID
(column 2), various length (column 3) and type (column 6 and 7). Within one event the order of packets
from different readout devices is irrelevant, since each readout device has a unique packet ID.

A typical PRDF packet structure is shown in Fig. 113. When a chunk of data is received from a certain
readout device, RCDAQ will add a 4-word header (or envelope information) to form a packet. The length
of a packet is required to be a multiple of 64 bits4; this is done by extending the length of a packet with
“padding” words that are not decoded.

The packet header includes:

• length of the data block in this packet including padding (in units of 32-bit words)

4The padding alignment is not enforced in the PRDF libraries, and some presentations refer to 128-bit alignment, but the
sPHENIX plugins align to 64 bits. From Martin:
“indeed, I always go on about 128bit alignment, which we *can* do. (And probably will in the future). All headers obey that. I do
64bit at this point, which is adequate as long as no 128bit CPU comes along.”

111

Figure 112: PRDF packet listing.

• packet ID to uniquely define the origin of this packet

• swap unit to identify the word size (1, 2, or 4 bytes) to use for byte-swapping when changing endian-
ness

• hit format identifier for decoder

• length of padding (in units of bytes)

• two 16-bit words reserved for a future use

Figure 113: PRDF packet structure.

Given a data stream from RCDAQ or a PRDF file, the PRDF libraries are responsible for breaking the
data stream up into events and the events into packets. The libraries provide a generic interface (packet.h)
by which analysis code can retrieve information from a packet. Each data format has a specific implemen-
tation of this interface, which is the decoder. The MVTX decoder is called oncsSub_idmvtxv0. When

112

analysis code requests a packet from an event, the packet’s hitformat determines which decoder interprets
the packet.

The MVTX readout chain consists of two steps of data aggregation, and this is reflected in the data
format as shown in Figure 114. The RU aggregates data from multiple ALPIDE sensors, so each 80-bit RU
data word contains 9 data bytes from a single ALPIDE, tagged with the ALPIDE ID. FELIX aggregates data
from multiple RUs, so each 256-bit FELIX data word contains 3 RU data words, tagged with the RU ID.

The decoder reverses this process to reconstruct the data stream from each ALPIDE:

• Iterate through the FELIX data words. For each:

– Identify the RU ID.

– For each of the three RU data words, identify the ALPIDE ID, and add the ALPIDE data bytes
to the appropriate ALPIDE data stream.

• For each ALPIDE data stream, iterate through the bytes:

– If a multi-byte data code (CHIP_HEADER, CHIP_EMPTY, DATA_SHORT, DATA_LONG)
was in progress, interpret the new byte together with the previous byte(s). If this completes a
DATA_SHORT or DATA_LONG code, add the hit data to the decoder hit map.

– Otherwise, identify and interpret the new byte as a data code.

Figure 114: From top to bottom: the format in which FELIX data words are parsed to extract RU data words, the format in which
RU words are parsed to extract ALPIDE data bytes, and the ALPIDE data codes.

The decoded data is accessed through so-called “iValue” methods that are part of the PRDF packet inter-
face. For example, int iValue(const int chip, const int region, const int row) specifies an
ALPIDE sensor and a readout region and row. Since each readout region has 32 columns, this corresponds
to a group of 32 pixels, and the return value is a 32-bit bitmap where the high bits correspond to pixels with
hits in this event.

The decoder also provides a text dump interface for debugging purposes. This interface is conveniently
accessed through the command-line utility ddump, which is part of the PRDF libraries. The MVTX de-
coder provides two dump formats: a decoded format, which prints the bitmaps accessed through the iValue
interface, and a “raw” format, which prints the data directly. Both ddump formats are shown in Figure 115.

113

Table 11: An example of an MVTX analysis pipeline.

name description
Fun4AllPrdfInputManager Input manager: read events from a PRDF file.
MvtxRunInfoUnpackPRDF Analysis module: unpack beam information and ALPIDE param-

eters from the PRDF begin of run event.
MvtxUnpackPRDF Analysis module: unpack hit information from PRDF events and

create hit objects.
MvtxApplyHotDead Analysis module: reject hits in hot pixels.
MvtxClusterizer Analysis module: make clusters.
MvtxAlign Analysis module: apply alignment corrections.
AnaMvtxPrototype1 Analysis module: make tracks and fill histograms.
Fun4AllDstOutputManager Output manager: write event information to a DST (Data Sum-

mary Tape) file.

5.2.3 Online Monitoring (pmonitor)
MVTX online monitoring is implemented using the pmonitor framework. A pmonitor project is com-

piled against pmonitor, PRDF, and ROOT libraries, and is executed by ROOT. The pmonitor framework
receives PRDF data, decodes the events using the PRDF libraries and packet decoders as described in 5.2.2,
and then runs user-supplied code to analyze the events and fill ROOT histograms. pmonitor is multithreaded,
and can use separate threads for the event transfer, analysis, and control.

pmonitor projects run separately from RCDAQ, and communicate with RCDAQ over the network. Mul-
tiple pmonitor projects (for different monitoring displays) can connect to the same RCDAQ instance. A
pmonitor project can also read data from a PRDF file.

The MVTX pmonitor project was developed for the 2018 test beam. Figure 116 shows the monitoring
display from the test beam. The MVTX-specific code is contained in a mvtx.cc file, and interfaces to the
pmonitor framework through two functions: pinit() and process_event(Event * e). pinit() initial-
izes the histograms when the project is loaded; process_event() is called by the pmonitor framework for
every event that is received.

5.2.4 Offline Software
sPHENIX uses the Fun4All analysis framework. As shown in Figure 117, Fun4All is based on “analysis

modules” that can be registered with a Fun4AllServer to create a analysis pipeline. Table 11 shows the list
of modules that make up a typical MVTX analysis pipeline. Since the modules are loaded and configured at
runtime based on a macro, the pipeline can be completely reconfigured without recompiling anything.

5.3 Interfaces
The overall architecture of the sPHENIX DAQ system is shown in Fig. 118.
The plug-in developed for test beam RCDAQ should be largely the same as the one used on DAM 5.

5From Martin:
“Think of RCDAQ as a place to plug your detector’s readout in. It is clear that the full sPHENIX DAQ will be bigger than RCDAQ,
but the ‘plug’ (APIs, configuration etc) will be largely the same — once you are setup in RCDAQ, the integration work still required
in 2021 will be minimal.”

114

Figure 115: The decoded and raw ddump outputs.

115

Figure 116: Online monitoring display for MVTX. The data displayed is from the 2018 test beam at Fermilab, with a telescope of
four single ALPIDE sensors. The top left histograms show the mean number of hits per sensor per event; the top center histograms
show the distributions of hit counts per event. The 2-D histograms on the right show the hit distributions for each sensor; the bottom
left plot shows the results of Gaussian fits to those distributions. The bottom two plots in the center column show the event-by-
event hit correlations (the differences between hit positions in different sensors), which is a measure of the relative alignment of the
sensors.

Figure 117: Structure of the Fun4All framework. All configuration is done through the Fun4AllServer by registering different
input managers, analysis modules, and output managers. Most functionality is contained in analysis modules, which exchange
event information with the server via “node trees.” Analysis modules can output histograms directly through a histogram manager,
or event data from the node trees can be dumped by an output manager.

116

Figure 118: The bottom half with FEE (Front End Electronics) and DAM (Data Aggregation Module) represents TPC and MVTX
readout. For MVTX, FEE refers to the RU and DAM refers to FELIX. Each EBDC (Event Buffering and Data Compressor) is a
server hosting a single FELIX board.

117

6 Timing and Triggering
6.1 Work in Progress Discussions, as of Nov. 2020

ITS new data format and MVTX GTM data packet:
Work in progress discussions about the techincal specs for mGTM:
https://docs.google.com/presentation/d/1EhKRz0cv4TBeojo6ISmcQI2skIGZWxFVwoOXtyy5kEc/edit?usp=sharing
and the draft proposal for mGTM:
https://docs.google.com/document/d/1dkVE7Ro6eY4tENtO-zOpjH9m9du6E_nI0Zpry-pZBlo/edit?usp=sharing

6.2 Timing specification
sPHENIX follows more or less the similar approach we have used in the previous PHENIX experiment:

• Uniform Timing, Trigger & Controls

• Uniform raw data format

• Limited information available at, https://wiki.bnl.gov/sPHENIX/index.php/Electronics

• Timing System:

– Distribute RHIC Clock to front-end electronics(FEMS)

– Send accepted Lvl-1 trigger to the FEMs

– Manage multi-event buffers (5-event deep buffer)

• One level trigger system - Level-1

– trigger latency 4µS (37 RHIC Clocks in PHENIX)

– Handle subsystem busy

– Control minimal trigger interval (âĂIJdead for 4âĂİ in PHENIX)

RHIC clock is 9.4MHz, much slower than the LHC clock of 40MHz. All sPHNIX and MVTX trigger
and timing is synchronized to the 9.4MHz RHIC clock. We plan to operate ALIPDE chips at the same
40MHz LHC clock. This new 40MHz clock will be generated and phase locked to the RHIC 9.4MHz clock,
mostly likely at FELIX end. A dedicated daughter card will be developed by the BNL ATLAS group for the
next version FELIX board v.20, to allow 9.4MHz RHIC clock as input.

6.3 Timing interfaces
6.3.1 Trigger specification
6.4 Trigger interfaces

118

7 Control and Monitoring
7.1 Description

high voltage & bias

7.2 Functionality
7.2.1 Specifications
7.3 Interfaces
7.4 Hardware
7.5 Test and Validation

119

8 Test and Validation
8.1 ddump

dump file.prdf -n 10 -g
-n number of events
-g felix word format

0000 00000000000000000000 00000000000000000000 00000000000000000016
0103 00000000001000000611 00000000000000000003 00000001abcdffff0303
0106 02010004010000c0bda1 e000000005b1fbfe0000 00000000000000000000
0109 05010004010000c0bda4 04010004010000c0bda3 03010004010000c0bda2
010c 08010004010000c0bda7 07010004010000c0bda6 06010004010000c0bda5
010f 0c010004010000c0bda5 0a010004010000c0bda7 09010004010000c0bda8
0112 0f010004010000c0bda2 0e010004010000c0bda3 0d010004010000c0bda4
0115 15010004010000c0bda5 11010004010000c0bda0 10010004010000c0bda1
0118 19010004010000c0bda1 18010004010000c0bda2 16010004010000c0bda4
011b 1601001001000c010008 0c01001001000c010008 1b010004010000c0bda8
011e 1b01001001000c010008 1901001001000c010008 1801001001000c010008
0121 0401001001000c010008 0301001001000c010008 0201001001000c010008
0124 0701001001000c010008 0601001001000c010008 0501001001000c010008
0127 0a01001001000c010008 0901001001000c010008 0801001001000c010008
012a 0e01001001000c010008 0d01001001000c010008 0c0000000000000000b0
012d 1101001001000c010008 1001001001000c010008 0f01001001000c010008
0130 180000000000000000b0 160000000000000000b0 1501001001000c010008
0133 020000000000000000b0 1b0000000000000000b0 190000000000000000b0
0136 050000000000000000b0 040000000000000000b0 030000000000000000b0
0139 080000000000000000b0 070000000000000000b0 060000000000000000b0
013c 0d0000000000000000b0 0a0000000000000000b0 090000000000000000b0
013f 100000000000000000b0 0f0000000000b01f66d4 0e0000000000000000b0
0142 f0010000000005b1fbfe 150000000000000000b0 110000000000000000b0

f000f000

00000000000000000016 16 Data COUNT 00000000000000000000 0000 00000000000000000001 00000001abcdffff0303
from the RU ID: 1abcdffff, rufirmware: 0x0303 00000000000000000003 trigger Counter sent from felix:
3 0103 00000000001000000611 trigger type: 1, bunch counter in felix fw: 611 -RUID: 01 Counter in
GBT inbuf counting up in multiples of 3 since each felix word is 3 ru words: 03 00000000000000000000
e000000005b1fbfe0000 bit mask for which gt lanes are enabled 5b 1b fb e0 (binary 1 enabled gt) 0106
02010004010000c0bda1 -02 0100 0401 0000 c0 bda1 -clustering is enabled this is data long -02: lane
which gt this data is coming from -0100 -0401 -0000 -c0: region header -bda1: read a1bd chip header chip
id 1 bd bunch counter 0109 03010004010000c0bda2 -The remainder of the data follows the alpide data
described above 0130 160000000000000000b0 b0 CHIP TRAILER -The remainder of the data follows the
alpide data described above f000f000 END of event inserted by rcdaq

8.2 Full Chain Test
8.2.1 FELIX and RCDAQ
program FELIX Open Vivado:

120

source /opt/Xilinx/Vivado/2015.4/settings64.sh
vivado

• open hardware manager

• connect: always fails the first time after server boot

• program with bitstream /home/maps/felix_firmware/bitstreams/FLX711_RM0304_6CH_LOCALCLK_
SVNBLAHHHH_180124_16_53.bit (above is out of date use FLX711_RM0304_6CH_LOCALCLK_SVNBLAHHHH_
180406_14_29.bit)

configure FELIX after programming If any step fails, reprogram; if server freezes and crashes, power
cycle after it reboots itself.

su
cd /home/maps/meeg/felix/daq/felix_rcdaq/build/
source /home/maps/meeg/rcdaq/setup.sh;source /home/maps/meeg/felix/setup.sh
/home/maps/meeg/felix/software/pcie_hotplug/pcie_hotplug_remove.sh
/home/maps/meeg/felix/software/pcie_hotplug/pcie_hotplug_rescan.sh
/home/maps/felix_firmware/Si5345_40p8mhz_BNL-711v1p5_EXTERNAL_IN02.sh
flx-init
flx-config setraw -r 0x5890 -w 64 -v 0x1

run online monitoring

cd /home/maps/meeg/felix/daq/felix_rcdaq/online_monitoring
source /home/maps/meeg/rcdaq/setup.sh;source /home/maps/meeg/felix/setup.sh
root -l ./scripts/run_om.C

list pixels with more than 100 hits (noisy pixels): process_histos(100)

start and configure RCDAQ

su
cd /home/maps/meeg/felix/daq/felix_rcdaq
source /home/maps/meeg/rcdaq/setup.sh;source /home/maps/meeg/felix/setup.sh
./setup_felix_rcdaq_felixTrigger.sh
daq_set_runtype beam

Valid runtypes are “beam,” “junk,” and “calib.”

take a run

daq_begin
daq_end

Other useful RCDAQ commands: daq_status for status and event count, daq_shutdown to kill RC-
DAQ.

121

8.2.2 RU
Power on and program the RU.

source /home/maps/setup_anaconda.sh
../../modules/board_support_software/software/py/initGBTx_v1.py ../../modules/gbt/software/GBTx_configs/GBTx0_Config.xml

Program the RU again.

./testbench_JS_AT_SU_nopulse.py initialize_boards

Power on the ALPIDEs. If setup_sensors fails, repeat starting at initialize_boards.

./testbench_JS_AT_SU_nopulse.py setup_sensors

./testbench_JS_AT_SU_nopulse.py setup_readout

../../modules/board_support_software/software/py/wrreg.py 8 29 0x3

8.3 Setup
RCDAQ is only needed on the server where FELIX is installed, but the decoder and online monitoring

software can be run elsewhere. The FELIX software and plugin are only needed on the server where FELIX
is installed. The FELIX firmware can be installed and compiled on any computer.

These instructions assume 64-bit CentOS 7 or similar (RHEL, Scientific Linux, or CentOS CERN —
some tweaks might be needed) and bash shell.

8.3.1 General System Setup
set up CERN gitlab Generate SSH keys (you will get asked some questions, just hit enter each time):

ssh-keygen

Now you should have a private key and public key in ~/.ssh. Open ~/.ssh/id_rsa.pub in a text
editor.

Log in to the CERN gitlab website, go to settings (https://gitlab.cern.ch/profile), click on
“SSH Keys.” Paste your id_rsa.pub into the text box to add your SSH key.

As root, install git:

yum install git

Make Vivado recognize the Ethernet dongle (only needed to access licenses) To use the Ethernet don-
gle for licensing on CentOS, you need the interface name to be of the form "ethX." You need to change
some boot settings. As root, edit /etc/default/grub so the GRUB_CMDLINE_LINUX line has the following
options: net.ifnames=0 biosdevname=0.

Then (still as root, and the filename may be slightly different - sometimes it is /etc/grub2-efi.cfg):

grub2-mkconfig -o /etc/grub2.cfg

Now reboot. If you run ‘ifconfig‘ the network interfaces should be "ethX," "wlanX," etc. If you run the
Vivado license manager (Help->Manage licenses) the dongle’s MAC address should show up under HostID.

8.3.2 FELIX Firmware
The FELIX firmware will only build on Vivado 2015.4.

122

https://gitlab.cern.ch/profile

Compiling the firmware Set up the Vivado environment:

source /opt/Xilinx/Vivado/2015.4/settings64.sh

Change to the scripts directory:

cd felix_firmware/FLX711_FW4LTDB/scripts/FELIX_top/

Run Vivado from the command line to create the project (this could also be done from the Tcl console
in Vivado). This will take a while, maybe 5 minutes.

vivado -mode batch -source vivado_import_felix_bnl711_ltdb_nocr.tcl

Start Vivado (‘vivado‘) and open the new project file felix_firmware/FLX711_FW4LTDB/Projects/
felix_top_ultrascale/felix_top_ultrascale.xpr. Then in the Tcl console, run the following (path
will be different if you didn’t start Vivado in FELIX_top but the script should still work):

source ./do_implementation_BNL711.tcl

On the FELIX server, building the firmware with RU_NUM=2 (the default) takes roughly 20 minutes
for synthesis and 40 minutes for implementation. Peak RAM usage is 5.6 GB.

Once the bitstream generation is complete you will find it in felix_firmware/FLX711_FW4LTDB/
output.

8.3.3 RCDAQ
These instructions are based on those in https://www.phenix.bnl.gov/~purschke/rcdaq/rcdaq_

doc.pdf.

mkdir rcdaq; cd rcdaq
export RCDAQ_ROOT=$PWD
git clone https://github.com/sPHENIX-Collaboration/rcdaq.git
mkdir build install
cd build
mkdir rcdaq; cd rcdaq
../../rcdaq/autogen.sh --prefix=$RCDAQ_ROOT/install
make install

Create a setup.sh script that looks like this, or add these lines to an existing setup.sh:

export RCDAQ_ROOT=<the rcdaq directory previously created>
export PATH=$PATH:$RCDAQ_ROOT/install/bin
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$RCDAQ_ROOT/install/lib"
source $RCDAQ_ROOT/install/bin/aliases.sh

8.3.4 FELIX Software and Plugin
This is based on the instructions provided with the FELIX software: https://gitlab.cern.ch/

atlas-tdaq-felix/software/blob/master/README.md.
All steps can be done as a regular user, except for installing dependencies.
You will end up with a setup.sh script that you can source (source setup.sh) to setup your software

environment, a cvmfs directory containing the CERN software distribution, and a software directory con-
taining the FELIX software. These instructions assume you’re putting all three in ~/felixsoftware, but
they can all be in different places.

123

https://www.phenix.bnl.gov/~purschke/rcdaq/rcdaq_doc.pdf
https://www.phenix.bnl.gov/~purschke/rcdaq/rcdaq_doc.pdf
https://gitlab.cern.ch/atlas-tdaq-felix/software/blob/master/README.md
https://gitlab.cern.ch/atlas-tdaq-felix/software/blob/master/README.md

install dependencies Need Git, various FELIX software dependencies, and DKMS (needed to install the
FELIX driver). DKMS is not part of the default CentOS repositories so you need to enable the EPEL
repository.

As root:

yum install git gcc make mesa-libGL libpng libSM libXrender fontconfig
xkeyboard-config redhat-lsb↪→

yum install epel-release
yum install dkms

install driver Download the package from https://atlas-project-felix.web.cern.ch/atlas-
project-felix/user/dist/software/driver/. Latest version should be OK (2.0.2 works).

Install the package (as root):

rpm -i tdaq_sw_for_Flx-2.0.2-2dkms.noarch.rpm

get and configure CVMFS Download one of the CVMFS tarballs from https://atlas-project-
felix.web.cern.ch/atlas-project-felix/user/dist/software/cvmfs/. There are two types of
tarballs, multiple versions of each: some with GCC 4.9 and some with GCC 6.2 (see the description column
on the right). Download the latest GCC 6.2 tarball and unpack it to a directory of your choice.

get FELIX software Check out the software:

cd ~/felixsoftware
git clone ssh://git@gitlab.cern.ch:7999/sphenix-mvtx/felix_software/software
cd software
./clone_all.sh ssh

This directory contains a software/setup.sh script that adds the FELIX software to your environment.
Change the first line of software/setup.sh so it matches where you unpacked the cvmfs tarball. For
example:

export LCG_BASE="$HOME/felixsoftware/cvmfs/sft.cern.ch/lcg"

Source the script (source setup.sh), then create a build directory and build the software:

cd ~/felixsoftware/software
source setup.sh
cmake_config $FELIX_ARCH
cd $FELIX_ARCH
make

build the FELIX plugin On the FELIX server, source the setup.sh scripts for the FELIX software and
RCDAQ, then:

git clone ssh://git@gitlab.cern.ch:7999/sphenix-mvtx/felix_rcdaq.git
cd felix_rcdaq
mkdir build
cd build
cmake ..
make

124

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/software/driver/
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/software/driver/
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/software/cvmfs/
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/software/cvmfs/

8.3.5 Decoder and Online Monitoring
These instructions are based on those in https://www.phenix.bnl.gov/~purschke/rcdaq/rcdaq_

doc.pdf.

mkdir rcdaq; cd rcdaq
export RCDAQ_ROOT=$PWD
git clone https://github.com/sPHENIX-Collaboration/online_distribution.git
mkdir build install
cd build
mkdir newbasic; cd newbasic
../../online_distribution/newbasic/autogen.sh --prefix=$RCDAQ_ROOT/install
make install
cd ../build
mkdir pmonitor; cd pmonitor
../../online_distribution/pmonitor/autogen.sh --prefix=$RCDAQ_ROOT/install
make install

Create a setup.sh script that looks like this, or add these lines to an existing setup.sh (if you installed
RCDAQ, you only need to define ONLINE_MAIN):

export RCDAQ_ROOT=<the rcdaq directory previously created>
export PATH=$PATH:$RCDAQ_ROOT/install/bin
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$RCDAQ_ROOT/install/lib"
source $RCDAQ_ROOT/install/bin/aliases.sh
export ONLINE_MAIN=$RCDAQ_ROOT/install

Source the setup.sh script, then:

git clone ssh://git@gitlab.cern.ch:7999/sphenix-mvtx/felix_rcdaq.git
cd felix_rcdaq/online_monitoring
make

8.3.6 RU Firmware and Software
Clone the RU repository:

git clone ssh://git@gitlab.cern.ch:7999/sphenix-mvtx/RUv1_Test_sync2018-08.git

The RU firmware requires Vivado 2017.4. The doc directory contains some information on setting up
the firmware. You may need to make the following changes:

• In the file env_var.mk, change the VIVADO_VER and VIVADO_PATH to match your Vivado installation

• In modules/common/software/py/create_filelist.py, change the line ofile.write("%s\n" % item)
to ofile.write(u"%s\n" % item)

Now, make batch will create a Vivado project for the RU firmware. Open the project in Vivado and
generate the bitstream.

Install dependencies (as root):

125

https://www.phenix.bnl.gov/~purschke/rcdaq/rcdaq_doc.pdf
https://www.phenix.bnl.gov/~purschke/rcdaq/rcdaq_doc.pdf

yum install centos-release-scl
yum install rh-python36 rh-python36-python-tkinter
source scl_source enable rh-python36
pip install fire pyserial pyusb imageio matplotlib

Add the line source scl_source enable rh-python36 to .bashrc.
+

126

APPENDIX

A DAQ Fest Stonybrook
A.1 February DAQFest Follow Up Simulation

The following subsection is a summary of Jin Huang’s presentation on March 15th in the bi-
weekly MVTX meeting following up on discussions from the DAQ Fest at Stony Brook in Febru-
ary 2019 and written up by GJK. The talk covers detailed simulations on whether one could run
MVTX/ALPIDE chip in continuous mode instead of triggered mode in order to decouple analog
shape time tuning from global sPHENIX trigger latency choices. This presentation is following
up on the decision, from a previous sPHENIX DAQ workfest, that the triggered chip mode with
continuous trigger is preferred. The discussion at said workshop centered around the question
on whether, as proposed in the original MVTX proposal, the system should be triggered with the
global level one trigger with the respective sPHENIX latency or whether the ALICE model should
be adopted to have a constant stream of strobes that are based on the orbit and that physics trig-
gered events are selected from said strobed data. The decision in the workfest was based on the
idea to have flexibility in the latency handling and the maximized data rates that result, as will be
confirmed in the simulations below.

The simulations answers this quantitative question related to ALPIDE hit multiplicity distribu-
tion (see below), on-chip buffer depth and how fast the ALPIDE transmit data to the readout units
as well as how many on chip buffers are employed and how the busy is handled.

Each ALPIDE has three-hit depth buffers for each pixel (one stores new data, one is reserved
for the readout and one as a safety factor in case of data overrun). Using this 3rd hit buffer will be
useful in AuAu operation as will be shown below. There is only one strategy to apply busy to the
MVTX system, i.e to always complete the current strobe and lose the next strobe. This generates a
deterministic busy state and induces a loss of efficiency//acceptance albeit without centrality bias.

There are several changes in the simulations that effect the presented multiplicities with respect
to previous presentations. Jin included the retuned MVTX digitizer based on ALICE data, an
analysis that was presented at the LBNL MVTX workshop. The most immediate effect is that
the occupancy is reduced by a factor two. In addition JIn included Xin Dong’s estimation of the
electron occupancy in ultra peripheral collisions. The read mode choice effects that data volume, in
continuous trigger mode some hits are duplicated, this was previously not simulated. The final big
change is moving away from the very conservative assumption of a baseline noise of 1 in 10,000
to 1 in 10,000,000.

The slides presented were a response to the discussion about the preferred readout mode for
the MVTX and incorporated the consensus reached at the February meeting. This simulation study
by Jin addresses ALPIDE hit multiplicity distributions, the usage of the on-chip buffer and data
transfer.

In order to decouple the analog shaping time tuning from the global sPHENIX trigger latency
choice, e.g. preserving the important tune of the threshold setting to respond to actual data and
occupancy encountered under various run conditions, the continuous strobe in triggered mode is
preferred. Using the ALPIDE in triggered mode gives priority to the currently read out event, i.e.
there is no bias against central events as the readout continues while the next event is buffered.

The changes in the March presentation with respect to the MVTX proposal reflect the incorpo-
ration of the results of study by Tony Frawley (see figure 119, who re-tuned the MVTX digitizer in

127

Figure 119: Details on the new tune for the MVTX digitizer.

Figure 120: ALPIDE cluster multiplicity as function of threshold from Svetlana Kushpil IEEE NSS 26/10/2017.

128

Figure 121: The increased magnetic field for sPHENIX offsets the smaller radius of the innermost layer and therefore the MVTX
shows a similar occupancy to the HFT.

Figure 122: The gray area presents a valid DataOut signal from the ALPIDE chip as function of the input charge.

129

simulations using ALICE information (see figure 120: the average cluster multiplicity is now down
to 2.3 from the previous value of 6, this reduces the observed occupancy by about 50 percent. In
addition the new simulation takes into account Xi Dongs estimated UPC electron occupancy (see
figure 121, important for min bias studies. In continuous readout mode there is some duplication
of hits if the analog signal stretches past the strobe boundaries, information from Jo Schambach
pertaining to this effect is included in the simulation. The final change is the assumption of a base-
line pixel noise of 1 in a million instead of one in ten thousand as was assumed in the proposal but
proved to be very pessimistic.

There are several factors that attribute to the per-strobe multiplicity for a given ALPIDE pixel
(see 122): The PDFs used for simulations, the number of pile up events for a given collision rate
which is Poisson distributed, the actual triggered collisions with a vertex cut and the number of
hits which, due to the integration time of the front-end, are included in the integration window. All
these are included in the full simulation results presented in the following figures.

130

Figure 123: Continuous proton-proton strobe: Histogram of hit multiplicity (left), normalized probability (right) for the center
chip of the MVTX (red is layer 0, blue is layer 1, green is layer 2) for p-p collisions at 13 MHz, the blue line indicated the 5 micro
second strobe.

The simulation results for continuous strobe proton-proton collisions are shown in figure 123.
The figure show the results for 13 MHz collision rate and continuous strobe of 100 KHz with
a integration window of 5 micro seconds. At a one in a million level the readout time between
strobes exceeds the strobe time and the on chip buffer is used. It appears that this rare usage of
the buffer allows the conclusion that this is a safe mode for pp running, alas the strobe is twice the
integration time for this study. A future simulation of the MVTX needs to adjust the strobe time
and take include a leaky basket simulation of the RU/FELIX data transfer to estimate the effect of
the buffering on the readout.

The simulation results for triggered readout for 200 KHz gold-gold collisions are shown in
figure 124, exemplified by the chip in the middle of the stave. The assumption was that the ALPIDE
can integrate for 15 usec (this is a factor two above what was shown in bench tests and needs to be
revisited). If one assumes a average trigger frequency of 15 KHz then each chip can read out an
average 2700 hits per trigger without using the extra buffer. The instantaneous trigger rate can be
higher and is exemplified by the blue line at 1350 in the right hand side figure, half the expected
trigger spacing. An updated simulation must take a realistic integration time, the leaky basket
nature of the readout chain and the stochastic nature of the trigger spacing into account.

The simulation results for continuous strobe readout for 200 KHz gold-gold collisions are
shown in figure 125, exemplified by the chip in the middle of the stave. The integration time
assumed was a realistic 5 micro seconds. The right hand side shows that the on chip even buffer

131

Figure 124: Triggered gold-gold collisions: Histogram of hit multiplicity (left), probability (right) for the center chip of the MVYX
(red is layer 0, blue is layer 1, green is layer 2) for Au-Au collisions at 200 KHz, the blue line indicates 33 micro seconds, half the
time of an average 15 KHz trigger.

132

Figure 125: Continuous strobe gold-gold collisions: Histogram of hit multiplicity (left), probability (right) for the center chip of
the MVYX (red is layer 0, blue is layer 1, green is layer 2) for Au-Au collisions at 200 KHz, the blue line indicates 33 micro
seconds, half the time of an average 15 KHz trigger.

133

will be used on a percent level. An updated simulation must take the leaky basket nature of the
readout chain and the stochastic nature of the trigger spacing into account in order to assess the
question whether data loss will be incured.

In summary, all the discussion is driven by the tails of the distribution which need to be well
understood plus a detailed simulation of the data flow and the instantaneous rates. The slides pre-
sented so far illustrate only the level on which the on chip event buffering is used: The simulation
of proton proton collisions shows low tails and the continuously triggered chip-mode is a plausible
readout mode. The simulation for gold gold collisions shows much larger fluctuation and more
extended tails. In continuously strobe readout mode with a chip in triggered mode there is a one
percent chance that the readout time is larger than strobe period and a the 3rd buffer on chip is used
for event buffering.

The effect of buffered events on the data readout and possible data loss can only be addressed
via a leaky basket simulation of the RU/FELIX readout chain taking into account the full nature of
the trigger time structure.

134

A.2 October DAQ Fest
The following notes are a summary of topics pertaining to the MVTX sub system discussed at

the Stony Brook DAQ Fest in October 2019 and written up by GJK:
A.2.1 DAQFest Intro Talks

John Haggerty suggested a complete the tear-down of the rack room and start installing V1 of
the DAQ in 1008 in 2002 including: file systems,development environment, system management
scheme, network, s couple racks of computing such as Prototype GTM/GL1 and prototype FE
electronics (EMCAL, TPC, MVTX).

Martin Purschke presented the conceptual hybrid readout between triggered events and stream-
ing readout: The calorimeter readout is a classic triggered readout of waveform samples. The
tracking system is read out in streaming mode (see figure 126). Then combining the streaming
data with triggered events later, limited to 15KHz rate by the calorimeter front-end while apply-
ing data reduction strategies (zero-suppression, clustering, compression, etc.). All of which must
work on a time scale of about 6ms, target is 4ms (40 beam crossings). The SPHENIX data format
supports streaming data natively which is straightforward: e.g. VoIP, data get packetized. This
concept was already demonstrated to work by Martin in a different context years ago.

Figure 126: Data taking hybrid of trigger and streaming as demonstrated in the TPC in the July 2019 test beam. Only triggered
data protions are retained in the stream.

135

Figure 127: Clock distribution and re-synchronisation of trigger.

A.2.2 MVTX 40 MHz Request
We presented a slide which reiterated a request that was made by Alex and Gerd in a SPHENIX

DAQ meeting in August 2019. For the beam tests so far we were using one FELIX with an internal
oscillator at 40.08 MHz (the actual LHC frequency). In order to have more than one FELIX
employed in the system we have to move an external clock to have a synchronous system. We
requested that a clock of 40 MHz be provided as an output of the GTM.

We presented the current clock distribution on the FELIX as seen in the upper part of figure 127.
The fabric is clocked by an internal oscillator at 40.08 MHz as set by the FELIX INIT command
that programs the clock chip.

For the test beams it was sufficient to employ the synchronisation scheme that is depicted in the
lower part of the figure. The GTM module written by JohnK has an output called GTM clock that
is currently 6 times 9.6 MHz as well as the level one accept signal gtm_received_level_1_accept.

The current (April/Nov 2019) FELIX MVTX firmware has a module called xpm_cdc_pulse
that takes these two signals as well as the internal oscillator to re-synchronize the level one accept
(the trigger) to be used in the MVTX firmware. The resulting signal has a jitter of 25 nsec with
respect to the original level one distributed by the GTM.

The pursuing discussing included several aspects:
1) the RHIC clock (currently distributed as 6x by the GTM) is not stable, depending on the

ramp and the species the actual clock frequency ranges from 9.34 to 9.82 MHz.
2) bench and beam tests of JohnK showed, that the GTM can have stable links for said range

of frequencies (if the PLL is provided the center frequency externally).
3) the current GTM document specifies 6x RHIC and the definition of the GTM control words

is bases on the bits available at 6x.So far the only the level one accept and the 6x RHIC clocks is
provided by the GTM module but in the future there will also be the beam crossing counter, trigger
type etc.

136

4) The ECAL requires 6x, the TPC 2x and the MVTX 40.08.
5) We agreed to investigate whether the MVTX can run at 4x, this implies test with the FELIX,

the RU and the Staves. The manual of the GBTX states: "When an external reference clock is
provided to the GBTX, the device is capable of operating with a reference frequency between 20
and 40MHz (fLHC/2 to fLHC) with all data rates and programmable delays scaling directly with
the reference clock frequency (page 88)", alas a look at the RU schematics shows that this external
clock is currently not used.

There will be a section in the main part of this MTX document that covers the discussion of the
clock, specifics of the requirements etc. as soon as all information is collected.

6) John Mead floated the idea the maybe the GTM could run at 12x, and could have bits, in the
now double wide bit stream, to signify a 4x and a 6x and a 2x clock. This solution would require
modifications for the ECAL as the currently get the clock from the carrier frequency of their link.
A.2.3 Synchronizing the MVTX System

Figure 128: Complete Felix and RU system.

In the general discussion about SPHENIX event synchronisation it was agreed upon that the
RUs (see figure 128 needs to incorporate a partial beam counter (lower ten bits) in their response
to a given trigger to allow consistency checks in order to understand whether the system is running
in lock step. This implies running in lock step via an external clock outlined above.

The ECAL people brought up that their system currently has only a constant offset to the trigger
request, which everybody agreed on is the minimum requirement but should be looked at as this
offset apparently changes from run to run.

For the MTVX RUs that implies that we have to look into the BC counters and their initializa-
tion as well.

137

A.2.4 ALICE is Streaming, the MVTX Could/Should
During the Austin RU testing in October 2019 Jo shared that that ALICE is leaning towards

streaming the ITS data. The proposed scheme would use a single orbit as a natural choice for a
packet of data then ends with the abort gap. ALICE will use a 5 usec heart beat that is the trigger
sent to the ALPIDE chips as a continuous trigger in triggered readout mode (triggered readout
mode has a priority for the currently readout event, i.e. bias against central events). The discussion
yielded that there is currently no plan for SPHENIX to have orbits with heartbeat, the TPC will
have continues trigger but currently they are asynchronous to the machine orbit.

The TPC group presented the concept that is currently being implemented by John, see earlier
figure 126). Their concept is to stream data from the front end cards to the FELIX where this data
is matched with the level one triggers and stripped of all data that does not pertain to triggers. All
this is done before moving the data to the DMA machine that transports the data to the PCIe card
as shown in figure 129. From there the data streams EBCD encoded to the buffer boxes. There
was a very intense and long discussion about the final data format, on whether at the buffer box
level the data should be expanded to some heartbeat for easier referencing or just stored per trigger
without a conclusion yet.

We still have to have the discussion on how to fit the MVTX data into the SPHENIX hybrid
data stream and whether we adopt schemes such as the TPC does in order to have a triggered
streaming readout.

Figure 129: Discussion of the TPC data format, for details see main text.

138

A.2.5 GTM Fiber Splitting vs. Mezzanine Board

Figure 130: The single mode fiber splitter used in ALICE.

When the question of GTM distribution was discussed it became clear that there needs to be
further development. J. Haggerty implied that there has to be a Global Level 1 which talks to all
GTMs that are connected to the respective sub systems. Joe Mead mentioned the concept of having
a mezzanine board on the GTM with numerous SFP cages to distribute the trigger synchronously
to the readout units.

We brought up that ALICE solves the problem by having their GTM equivalent house a SFP
cage with a single mode fiber that is connected to a fiber splitter in order to fan out the signals to
the RUs, Jo’s purchase order is shown in figure 130. The discussion centered around BNL worry
that their is not enough signal but ALICE tested this solution.
A.2.6 SPHENIX Busy

Martin Purschke started and led a discussion of the SPHENIX system wide busy concept. He
made clear that there has to be a throttle mechanism that can stop triggers if there is a backlog if,
e.g. the DCMs send out a buys. While everybody was agreeing that this is important there was no
consensus on how this busy is distributed. JohnK suggested one maybe could have a fiber system
that is up and running and locked to have no latency but most people where thinking Lemo, see
figure 131.
A.2.7 Slow Control

The slow control discussion was initiated when we mentioned that WinCC is used for the ITS
slow control and that MIT driving the development. In the following discussion it became clear that
this is a topic for further debate and needs to be addressed in the collaboration. Martin Purschke
took the opportunity to reminded everybody that the one and only standard accepted is the concept
of having one slow control server and stateless GUIs. I.e. no matter whether a GUI is connected
or not or even crashed, the state of the system is stored and controlled by the server.

139

Figure 131: The SPHENIX busy concept.

140

B Test Reports
B.1 Testing with the MVTX system

The following brief introduction into testing with the system aims at giving a detailed descrip-
tion on how to get the system operational and perform test but it is strongly advised to only use
that as a guidance and use it under supervision of and expert.

The system is set up to be used with usb controlled power supplies, in order to get access to
them and have a monitoring display on the screen the following commands have be issued in a
terminal on the server:
cd /homemaps/git/misc_software/usbserial_testbeam;
./open_terminals.sh;

The available commands are q=quit, R=Recall, N=oN, F=oFf, if powering on after a hard
reset has to be issued in order to load the configuration.

There is a detached set of monitoring screens spawned which should stay up when the original
terminal had been close, a typical read back of the set points looks as follows
Fan: setpoints 12.000 V 5.000 A, OVP ENABLED @ 22.0 V OCP ENABLED @ 22.0 A
Power: channel P6V: setpoints 3.300 V 5.000 A
channel P25V: setpoints 0.000 V 1.000 A
channel N25V: setpoints -5.000 V 0.200 A
RU: setpoints 5.000 V 8.000 A, OVP ENABLED @ 6.0 V OCP ENABLED @ 10.0 A

After the system is powered the next step is to program the FPGAs, opening a new terminal the
following command sequence is required:
source software/Xilinx/Vivado/2017.4/settings64.sh;
cd /home/maps/git/RUv1_Test_sync2018-08/bitstreams
vivado -mode batch -source program_3plus1.tcl

A consultation with an expert is necessary to determine which bit stream should be loaded.
Subsequently, again in a new terminal on the server the readout units needs to be configured,

there is one command which runs a script that should be edited by experts only:
cd /git/RUv1_Test_sync2018-08/software/py/;
source scl_source enable rh-python36
./config_RU.sh

If one intends to pulse the system then (after editing the testbench file to set SETUP_PULSE=True
) the following commands have to be issued:
./testbench1.py rdo trigger-handler configure-to-send-pulses; ./testbench2.py
rdo trigger-handler configure-to-send-pulses

It is good practice to monitor and check the system via:
./testbench1.py powerunit log-values-IBs [0,1,2,3]
./testbench1.py rdo gth is_aligned; ./testbench2.py rdo gth is_aligned
./testbench1.py readback_sensors; ./testbench2.py readback_sensors
./testbench1.py reset-counters;
./testbench2.py reset-counters;watch -n1
./testbench1.py get-counters; ./testbench2.py get-counters’

The watch-command opens a screen that allows for continues monitoring of the number of
triggers sent and services and is a primary control as these numbers should match.

141

A detailed and up to date manual on how the data acquisition is setup and run can be found on
the MTVX pages.
B.2 Test Report on RuV1

The following subsection is a summary of the tests performed with RuV1 and the new Felix
firmware 18_191025_6_27 in November and December 2019. It specifically uses the FDAQ tool
to produces raw data files that are analyzed with the Tweak hex dump tool to specifically examine
the repositioning of the word count line in the data set.

Figure 132: The count FIFO allows to insert word count in the beginning of the data buffer by temporarily storing the data. This
constitutes a bottle neck in the data path.

In the March/April testing it was determined that the data path developed for the MVTX test
beam, shown in figure 132, has to be streamlined for SPHENIX data taking. The figure shows
that the data is temporarily stored in count_ f i f o, then - controlled by count_ f i f o_mux_sel - the
word count is added as start of the data stream. The bottom part of 132 shows in magenta the word
count (in this case four lines) and the data. The buffer is padded with xFF to the next 8x32 byte
boundary.

While it was for development purposes convenient to have a word count in the beginning of the
data buffer, this FIFO limits the data throughput as it is of finite size. It was decided to remove the
FIFO, do the word count on the fly and then have the word count inserted after the data.
The system was brought up in the following configuration, see figure 133

• Tektronix pulser 3102 at 15 KHz with fixed burst number

• GTM

• Felix with 18_191025_6_27 (no FIFO) and 14_19410_20_24 (FIFO) for reference

142

Figure 133: The figures shows a schematic diagram of the test setup and all connections. The devices under test are outlined in
red. The readout unit and the stave were powered by lab power supplies.

• RuV1 with test beam firmware

• individual power supplies for 3.3 and 5.0 Volts

• HIC with chips 1,2,8 enabled (the only ones that could be initialized)

The testing was done by data talking with FDAQ in order to only test the firmware change and
not the new plug-in. The testing was performed by loading a pattern in the chip by using an Alice
python command in the test bench. An array of pixels is created via a loop in the commented test
bench and can be edited to produce either a linear or horizontal line as test pattern. In later tests
this was found insufficient and now the capability is implemented to read a test patter for each chip
from a text file. Again the comments in test bench describe on how to load the patterns from file.
An external python code exists now to produce random patters of a given size. After an initial
verification of the read back of correct line patterns it as found that under specific conditions the
read back was faulty, this is discussed in the following:

As illustration of the expected system behavior, Figures 134 and 135 show the performance of
the old firmware. The word count line in magenta is always preceding the data.

In direct comparison figures 136 and 137 show the behavior of the new firmware, in the case
that chip 8 is enabled there is no word count line inserted after the data.

Finally in figure 138 it is shown that if only chip 8 in enabled then (while there is no data) from
the chip itself the proper word count line is enabled.

143

Figure 134: FDAQ Hex Dump for the old Firmware with Chips 1,2 enabled. The word count line is indicated in magenta, data
from chip 1 is in green and for chip 2 in blue color. The system works as expected.

Figure 135: FDAQ Hex Dump for the old Firmware with Chips 1,2 and 8 enabled. The word count line is indicated in magenta,
data from chip 1 is in green and for chip 2 in blue color. The system works as expected.

144

Figure 136: FDAQ Hex Dump for the New Firmware with Chips 1,2 enabled. The word count line is indicated in magenta, data
from chip 1 is in green and for chip 2 in blue color. The system works as expected.

Figure 137: FDAQ Hex Dump for the old Firmware with Chips 1,2 and 8 enabled. The data from chip 1 is in green and for chip
2 in blue color. The there is no word count line (no magenta). as expected.

145

Figure 138: FDAQ Hex Dump for the new Firmware with only chip 8 enabled. Differently from 137 there is a word count line
(magenta).

The behavior of the new Firmware was traced down to a different performance under faulty
initialization of the RuV1. The transition board used is routing the GTH signals not in sequence
to the GTH, e.g. the lanes 0,1,2,3,4,5,6,7,26 were used. Alas the ITS python script did not enable
the second bank which holds channel 26. I.e. when the new firmware is waiting for data a not
initialized channel in addition to enabled channels the word count line is not inserted alas when
only the uninitialized channel is being read, the word count is insert.

While technically this behaviour is outside of the specifications for the FELIX firmware func-
tionality, the fact that the response to the GTH timeout is different before and after the FIFO change
is worth a follow up. It appears to point to a timing issue in the multiplexing that inserts the word
count.
B.3 Test Report on RuV2 with one stave and 9 working ALPIDE chips

The following subsection is a summary of the tests performed with RuV2 and the new Felix
firmware 18_191025_6_27 in December 2019 and January 2012. The purpose of this testing is the
analysis of the position of word count line in the configuration that uses the latest hardware, namely
the RuV2.1 (powered by the final Power-Boards version 2.0). Again the analysis is restricted to
analyzing hex dumps with the tweak-tool for the plugin that does the data encoding for the new
data format is not existent yet in a working condition.

The system was brought up in the following configuration which is shown in the diagram in
139:

• Stanford Research Systems DG535

• GTM

146

Figure 139: The figures shows a schematic diagram of the test setup and all connections. The devices under test are outlined in
red. Note that in the test the RU is the production board 2.1 and it is powered via the final release power board.

• Felix with 18_191025_6_27 (no FIFO) and 14_19410_20_24 (FIFO) for reference

• RuV2 with test beam firmware

• Production power board to supply the stave voltages

• HIC with Mosaic qualified 9 chips enabled

The pulser sends a 15 KHz signal with 200ns width (to emulated RHIC conditions) to the GTM,
which in turn is sending it over the optical coupling to the FELIX. The trigger is relayed to the the
RU via the GBTX link and is then arbitrated by the RU firmware to be send to the ALPIDE chips
via the GTH links. Hit patterns were written into the ALPIDE chips to send a know pattern upon
receiving a trigger, the functionally of reading in a hit pattern from a file and the python script to
produce said files is an addition to the test bench beyond the ALICE scope.

Here we provide an executive summary to guide through the following discussion: During the
testing with the new random hit pattern interface we found a padding issue in the new firmware. A
reproducible problem not a glitch: The firmware specs state that each time the data (header and hits
and word count) in the data stream (packaged by the FELIX firmware) hit a 8x32 boundary (x200),
then no padding is necessary, padding meaning here the insertion of xFF until the next 8x32 bit
boundary. The behaviour of the firmware in the bench tests can be summarized as follows: the
old firmware works as expected and no padding is added while the new firmware adds 4k lines of
padding if the word count is on a 8x32 boundary. This blows up the file size by a factor of about
500x. The issue only arrived after removing the fifo in the firmware.

147

The following following discussion show the screen shots for all firmware versions and guides
through the interpretation and discusses the firmware solution. Writing a 20 pixels diagonal into
into all chips, reaches exactly the 8x32 boundary for all these test.

Figure 140 shows the behavior of the firmware from the test beams in the bench test. The pixel
pattern is designed such that the data, which is the header and data from RU and the word count
(WC) line hit exactly the 8x32 boundary of the data transfer scheme in the FELIX firmware. Per
specification no padding (which would be lines of xFF up to the next 8x32 boundary) is inserted
by the firmware. It is visible in the screen shot by subsequent WC and header lines.

Figure 140: The hex dump of the firmware from the test beam shows in green the line with the word count (WC), labeled with a
X0000 in the right most column and in yellow the header line for the RU data labeled in x0001. The data returned are a hit diagonal
which including the header hits x200 boundary. The WC line and the new header are subsequent in the data, no padding is inserted.

The behaviour of the firmware without FIFO on the bench is different, as shown in figure 140.
The second arrow indicate the beginning of an event that ends at a 8x32 boundary alas this time
xFF for padding are inserted. As the following discussion will show, about 4k lines.

The latest firmware, that has the spy channels for trigger and clock disabled to fulfill all clock
constraints, shows the same padding behaviour as encountered in figure 142. The event start (blue
arrow) has the header line, followed by ALPIDE data and ends with the proper WC line. Alas there
is padding even though the WC line landed on a 8x32 boundary, visible by the xFF in the screen
dump. Closer inspection shows that this event only ends about 4K lines later as shown in figure
142, the blue arrow points of at the header of the next event.

The 4k padding let to the search of the padding counter in the firmware and scrutiny of the reset
of said counter. The firmware snapshot is shown figure 144. The if clause depends on the padding
counter, the arbiter data ready and the inject. Here a brief discussion of the functionality of the
clause:

The first section inserts a padding word, sets cr_data_out_ready to 1 and increments the padding

148

Figure 141: The hex dump for the new firmware release without FIFO shows in green the line with the word count (WC), and in
yellow the header line for the RU. The figure shows the beginning of an event as the yellow line in the middle of the figure (the first
event is an artefact from the RU firmware that start up the RU in triggered mode that send one event from the previous run (a know
feature that will be fix in the upgrade of the firmware for the RU)). At the red marker it is visible that a long block of FF starts after
the WC line.

Figure 142: The hex dump for the latest firmware release without FIFO and no timing errors shows in green the line with the word
count (WC), and in yellow the header line for the RU. The figure shows the beginning of an event as the yellow line in the beginning
of the hex dump. This is followed up in 143 which shows the end of said block.

149

Figure 143: This hex dump is the continuation of the event in 143 and shows in green the line with the word count (WC), and in
yellow the header line for the RU. The xFF padding is continued up to the middle of the figure where the following event header
appears, about 4k of padding.

counter (which in reality is a data line counter) and then reset said counter if the 8x32 boundary is
reached.

The last section copies the arbiter_data_ready to the cr_data_out_ready and copies the data
from the RU into the cr_data_out. If there was valid data then the "padding counter" is incremented
and if it is hitting the boundary of 8x32 it is reset.

In the problematic middle section, encountered when inject_4 is high, the word count line from
the FELIX word count is copied to cr_data_out, cr_data_out_ready is enabled and the "padding
counter" is incremented. Alas here there is no check whether it reached a boundary. No reset
means that the padding counter is incremented and padding is added in every subsequent entering
of the whole if clause. Only when this 12 bit counter overflows this padding insertion ends.

Figure 144 show the added bug fix for then inject_4 high case, if the boundary is reached
when inserting the WC then the padding counter is reset and no padding is added. The corrected
firmware was compiled in Vivado 15.2 and downloaded to the FELIX. The bench tests visualised
in figure 145 show two test cases left and right. In the left side hex dump a pixel pattern (here 20
pixels diagonal) is chosen to have the WC line on a buffer boundary and no padding is inserted as
expected. The right had side is a check of the previous functionality, i.e. that padding is inserted
when the WC does not hit a boundary (here achieved with 10 pixel diagonals) and normal padding
behaviors is observed.

Latest test (as of January 8) with this new firmware show that the plugin on the PC side does
not decode the DMA data properly for the PRDF reader. This problem will be discussed in the
section after more bench tests.

150

Figure 144: Screen shot of the latest firmware, the pink indicates a reset of the padding counter, the arrow indicates the missing
reset, for details see main text.

Figure 145: The bug fix is indicated in blue and the firmware was recompiled in Vivado 15.2 and downloaded to the FELIX for
confirmation of the fix.

151

Figure 146: The hex dump for the recompiled firmware with proper reset and without FIFO and no timing errors. Shows in green
the line with the word count (WC), and in yellow the header line for the RU. Left had shows consecutive events (20 pixels) that
arrive at the 8x32 boundary and it is visible that no padding is inserted for now the padding counter is properly reset. The right
hand shows as confirmation that events with 10 pixel that do not hit the 8x32 boundary with the WC have the proper padding.

C PCIe
The purpose of this appendix is to discuss PCIe 3.0 architecture and prime the basics required

to have a better overall picture regarding the Back end section. The first point to make that may
make this an easier read is that the primary difference between PCI, PCI-X which behave as actual
buses and PCIe can be viewed as a packet based network with communication taking the form of
packets through switches etc.

PCI Express is a serial, point-to-point interface. The connection between two PCI Express
devices is referred to as a link. A link consists of a number of lanes, much the same way that
a highway consists of a number of driving lanes. With PCI Express, a lane is the term used for
a single set of differential transmit and receive pairs. A lane contains four signals, a differential
pair for unidirectional transmission in both directions (referred to as dual unidirectional). The link
shown in Figure 147 is 4 lanes wide.

PCIe uses clock recovery for each signal pair, a pair receiver looks at the signal transition 0->1
or 1->0 from which it can infer the position of the surrounding bits. To resolve the problem of many
successive bits of the same value, extra bits are transmitted to ensure that the single transitions are
not too far apart which resyncs the clock recovery mechanism. 8b/10b for each 8 bit sent 10 bits
are transmitted 20% overhead that guarantees enough signal transitions.

As shown in Figure 148 PCI Express consists of three primary devices: a root complex, a PCI
Express-PCI bridge, an endpoint and a switch.

The root complex is the head or root or the host controller that connects the CPU of the host
machine to the rest of the PCIe devices. PCIe has its own address space consisting of either 32 or

152

Figure 147: PCIe Links Lanes and Ports

153

Figure 148: PCIe Topology

64 bits depending upon the Root-Complex and it is only visible by PCIe components like the Root-
Complex, end-points, switches and bridges. Root-complex can interrupt the CPU for any of the
events generated by the Root-Complex itself or by any of the PCIe devices. Moreover, it can also
access the memory without CPU intervention (acting as a sort of DMA). PCIe end-points can use
this feature to write/read data to/from the memory. In order to do so, Root-complex makes the end-
point the bus master (giving the permission to access the memory) and generates the corresponding
memory address.

An endpoint is a device that can request or complete PCIe transactions for itself (for example,
an FPGA with PCIe endpoint controller) or on behalf of a non-PCI Express device (PCI Express-
USB interface, for instance).

Switches are used to provide fan-out for the I/O bus. From a PCIe configuration standpoint,
they are considered a collection of “virtual” PCIe-to-PCIe bridges whose sole purpose is to act
as the traffic director between multiple links. They are responsible for properly forwarding trans-
actions to the appropriate link. Unlike a root complex, they must always manage peer-to-peer
transactions between two downstream devices (downstream meaning the side further away from
the root complex).

A PCIe to PCI bridge provides forward and reverse bridging allowing designers to migrate
local bus, PCI, PCI-X and USB bus interfaces to the serial PCIe architecture.

In the case of Root-Complex or switches, in order to implement a point-to-point topology
(which means that a single serial link connects two devices) multiple Virtual PCI to PCI bridges
are used. These are the devices that connects multiple buses together providing a (virtual) PCI
bridge for the up-stream PCIe connection and one (virtual) PCI bridge for each down-stream PCIe

154

connection. An identification number is assigned to each bus by the software during the enumera-
tion process that is used by switches and bridges to identify the path of a transaction. Every switch
or bridge must store the information about three bus numbers: the primary bus number (that re-
flects the number of the bus the switch is connected to), the secondary bus number (identifying
the bus with the lowest number that can be reached) and subordinate bus number (the bus with the
highest number that can be reached).

Transactions form the basis for the transportation of information between PCI Express devices.
PCI Express uses a split-transaction protocol. This means that there are two transaction phases,
the request and the completion. The transaction initiator, referred to as the requester, sends out
the request packet. It makes its way towards the intended target of the request, referred to as the
completer. For requests that require completions, the completer later sends back a completion
packet (or packets) to the requester. A completion is not necessarily required for each request.

Even though PCI Express links are point-to-point, this does not always mean that one of the
devices on the link is the requester and the other the completer. For example, say that the root
complex in Figure 148 wants to communicate with a PCIe endpoint that is downstream of the
switch. The root complex is the requester and the endpoint is the completer. Even though the
switch receives the transaction from the root complex, it is not considered a completer of that
transaction. Even though the endpoint receives the transaction from the switch, it does not consider
the switch to be the requester of that transaction. The requester identifies itself within the request
packet it sends out, and this informs the completer (and/or switch) where it should return the
completion packets (if needed)

The PCI Express architecture defines four transaction types: memory, I/O, configuration, and
message. This is similar to the traditional PCI transactions, with the notable difference being the
addition of a message transaction type.

Memory Transactions Transactions targeting the memory space transfer data to or from a
memory-mapped location. There are several types of memory transactions: Memory Read Re-
quest, Memory Read Completion, and Memory Write Request. Memory transactions use one of
two different address formats, either 32-bit addressing (short address) or 64-bit addressing (long
address).

I/O Transactions Transactions targeting the I/O space transfer data to or from an I/O mapped lo-
cation. PCI Express supports this address space for compatibility with existing devices that utilize
this space. There are several types of I/O transactions: I/O Read Request, I/O Read Completion,
I/O Write Request, and I/O Write Completion. I/O transactions use only 32-bit addressing (short
address format).

Configuration Transactions Transactions targeting the configuration space are used for device
configuration and setup. These transactions access the configuration registers of PCI Express de-
vices. For each function of each device, PCI Express defines a configuration register block four
times the size of PCI. There are several types of configuration transactions: Configuration Read
Request, Configuration Read Completion, Configuration Write Request, and Configuration Write
Completion.

Message Transactions PCI Express adds a new transaction type to communicate a variety of
miscellaneous messages between PCI Express devices. Referred to simply as messages, these
transactions are used for things like interrupt signaling, error signaling or power management.
This address space is a new addition for PCI Express and is necessary since these functions are

155

no longer available via sideband signals such as PME#, IERR#, and so on. Described in further
details after the layer defintions

Figure 149 shows the three abstract layers that “build” a PCI Express transaction.
Transaction Layer is the first layer whose main responsibility is to begin the process of turning

requests or completion data from the device core into a PCI Express transaction. In other words it
is responsible for turning that request/data into a Transaction Layer Packet (TLP). A TLP is simply
a packet that is sent from the Transaction Layer of one device to the Transaction Layer of the other
device. The TLP uses a header to identify the type of transaction that it is (for example, I/O versus
memory, read versus write, request versus completion, and so on).The Transaction Layer also has
several other functions, such as flow control and power management. Lastly the transaction layer is
how a given software device driver communicates with an FPGA where the software device driver
communicates with the core and the core sends the message to the FPGA via the three layers.
Communication in the opposite direction works the same way.

The Data Link Layer is the middle PCI Express architectural layer and interacts with both the
Physical Layer and the Transaction Layer. The main responsibility of this layer is to ensure that the
transactions going back and forth across the link are received properly. This layer receives TLPs
from the transmit side of the Transaction Layer and continues the process of building that into a
PCI Express trans- action. It does this by adding a sequence number to the front of the packet
and an LCRC error checker to the end. The sequence number serves the purpose of making sure
that each packet makes it across the link. For example, if the last sequence number that Device
A successfully received was #6, it expects the next packet to have a sequence number of 7. If it
instead sees #8, it knows that packet #7 got lost somewhere and notifies Device B of the error.
The LCRC serves to make sure that each packet makes it across intact. As mentioned previously,
if the LCRC does not check out at the receiver side, the device knows that there was a bit error
sometime during the transmission of this packet. This scenario also generates an error condition.
Once the transmit side of the Data Link Layer applies the sequence number and LCRC to the TLP,
it submits them to the Physical Layer. The receiver side of the Data Link Layer accepts incoming
packets from the Physical Layer and checks the sequence number and LCRC to make sure the
packet is correct. If it is correct, it then passes it up to the receiver side of the Transaction Layer.
If an error occurs (either wrong sequence number or bad data), it does not pass the packet on to
the Transaction Layer until the issue has been resolved. In this way, the Data Link Layer acts a
lot like the security guard of the link. It makes sure that only the packets that are “supposed to be
there” are allowed through. The Data Link Layer is also responsible for several link management
functions. To do this, it generates and consumes Data Link Layer Packets (DLLPs). Unlike TLPs,
these packets are created at the Data Link Layer.

Finally, the lowest PCI Express architectural layer is the Physical Layer. This layer is respon-
sible for actually sending and receiving all the data to be sent across the PCI Express link. The
Physical Layer interacts with its Data Link Layer and the physical PCI Express link (wires, cables,
optical fiber, and so on). This layer contains all the circuitry for the interface operation: input and
output buffers, parallel-to- serial and serial-to-parallel converters, PLL(s) and impedance matching
circuitry. It also contains some logic functions needed for interface initialization and maintenance.
On the transmit side of things, the Physical Layer takes information from the Data Link Layer and
converts it into the proper serial format. It goes through an optional data scrambling procedure,
8-bit/10-bit conversion, and parallel-to-serial conversion. The Physical Layer also adds framing

156

characters to indicate the beginning and ending of a packet. It is then sent out across the link using
the appropriate transfer rate (for example 2.5 gigahertz) as well as link width (for example, using
4 lanes if the link is a x4).On the receive side, the Physical Layer takes the incoming serial stream
from the link and turns it back into a chunk of data to be passed along to its Data Link Layer. This
procedure is basically the reverse of what would occur on the transmit side. It samples the data,
removes the framing characters, descrambles the remaining data characters and then converts the
8-bit/10-bit data stream back into a parallel data format.

Figure 149: PCIe Three Architectural Layers

The three architectural build layers accomplish this by “building up” the packets into a full
scale PCI Express transaction. This buildup is shown in Figure 150

Each layer has specific functions and contributes to a portion of the pyramid. As a transaction
flows through the transmitting PCI Express device, each layer adds on its specific information. The
Transaction Layer generates a header and adds the data payload (if required) and an optional ECRC
(end-to-end CRC). The Data Link Layer adds the sequence number and LCRC (link CRC). The
Physical Layer frames it for proper transmission to the other device. When it gets to the receiver

157

Figure 150: PCIe Transaction Buildup

side, the complete reversal of this build occurs. The Physical Layer decodes the framing and passes
along the sequence number, header, data, ECRC, and LCRC to its Data Link Layer. The Data Link
Layer checks out the sequence number and LCRC, and then passes the header, data, and ECRC
on to the Transaction Layer. The Transaction Layer decodes the header and passes the appropriate
data on to its device core.

As previosuly mentioned memory, IO and configuration transactions are supported PCIe archi-
tectures, but the message transaction is new to PCIE. Transactions are defined as a series of one or
more packet transmissions required to complete an information transfer between a requester and a
completer. Figure 151 is a more detailed list of transactions. These transactions can be categorized
into non-posted transactions and posted transactions.

Non-posted transactions
For Non-posted transactions, a requester transmits a TLP request packet to a completer. At

a later time, the completer returns a TLP completion packet back to the requester. Non-posted
transactions are handled as split transactions. The purpose of the completion TLP is to confirm
to the requester that the completer has received the request TLP. In addition, non-posted read
transactions contain data in the completion TLP. Non-Posted write transactions contain data in the
write request TLP.

Posted transactions
For Posted transactions, a requester transmits a TLP request packet to a completer. The com-

pleter however does NOT return a completion TLP back to the requester. Posted transactions are
optimized for best performance in completing the transaction at the expense of the requester not
having knowledge of successful reception of the request by the completer. Posted transactions may
or may not contain data in the request TLP.

Figure 152 lists all of the TLP request and TLP completion packets. These packets are used in
the transactions referenced in Figure 151.

158

Figure 151: PCIe non-posted and posted transactions

Figure 152: PCIe TLP Packet Types

159

Non-Posted Read Transactions
Figure 153 shows the packets transmitted by a requester and completer to complete a non-

posted read transaction. To complete this transfer, a requester transmits a non-posted read request
TLP to a completer it intends to read data from. Non-posted read request TLPs include memory
read request (MRd), IO read request (IORd), and configuration read request type 0 or type 1 (Cf-
gRd0, CfgRd1) TLPs. Requesters may be root complex or endpoint devices (endpoints do not
initiate configuration read/write requests however).

The request TLP is routed through the fabric of switches using information in the header portion
of the TLP. The packet makes its way to a targeted completer. The completer can be a root complex,
switches, bridges or endpoints.

When the completer receives the packet and decodes its contents, it gathers the amount of data
specified in the request from the targeted address. The completer creates a single completion TLP
or multiple completion TLPs with data (CplD) and sends it back to the requester. The completer
can return up to 4 KBytes of data per CplD packet.

The completion packet contains routing information necessary to route the packet back to the
requester. This completion packet travels through the same path and hierarchy of switches as the
request packet.

Requesters uses a tag field in the completion to associate it with a request TLP of the same tag
value it transmitted earlier. Use of a tag in the request and completion TLPs allows a requester to
manage multiple outstanding transactions.

If a completer is unable to obtain requested data as a result of an error, it returns a completion
packet without data (Cpl) and an error status indication. The requester determines how to handle
the error at the software layer.

Non-Posted Read Transaction for Locked Requests
Figure 154 shows packets transmitted by a requester and completer to complete a non-posted

locked read transaction. To complete this transfer, a requester transmits a memory read locked
request (MRdLk) TLP. The requester can only be a root complex which initiates a locked request
on the behalf of the CPU. Endpoints are not allowed to initiate locked requests.

The locked memory read request TLP is routed downstream through the fabric of switches
using information in the header portion of the TLP. The packet makes its way to a targeted com-
pleter. The completer can only be a legacy endpoint. The entire path from root complex to the
endpoint (for TCs that map to VC0) is locked including the ingress and egress port of switches in
the pathway.

When the completer receives the packet and decodes its contents, it gathers the amount of
data specified in the request from the targeted address. The completer creates one or more locked
completion TLP with data (CplDLk) along with a completion status. The completion is sent back
to the root complex requester via the path and hierarchy of switches as the original request.

The CplDLk packet contains routing information necessary to route the packet back to the
requester. Requesters uses a tag field in the completion to associate it with a request TLP of the
same tag value it transmitted earlier. Use of a tag in the request and completion TLPs allows a
requester to manage multiple outstanding transactions.

If the completer is unable to obtain the requested data as a result of an error, it returns a com-
pletion packet without data (CplLk) and an error status indication within the packet. The requester
who receives the error notification via the CplLk TLP must assume that atomicity of the lock is no

160

Figure 153: Non-Posted Read Transaction Protocol

161

longer guaranteed and thus determine how to handle the error at the software layer.
The path from requester to completer remains locked until the requester at a later time transmits

an unlock message to the completer. The path and ingress/egress ports of a switch that the unlock
message passes through are unlocked.

Figure 154: Non-Posted Locked Read Transaction Protocol

Non-Posted Write Transactions
Figure 155 shows the packets transmitted by a requester and completer to complete a non-

posted write transaction. To complete this transfer, a requester transmits a non-posted write request
TLP to a completer it intends to write data to. Non-posted write request TLPs include IO write
request (IOWr), configuration write request type 0 or type 1 (CfgWr0, CfgWr1) TLPs. Memory
write request and message requests are posted requests. Requesters may be a root complex or
endpoint device (though not for configuration write requests).A request packet with data is routed
through the fabric of switches using information in the header of the packet. The packet makes its
way to a completer.

When the completer receives the packet and decodes its contents, it accepts the data. The
completer creates a single completion packet without data (Cpl) to confirm reception of the write
request. This is the purpose of the completion.

The completion packet contains routing information necessary to route the packet back to the
requester. This completion packet will propagate through the same hierarchy of switches that
the request packet went through before making its way back to the requester. The requester gets
confirmation notification that the write request did make its way successfully to the completer.

If the completer is unable to successfully write the data in the request to the final destination or
if the write request packet reaches the completer in error, then it returns a completion packet with-
out data (Cpl) but with an error status indication. The requester who receives the error notification
via the Cpl TLP determines how to handle the error at the software layer.

Posted Memory Write Transactions

162

Figure 155: Non-Posted Write Transaction Protocol

Memory write requests shown in Figure 155 are posted transactions. This implies that the
completer returns no completion notification to inform the requester that the memory write request
packet has reached its destination successfully. No time is wasted in returning a completion, thus
back-to-back posted writes complete with higher performance relative to non-posted transactions.
The write request packet which contains data is routed through the fabric of switches using infor-
mation in the header portion of the packet. The packet makes its way to a completer. The completer
accepts the specified amount of data within the packet. Transaction over.

If the write request is received by the completer in error, or is unable to write the posted write
data to the final destination due to an internal error, the requester is not informed via the hardware
protocol. The completer could log an error and generate an error message notification to the root
complex. Error handling software manages the error.

Posted Message Transactions
Message requests are also posted transactions as pictured in Figure 157 There are two cate-

gories of message request TLPs, Msg and MsgD. Some message requests propagate from requester
to completer, some are broadcast requests from the root complex to all endpoints, some are trans-
mitted by an endpoint to the root complex. Message packets may be routed to completer(s) based
on the message’s address, device ID or routed implicitly.

The completer accepts any data that may be contained in the packet (if the packet is MsgD)
and/or performs the task specified by the message. Message request support eliminates the need for
side-band signals in a PCI Express system. They are used for PCI style legacy interrupt signaling,
power management protocol, error signaling, unlocking a path in the PCI Express fabric, slot power
support, hot plug protocol, and vender defined purposes.

163

Figure 156: Posted Memory Write Transaction Protocol

Figure 157: Posted Message Transaction Protocol

164

PCIe Address Space The cpu of the host system uses the root complex to accesses PCIe end-
points by using the virtual PCIe Address Space. The primary parts of a Root Complex are the
Configuration Space (Config, I/O, Memory, Message defined above), Registers Space, Address
Translation Unit, and Configurable address space. Configuration Space contains all the informa-
tion regarding end-points such as device ID and vendor ID and has also registers to configure the
end-points it is 4kB. The first 64bytes of the 4kb configuration space is refereed to as the stan-
dard header and comes in two flavors; type 1 (containing info regarding root-ports, bridges and
switches (such as primary, secondary and subordinate bus numbers)) and type 0 (containing info
regarding end-points). The configuration registers are used to configure the various parameters of
the hardware such as lane widths PCIe generation paramaeters and a way to configure the Address
Translation Unit etc. The Address Translation Unit translates CPU addresses to to PCIe addresses.
The configurable address space is used by the CPU in order to access the PCIe address space.

The PCIe endpoint also contains a configuration space of 4kb and the first 64 bytes will contain
header type 0 information but will have a different header of the type 1 described in the the root
complex. The type 0 header will contain Device ID and Vendor ID as well as the status and
command space which the host system will control or configure the PCIe endpoint. The class code
which differentiates whether its a type 0 header or type 1 header. It will also contain the Base
Address Registers which are used to configure the memory or I/O space. The header also contains
a capability register pointer and interrupt pin information. The 64 bit header of type 0 for the
endpoint and type 1 for the root complex are shown in fig foo

Type0 header partial description highlightning important fields Command - host system con-
figure or control PCIe endpoint. Header type - differentiates type 0 or type 1 Base address registers
which is used to configure the memory space or io space pointer to the capability registers and
interrupt pin information

Type1 header will be explained at a later time.
Figure 158 will show the Address translation between the CPU and the PCIe enpoint.

Figure 158: PCIe Address Space

1. In order for the host system to read the configuration space of the PCIe endpoint during
Enumeration process, the enpoint has to be mapped in the PCIe Address Space. The mapping
is done through the type 0 header described above.

165

2. The mechanism that determines the address to which the configuration space of a partic-
ular endpoint should be mapped is called the Enhanced Configuration Access Mechanism
(ECAM). ECAM creates a PCIe address using the bus number, device number, function
number, and then the configuration space of the particular endpoint is mapped onto this ad-
dress created by ECAM.

So if the PCIe endpoint is present in Bus 1 Device 0 Function 0, PCIe address is creadted
using ECAM. Which in this case is 100000h and the configuration of space of the enpoint is
mapped onto this address of the PCIe address space therefore the host system can acccess it.

3. Now the host system can access the same address in the PCIe address space in order to
read the configuration space of this endpoint. This is done by the CPU making use of the
configurable space in the root complex. The root complex allocates 4kb in the configurable
address space for for CFG 0 by using the address translation table.

4. The Address translation unit records the mapping of the Physical to virtual address. The
source Address is A and the destination address is the ECAM address which is 100000h.

5. Once the host system understand how much memory the PCIe endpoint is requesting it will
allocate the the requested amount in the Configurable address Space in the dedicated mem-
ory space region. This space will then be used to access the PCIe endpoint. The Address
Trabsaktuib Unit will map the configurable region in the Configurable address Space in the
dedicated memory space region and take note of the source and destination.

6. So due to the mapping the root complex has access to the virtual address but the PCIe end-
point has to be configured

7. Then the Root Complex will make the PCIe endpoint he Bus Master giving it permission to
access the Memory. Once completed the PCIe endpiont can directly read and write the host
memory without CPU intervention becuase there is a 1:1 memory mapping i.e. DMA (Direct
Memory Access).

166

D AXI
AXI4-Stream used for streaming packets between nodes. Unlike the memory-mapped buses

transactions are not targeting an address. They consist of one or many data-beats which are grouped
to packets. The below definitions should help the reader better understand the DMA transactions
described in the Back end section.

beat - an individual data transfer within an AXI burst.
An AXI4-Stream interface signal definitions: axi_clk - interface clock. All other signals are

synchronous to this clock meaning that they are sampled at a rising edge of this clock. axi_tvalid
- asserted by the master in the same clock cycles as data signal, indicates that the master is driving
a valid transfer. A transfer takes place when both TVALID and TREADY are asserted. axi_tdata
- holds a valid value. axi_tready - asserted by the slave as soon as it is ready to accept data. A
data beat is transferred as soon as both the axi_tvalid and axi_tready are simultaneously asserted.
axi_tready - indicates that the slave can accept a transfer in the current cycle. Might depend on
axi_tvalid but not the other way around. axi_tlast - asserted by the master together with axi_tvalid
to mark the end of a packet. Indicates the boundary of a packet. axi_tdata - driven by the master
and contains the data beats. Xilinx requires this signal to have a width which is a multiple of 8 bit.
Primary payload that is used to provide the data that is passing across the interface. The width of
the data payload is an integer number of bytes.

Handshake process The TVALID and TREADY handshake determines when information is
passed across the interface. A two-way flow control mechanism enables both the master and slave
to control the rate at which the data and control information is transmitted across the interface. For
a transfer to occur both the TVALID and TREADY signals must be asserted. Either TVALID or
TREADY can be asserted first or both can be asserted in the same ACLK cycle.

A master is not permitted to wait until TREADY is asserted before asserting TVALID. Once
TVALID is asserted it must remain asserted until the handshake occurs.

A slave is permitted to wait for TVALID to be asserted before asserting the corresponding
TREADY.

If a slave asserts TREADY, it is permitted to deassert TREADY before TVALID is asserted.
axi_tdest - provides routing information for the data stream. axi_tid - data stream identifier

that indicates different streams of data. axi_tuser - user defined sideband information that can be
transmitted alongside the data stream. axi_tkeep - byte qualifier that indicates whether the content
of the associated byte of TDATA is processed as part of the data stream. Associated bytes that have
the TKEEP byte qualifier deasserted are null bytes and can be removed from the data stream.

axi_tstrb - byte qualifier that indicates whether the content of the associated byte of TDATA is
processed as a data byte or a position byte. ARESETn - active-LOW

AXI4-Stream definitions Transfer - A single transfer of data across an AXI4-Stream interface.
A single transfer is defined by a single TVALID, TREADY handshake Packet - A group of bytes
that are transported together across an AXI4-Stream interface. A packet is similar to an AXI4
burst. A packet may consist of a single transfer or multiple transfers. Infrastructure components
can use packets to deal more efficiently with a stream in packet-sized groups Frame - The highest
level of byte grouping in an AXI4-Stream. A frame contains an integer number of packets. A frame
can be a very large number of bytes, for example an entire video frame buffer. Data Stream - The
transport of data from one source to one destination. A data stream can be; a series of individual
byte transfers or a series of byte transfers grouped together in packets Byte stream - A byte stream

167

is the transmission of a number of data and null bytes. On each TVALID, TREADY handshake,
any number of data bytes can be transferred. Null bytes have no meaning and can be inserted or
removed from the stream.

168

E PCIe Endpoint Configuration

169

Figure 159: Ultrascale FPGA Gen3 Integrated Block for PXI Express (4.1)

170

Figure 160: Ultrascale FPGA Gen3 Integrated Block for PXI Express (4.1)

Figure 161: Ultrascale FPGA Gen3 Integrated Block for PXI Express (4.1)

171

Figure 162: Ultrascale FPGA Gen3 Integrated Block for PXI Express (4.1)

Figure 163: Ultrascale FPGA Gen3 Integrated Block for PXI Express (4.1)

172

Figure 164: Ultrascale FPGA Gen3 Integrated Block for PXI Express (4.1)

Figure 165: Ultrascale FPGA Gen3 Integrated Block for PXI Express (4.1)

173

Figure 166: Ultrascale FPGA Gen3 Integrated Block for PXI Express (4.1)

Figure 167: Ultrascale FPGA Gen3 Integrated Block for PXI Express (4.1)

174

Figure 168: Ultrascale FPGA Gen3 Integrated Block for PXI Express (4.1)

Figure 169: Ultrascale FPGA Gen3 Integrated Block for PXI Express (4.1)

175

Figure 170: Ultrascale FPGA Gen3 Integrated Block for PXI Express (4.1)

Figure 171: Ultrascale FPGA Gen3 Integrated Block for PXI Express (4.1)

176

F References
ALPIDE:

1. ALPIDE manual: http://sunba2.ba.infn.it/MOSAIC/ALICE-ITS/Documents/ALPIDE-
operations-manual-version-0_3.pdf

2. overview from PRR: https://indico.cern.ch/event/576906/contributions/2367510/
attachments/1374383/2086216/ALPIDE-PRR-Chip-Overview.pdf

3. frontend from PRR: https://indico.cern.ch/event/576906/contributions/2376460/
attachments/1374411/2093285/ALPIDE_PRR_FrontEnd.pdf

4. Felix Reidt thesis (ALPIDE analog frontend, section 5.5.1, pp 60–62): http://cds.cern.
ch/record/2151986/files/

5. Miljenko Suljic thesis (ALPIDE charge collection): https://cds.cern.ch/record/2303618/
files/

6. PDG guide on particle interactions with matter (fluctuations in energy loss for thin detectors,
section 34.2.9, pp 12–): http://pdg.lbl.gov/2017/reviews/rpp2017-rev-passage-
particles-matter.pdf

7. PDG guide on detectors (silicon detectors, section 35.7, pp 48–): http://pdg.lbl.gov/
2017/reviews/rpp2017-rev-particle-detectors-accel.pdf

8. subthreshold/weak inversion: https://ieeexplore.ieee.org/abstract/document/5357240/,
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/
6-012-microelectronic-devices-and-circuits-fall-2009/lecture-notes/MIT6_
012F09_lec12.pdf

9. ALPIDE frontend paper: http://iopscience.iop.org/article/10.1088/1748-0221/
11/02/C02042

10. other papers/presentations:

(a) https://www.sciencedirect.com/science/article/pii/S0168900215011122

(b) https://indico.cern.ch/event/666016/contributions/2722251/attachments/
1523408/2380925/20170914-ALPIDE-FoCal-Study-Aglieri.pdf

11. ALPIDE carrier boards (we use pALPIDE carrier V3): https://twiki.cern.ch/twiki/
bin/viewauth/ALICE/ITS-WP5

(a) schematic: https://twiki.cern.ch/twiki/pub/ALICE/ITS-WP5/palpide3_carrierv3_
sch.pdf

(b) layout: https://twiki.cern.ch/twiki/pub/ALICE/ITS-WP5/palpide3_carrierv3_
pcb.pdf

(c) Gerber files: https://twiki.cern.ch/twiki/pub/ALICE/ITS-WP5/palpide3_carrierv3_
gerber.zip

177

http://sunba2.ba.infn.it/MOSAIC/ALICE-ITS/Documents/ALPIDE-operations-manual-version-0_3.pdf
http://sunba2.ba.infn.it/MOSAIC/ALICE-ITS/Documents/ALPIDE-operations-manual-version-0_3.pdf
https://indico.cern.ch/event/576906/contributions/2367510/attachments/1374383/2086216/ALPIDE-PRR-Chip-Overview.pdf
https://indico.cern.ch/event/576906/contributions/2367510/attachments/1374383/2086216/ALPIDE-PRR-Chip-Overview.pdf
https://indico.cern.ch/event/576906/contributions/2376460/attachments/1374411/2093285/ALPIDE_PRR_FrontEnd.pdf
https://indico.cern.ch/event/576906/contributions/2376460/attachments/1374411/2093285/ALPIDE_PRR_FrontEnd.pdf
http://cds.cern.ch/record/2151986/files/
http://cds.cern.ch/record/2151986/files/
https://cds.cern.ch/record/2303618/files/
https://cds.cern.ch/record/2303618/files/
http://pdg.lbl.gov/2017/reviews/rpp2017-rev-passage-particles-matter.pdf
http://pdg.lbl.gov/2017/reviews/rpp2017-rev-passage-particles-matter.pdf
http://pdg.lbl.gov/2017/reviews/rpp2017-rev-particle-detectors-accel.pdf
http://pdg.lbl.gov/2017/reviews/rpp2017-rev-particle-detectors-accel.pdf
https://ieeexplore.ieee.org/abstract/document/5357240/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-012-microelectronic-devices-and-circuits-fall-2009/lecture-notes/MIT6_012F09_lec12.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-012-microelectronic-devices-and-circuits-fall-2009/lecture-notes/MIT6_012F09_lec12.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-012-microelectronic-devices-and-circuits-fall-2009/lecture-notes/MIT6_012F09_lec12.pdf
http://iopscience.iop.org/article/10.1088/1748-0221/11/02/C02042
http://iopscience.iop.org/article/10.1088/1748-0221/11/02/C02042
https://www.sciencedirect.com/science/article/pii/S0168900215011122
https://indico.cern.ch/event/666016/contributions/2722251/attachments/1523408/2380925/20170914-ALPIDE-FoCal-Study-Aglieri.pdf
https://indico.cern.ch/event/666016/contributions/2722251/attachments/1523408/2380925/20170914-ALPIDE-FoCal-Study-Aglieri.pdf
https://twiki.cern.ch/twiki/bin/viewauth/ALICE/ITS-WP5
https://twiki.cern.ch/twiki/bin/viewauth/ALICE/ITS-WP5
https://twiki.cern.ch/twiki/pub/ALICE/ITS-WP5/palpide3_carrierv3_sch.pdf
https://twiki.cern.ch/twiki/pub/ALICE/ITS-WP5/palpide3_carrierv3_sch.pdf
https://twiki.cern.ch/twiki/pub/ALICE/ITS-WP5/palpide3_carrierv3_pcb.pdf
https://twiki.cern.ch/twiki/pub/ALICE/ITS-WP5/palpide3_carrierv3_pcb.pdf
https://twiki.cern.ch/twiki/pub/ALICE/ITS-WP5/palpide3_carrierv3_gerber.zip
https://twiki.cern.ch/twiki/pub/ALICE/ITS-WP5/palpide3_carrierv3_gerber.zip

(d) wirebonding diagram for ALPIDE on a pALPIDE carrier V3: https://twiki.cern.
ch/twiki/pub/ALICE/ITS-WP5/AlpideOnCarrierV3_bonding.pdf

12. adapters for ALPIDE carriers: https://twiki.cern.ch/twiki/bin/view/ALICE/ALPIDE-
adaptor-boards

(a) schematic: https://twiki.cern.ch/twiki/pub/ALICE/ALPIDE-adaptor-boards/
ru_alpide3_adaptorv2_sch.pdf

(b) layout: https://twiki.cern.ch/twiki/pub/ALICE/ALPIDE-adaptor-boards/ru_
alpide3_adaptorv2_pcb.pdf

(c) Gerber files: https://twiki.cern.ch/twiki/pub/ALICE/ALPIDE-adaptor-boards/
ru_alpide3_adaptorv2_gerber.zip

RU:

1. overview from PRR: https://indico.cern.ch/event/698929/contributions/2866597/
attachments/1624265/2602067/WP10_PRR_RU_Overview_v1.pdf

2. firmware overview from PRR: https://indico.cern.ch/event/698929/contributions/
2866596/attachments/1620721/2596687/WP10_PRR_RU_Firmware_v0.pdf

3. auxFPGA from PRR: https://indico.cern.ch/event/698929/contributions/2928340/
attachments/1625560/2603137/20180413-PRR_PA3_alme.pdf

4. control interfaces from PRR: https://indico.cern.ch/event/698929/contributions/
2866586/attachments/1622853/2603570/WP10_PRR_RU_Interfaces_v2.pdf

5. scrubbing testing from PRR: https://indico.cern.ch/event/698929/contributions/
2928334/attachments/1622851/2600928/201804_WP10_PRR_FPGA.pdf

6. TWiki page, RUv1: https://twiki.cern.ch/twiki/bin/view/ALICE/ITS_WP10_RUV1

(a) RUv1.0 schematic, refdes, manual (zipped): https://twiki.cern.ch/twiki/pub/
ALICE/ITS_WP10_RUV1/RUv1.zip

(b) RUv1.1 schematic, refdes, manual (zipped): https://twiki.cern.ch/twiki/pub/
ALICE/ITS_WP10_RUV1/RUv1_1.zip

(c) power mezzanine schematic: https://twiki.cern.ch/twiki/pub/ALICE/ITS_WP10_
RUV1/powerMezzanine.pdf

(d) ALICE transition board schematic: https://twiki.cern.ch/twiki/pub/ALICE/ITS_
WP10_RUV1/transitionboard_full.pdf

7. TWiki page, RUv2: https://twiki.cern.ch/twiki/bin/view/ALICE/ITS_WP10_RUV2

(a) schematic: https://twiki.cern.ch/twiki/pub/ALICE/ITS_WP10_RUV2/RUv2schematic.
pdf

8. TMR:

178

https://twiki.cern.ch/twiki/pub/ALICE/ITS-WP5/AlpideOnCarrierV3_bonding.pdf
https://twiki.cern.ch/twiki/pub/ALICE/ITS-WP5/AlpideOnCarrierV3_bonding.pdf
https://twiki.cern.ch/twiki/bin/view/ALICE/ALPIDE-adaptor-boards
https://twiki.cern.ch/twiki/bin/view/ALICE/ALPIDE-adaptor-boards
https://twiki.cern.ch/twiki/pub/ALICE/ALPIDE-adaptor-boards/ru_alpide3_adaptorv2_sch.pdf
https://twiki.cern.ch/twiki/pub/ALICE/ALPIDE-adaptor-boards/ru_alpide3_adaptorv2_sch.pdf
https://twiki.cern.ch/twiki/pub/ALICE/ALPIDE-adaptor-boards/ru_alpide3_adaptorv2_pcb.pdf
https://twiki.cern.ch/twiki/pub/ALICE/ALPIDE-adaptor-boards/ru_alpide3_adaptorv2_pcb.pdf
https://twiki.cern.ch/twiki/pub/ALICE/ALPIDE-adaptor-boards/ru_alpide3_adaptorv2_gerber.zip
https://twiki.cern.ch/twiki/pub/ALICE/ALPIDE-adaptor-boards/ru_alpide3_adaptorv2_gerber.zip
https://indico.cern.ch/event/698929/contributions/2866597/attachments/1624265/2602067/WP10_PRR_RU_Overview_v1.pdf
https://indico.cern.ch/event/698929/contributions/2866597/attachments/1624265/2602067/WP10_PRR_RU_Overview_v1.pdf
https://indico.cern.ch/event/698929/contributions/2866596/attachments/1620721/2596687/WP10_PRR_RU_Firmware_v0.pdf
https://indico.cern.ch/event/698929/contributions/2866596/attachments/1620721/2596687/WP10_PRR_RU_Firmware_v0.pdf
https://indico.cern.ch/event/698929/contributions/2928340/attachments/1625560/2603137/20180413-PRR_PA3_alme.pdf
https://indico.cern.ch/event/698929/contributions/2928340/attachments/1625560/2603137/20180413-PRR_PA3_alme.pdf
https://indico.cern.ch/event/698929/contributions/2866586/attachments/1622853/2603570/WP10_PRR_RU_Interfaces_v2.pdf
https://indico.cern.ch/event/698929/contributions/2866586/attachments/1622853/2603570/WP10_PRR_RU_Interfaces_v2.pdf
https://indico.cern.ch/event/698929/contributions/2928334/attachments/1622851/2600928/201804_WP10_PRR_FPGA.pdf
https://indico.cern.ch/event/698929/contributions/2928334/attachments/1622851/2600928/201804_WP10_PRR_FPGA.pdf
https://twiki.cern.ch/twiki/bin/view/ALICE/ITS_WP10_RUV1
https://twiki.cern.ch/twiki/pub/ALICE/ITS_WP10_RUV1/RUv1.zip
https://twiki.cern.ch/twiki/pub/ALICE/ITS_WP10_RUV1/RUv1.zip
https://twiki.cern.ch/twiki/pub/ALICE/ITS_WP10_RUV1/RUv1_1.zip
https://twiki.cern.ch/twiki/pub/ALICE/ITS_WP10_RUV1/RUv1_1.zip
https://twiki.cern.ch/twiki/pub/ALICE/ITS_WP10_RUV1/powerMezzanine.pdf
https://twiki.cern.ch/twiki/pub/ALICE/ITS_WP10_RUV1/powerMezzanine.pdf
https://twiki.cern.ch/twiki/pub/ALICE/ITS_WP10_RUV1/transitionboard_full.pdf
https://twiki.cern.ch/twiki/pub/ALICE/ITS_WP10_RUV1/transitionboard_full.pdf
https://twiki.cern.ch/twiki/bin/view/ALICE/ITS_WP10_RUV2
https://twiki.cern.ch/twiki/pub/ALICE/ITS_WP10_RUV2/RUv2schematic.pdf
https://twiki.cern.ch/twiki/pub/ALICE/ITS_WP10_RUV2/RUv2schematic.pdf

(a) TMR techniques from NASA (referenced by auxFPGA slides): https://ntrs.nasa.
gov/archive/nasa/casi.ntrs.nasa.gov/20170004736.pdf

(b) Johan Alme thesis (predecessor design for scrubbing FPGA): http://cds.cern.ch/
record/1141616/files/

(c) BYU thesis (scrubbing overview): https://scholarsarchive.byu.edu/cgi/viewcontent.
cgi?referer=&httpsredir=1&article=6703&context=etd

(d) Xilinx XAPP197 (TMR techniques): https://www.xilinx.com/support/documentation/
application_notes/xapp197.pdf

9. GBTx manual: https://espace.cern.ch/GBT-Project/GBTX/Manuals/gbtxManual.
pdf

10. GBT-SCA overview paper: http://cds.cern.ch/record/2158969/files/

11. VTRx spec: https://espace.cern.ch/GBT-Project/VLDB/Manuals/VTRx_Spec_v2.
1.pdf

12. Xilinx docs: Kintex Ultrascale, GT (UG576), selectIO (UG571)

13. Si5316 jitter cleaner data sheet: https://www.silabs.com/documents/public/data-
sheets/Si5316.pdf

14. auxFPGA web page: https://twiki.cern.ch/twiki/bin/viewauth/ALICE/AuxFPGA

FELIX:

1. FELIX web page: https://atlas-project-felix.web.cern.ch/atlas-project-felix/

2. FELIX documents: https://atlas-project-felix.web.cern.ch/atlas-project-felix/
docs/, https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/
documentation.html

(a) FELIX user manual: https://atlas-project-felix.web.cern.ch/atlas-project-
felix/user/docs/FelixUserManual.pdf, https://gitlab.cern.ch/atlas-tdaq-
felix/documents/blob/master/UserManual/FelixUserManual.pdf

(b) FELIX hardware manual (v2.0): https://atlas-project-felix.web.cern.ch/atlas-
project-felix/user/docs/BNL-711_V2P0_manual.pdf

(c) FELIX tech spec: https://atlas-project-felix.web.cern.ch/atlas-project-
felix/user/docs/FELIX_TechSpecs_DR03-2016.pdf

(d) Wupper manual: https://atlas-project-felix.web.cern.ch/atlas-project-
felix/user/docs/wupper.pdf, https://gitlab.cern.ch/atlas-tdaq-felix/documents/
blob/master/Wupper/wupper.pdf

3. Timing mezzanine schematic: https://gitlab.cern.ch/atlas-tdaq-felix/hardware/
tree/master/BNL-KMC

4. FELIX schematics: https://gitlab.cern.ch/atlas-tdaq-felix/hardware/tree/master/
BNL-711

179

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170004736.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170004736.pdf
http://cds.cern.ch/record/1141616/files/
http://cds.cern.ch/record/1141616/files/
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=6703&context=etd
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=6703&context=etd
https://www.xilinx.com/support/documentation/application_notes/xapp197.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp197.pdf
https://espace.cern.ch/GBT-Project/GBTX/Manuals/gbtxManual.pdf
https://espace.cern.ch/GBT-Project/GBTX/Manuals/gbtxManual.pdf
http://cds.cern.ch/record/2158969/files/
https://espace.cern.ch/GBT-Project/VLDB/Manuals/VTRx_Spec_v2.1.pdf
https://espace.cern.ch/GBT-Project/VLDB/Manuals/VTRx_Spec_v2.1.pdf
https://www.silabs.com/documents/public/data-sheets/Si5316.pdf
https://www.silabs.com/documents/public/data-sheets/Si5316.pdf
https://twiki.cern.ch/twiki/bin/viewauth/ALICE/AuxFPGA
https://atlas-project-felix.web.cern.ch/atlas-project-felix/
https://atlas-project-felix.web.cern.ch/atlas-project-felix/docs/
https://atlas-project-felix.web.cern.ch/atlas-project-felix/docs/
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/documentation.html
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/documentation.html
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FelixUserManual.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FelixUserManual.pdf
https://gitlab.cern.ch/atlas-tdaq-felix/documents/blob/master/UserManual/FelixUserManual.pdf
https://gitlab.cern.ch/atlas-tdaq-felix/documents/blob/master/UserManual/FelixUserManual.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/BNL-711_V2P0_manual.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/BNL-711_V2P0_manual.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FELIX_TechSpecs_DR03-2016.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FELIX_TechSpecs_DR03-2016.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/wupper.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/wupper.pdf
https://gitlab.cern.ch/atlas-tdaq-felix/documents/blob/master/Wupper/wupper.pdf
https://gitlab.cern.ch/atlas-tdaq-felix/documents/blob/master/Wupper/wupper.pdf
https://gitlab.cern.ch/atlas-tdaq-felix/hardware/tree/master/BNL-KMC
https://gitlab.cern.ch/atlas-tdaq-felix/hardware/tree/master/BNL-KMC
https://gitlab.cern.ch/atlas-tdaq-felix/hardware/tree/master/BNL-711
https://gitlab.cern.ch/atlas-tdaq-felix/hardware/tree/master/BNL-711

5. GBT-FPGA website: https://espace.cern.ch/GBT-Project/GBT-FPGA/default.aspx

6. GBT wrapper manual (Kai Chen’s fork of GBT-FPGA): https://atlas-project-felix.
web.cern.ch/atlas-project-felix/user/docs/FELIX_GBT_MANUAL_V2.pdf

7. Xilinx PG156 (PCIe endpoint)

8. AXI doc-
uments,
API docs,
Linux
refer-
ences, Xil-
inx docs
(DMA,
PCIe)

AXI doc-
uments,
API docs,
Linux
refer-
ences, Xil-
inx docs
(DMA,
PCIe)

[1] B Abelev et al. Technical Design Report for the Upgrade of the ALICE Inner Tracking System. Tech.
rep. CERN-LHCC-2013-024. ALICE-TDR-017. Nov. 2013. URL: https://cds.cern.ch/record/
1625842.

[2] ALPIDE development team ALICE ITS. “ALPIDE Operations Manual”. 2016.

180

https://espace.cern.ch/GBT-Project/GBT-FPGA/default.aspx
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FELIX_GBT_MANUAL_V2.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FELIX_GBT_MANUAL_V2.pdf
https://cds.cern.ch/record/1625842
https://cds.cern.ch/record/1625842

	System Description
	Description

	Sensor
	Detector Description
	Stave Description
	ALPIDE Description
	Pulse Injection and Masking
	Matrix Readout and Priority Encoder
	Triggering and Timing
	Data Transmission Unit (DTU)
	Charge Collection
	Simulation and threshold characterization

	Interfaces
	Cables

	Power System
	Specifications

	Front End Electronics
	Description
	Functionality
	GBTx ASIC
	Readout Data Flow
	Trigger
	Wishbone Configuration Bus
	Software Configuration Interface
	Triple Modular Redundancy (TMR) and Scrubbing
	Clocking
	Specifications

	Interfaces
	GBT Interface
	I2C Interface to Power Boards
	RU interfaces to slow controls

	Back End Electronics
	Description
	GBT wrapper
	Data Processing
	Wupper
	DMA Operation
	Interrupts
	Xilinx PCIe EndPoint Core AXI4-Stream interface
	Firmware Components

	Device Drivers
	Register Map
	Interfaces
	Fiber Mapping

	Hardware
	Clock Distribution and Configuration

	Test and Validation

	Data Acquisition System
	Description
	RCDAQ
	FELIX Plugin
	Data Format and Decoder
	Online Monitoring
	Offline Analysis

	Functionality
	RCDAQ and FELIX Plugin
	Data Format
	Online Monitoring (pmonitor)
	Offline Software

	Interfaces

	Timing and Triggering
	Work in Progress Discussions, as of Nov. 2020
	Timing specification
	Timing interfaces
	Trigger specification

	Trigger interfaces

	Control and Monitoring
	Description
	Functionality
	Specifications

	Interfaces
	Hardware
	Test and Validation

	Test and Validation
	ddump
	Full Chain Test
	FELIX and RCDAQ
	RU

	Setup
	General System Setup
	FELIX Firmware
	RCDAQ
	FELIX Software and Plugin
	Decoder and Online Monitoring
	RU Firmware and Software

	Appendices:
	DAQ Fest Stonybrook
	February DAQFest Follow Up Simulation
	October DAQ Fest
	DAQFest Intro Talks
	MVTX 40 MHz Request
	Synchronizing the MVTX System
	ALICE is Streaming, the MVTX Could/Should
	GTM Fiber Splitting vs. Mezzanine Board
	SPHENIX Busy
	Slow Control

	Test Reports
	Testing with the MVTX system
	Test Report on RuV1
	Test Report on RuV2 with one stave and 9 working ALPIDE chips

	PCIe
	AXI
	PCIe Endpoint Configuration
	References

