Phase-I FELIX Design Review

hardware development

Kai Chen On behalf of the FELIX group

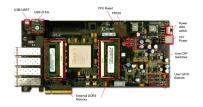
FELIX Design Review November 11, 2016

1 FELIX Hardware

2 Prototype design of the FELIX I/O module

- Server Linux PC
- Up to two PCIe interface cards with Xilinx Ultrascale FPGA, depending on bandwidth needed (for two cards: using 2× PCIe slots Gen3 ×8 lanes, leaving enough lanes for the NIC(s))
- NIC, 40 or 100 Gb/s Ethernet interfacing or InfiniBand

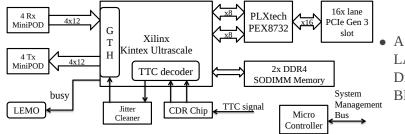
SuperMicro X10SRA-F used for development


- Broadwell CPU, e.g. E5-1650V4, 3.6 GHz
- PCIe Gen3 slots

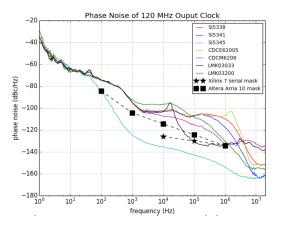
Mellanox ConnectX-3 VPI

- $2 \times$ FDR/QDR Infiniband
- 2× 10/40 GbE

- FLX-709: Xilinx VC-709 evaluation board
 - 4 channels
 - on-board jitter cleaner doesn't meet requirements
 - * SI5324 doesn't support 0-delay mode
- FLX-710: Hitech Global HTG-710 evaluation board
 - 24 channels
 - only support using on-board oscillator
- TTCfx card is designed to interface TTC system and clean the clock
 - FLX-709: TTCfx outputs clean clock to transceivers: via SMA cable
 - FLX-710: the hardware must be changed
- These boards can be used to develop the FELIX functions when custom boards are not yet available
 - FLX-709: targets detector and trigger system test setups
 - FLX-710: development without interfacing TTC system (mostly for software development nowadays)



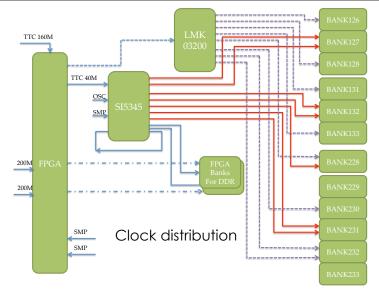
STATLAS Design of custom PCIe card



• A PCIe card was designed for LAr LTDB (LAr Trigger Digitizer Board) test setup at BNL

- Basic functions:
 - PCIe Gen 3 \times 16 lane
 - 48 bidirectional optical links up to 14 Gb/s
 - $\,2\times$ DDR4 SODIMM connectors support: capacity up to 16 GB & 2.1 GT/s
 - with circuits to interface TTC system; with on-board jitter cleaner
 - FPGA resources (logic cells) are about twice of the FLX-709 or FLX-710
- Meets the FELIX requirements. A new function is added for FELIX:
 - micro-controller to support FPGA reprogramming, and firmware update
 - important for detector operation & maintenance
- It is the baseline choice of Phase-I FELIX prototype

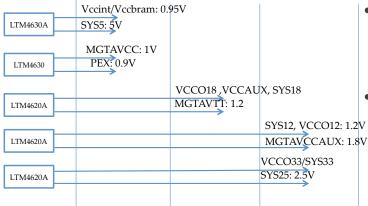
Kai Chen - FELIX Design Review


Device	SI5338	SI5345	SI5341
Jitter (ps)	8.58	0.09	6.39
Device	CDCM6208	LMK03200	LMK03033
Jitter (ps)	2.06	5.91	2.74
Device	CDCE62005		
Jitter (ps)	8.61		

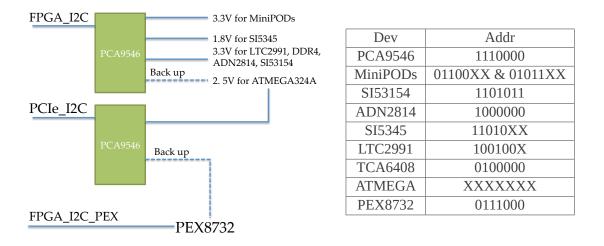
The jitter from 10 kHz to 1 MHz

- This survey was originally done to choose a clock device for a FrontEnd board. It also provided input for the selection of jitter cleaner for FELIX.
- SI5345 showed the best performance.
 - it supports 0-delay mode.
 - 10 outputs.
 - meets requirement for transceivers in both of 7 series FPGA and Ultrascale FPGA.

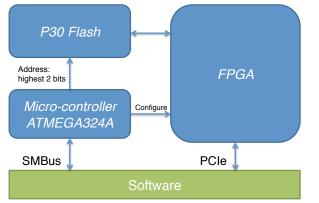
SATLAS Clock distribution for the FLX-711 V1P5



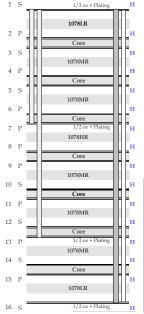
- LMK03200 is a backup for SI5345. Both of them support 0-delay mode.
- Each bank can use the reference clock from both of Si5345 & LMK03200.

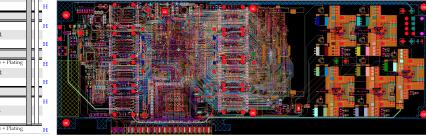

Three stages of power on sequence.

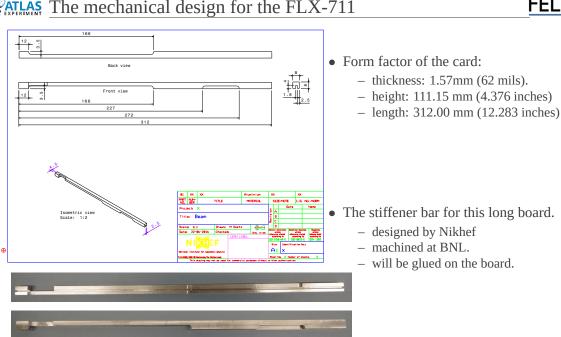
LTM4630A: 18/36A, in: 4.5-15, out: 0.6-5.3 LTM4630: 18/36A, in: 4.5-15, out: 0.6-1.8 LTM4620A: 13/26A, in: 4.5-16, out: 0.6-5.3



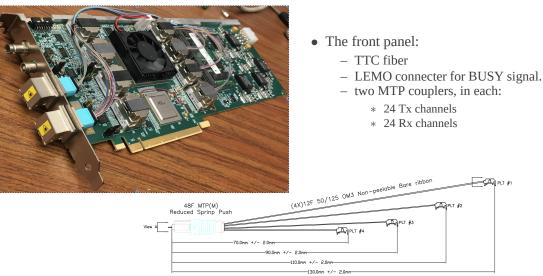
- Will use LTM4630A for all the $5 \times$ DC-DC power modules.
 - same price.
 - pin compatible.
 - new generation.
- Worst case power dissipation:
 - FPGA: about 37 W.
 - others: about 27 W.


- The use of I2C switches eases the design of firmware and software (compatibility with flx-i2c). One firmware module can handle all I2C slaves.
- Reduce the use of level translator.


- The flash can store 4 different bit files. It is selected by software via the micro-controller. A golden version can be saved in one of them.
- The software can reprogram the FPGA via micro-controller.
- The FPGA firmware can receive bit file from software via PCIe interface, and update the chosen flash partition.
- This design is originally from C-RORC (ATLAS RobinNP) board.
- The program running in the micro-controller and script to control the FPGA programming are modified from the design by Heiko Engel of ALICE group.
- The flash programming via PCIe is being tested.



- The layout is complicated:
 - board thickness (1.57 mm) limits the number of layers.
 - board height requirement causes the traces to be very dense.
 - special impedance requirement for DDR4.
- Two kinds of blind vias are used. 3 sequential laminations are needed when producing the PCB.
 - one (layer 1-6) is for the MiniPODs.
 - one (layer 1-12) is for DDR4 traces.



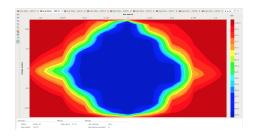
EXAMPLAS The mechanical design for the FLX-711

• Two harnesses are ordered, each has 4×12 -channel fibers with different lengths.

- Some improvements are made to the first version board, after the testing of V1P0.
 - Mapping of the 48 transceivers:
 - * make sure the transmitter and receiver in each transceiver has same sequence number in the Tx and Rx MiniPOD
 - * make sure the 4 transceivers in each quad are connected to the same sub-group (channel 1-4, 5-8 or 9-12) in one MiniPOD.
 - Simplify the clock distribution design, SI5345 is used to replace the SI5338.
 - Power sensing of the DC-DC modules are used, to provide accurate VCCINT, MGTAVCC, MGTAVTT to the FPGA.
 - I2C switches are used.
- Bug fixes
 - Current capacity of the 1.8V power for the PCIe switch PEX8732.
 - Use dedicated clock pins for the DDR system clock.
 - Switch is added between flash and FPGA, since the special FPGA bank 0 is unusable by firmware. These pins will be connected to other bank, when we update the bit file in flash.
 - PCIe lane bit order in each quad.

Test results of FLX-711 prototype

Properties			\$	E	
Name:	MIG_1				
MIG status:	CAL PASS				
MicroBlaze status	PASS				
DQS gate status:	RUNNING				
Message: No errors detected during calibration.					
Status				C	
	Calibration Stage	St	atus		
1 - DQS Gate		PASS			
2 – DQS Gate Sanit	ly Check	PASS			
3 - Write Leveling		PASS			
4 - Read Per-Bit D		PASS			
5 - Read Per-Bit D		SKIP			
6 - Read DQS Cen		PASS			
7 - Read Sanity Che 8 - Write DQS to DO 9 - Write DQS to DM 10 - Write DQS to D	eck.	PASS			
		PASS			
		PASS			
		PASS			
11 - Write DQS to		PASS			
12 - Read DQS Ce	ntering DBI (Simple)	SKIP			
13 - Write Latency		PASS			
14 - Write Read Sa		PASS			
15 - Read DQS Ce	ntering (Complex)	PASS			
16 - Write Read Sa	anity Check 1	PASS			
17 - Read VREF T	raining	SKIP			
18 - Write Read Sa	anity Check 2	SKIP			
19 - Write DQS to	DQ (Complex)	PASS			
20 - Write DQS to	DM/DBI (Complex)	SKIP			
21 - Write Read Sa	anity Check 3	PASS			
22 - Write VREF TI	raining	SKIP			
23 - Write Read Sa	anity Check 4	SKIP			
24 - Read DQS Ce	ntering Multi Rank Adjustment	SKIP			
25 - Write Read Sa	anity Check 5	SKIP			
26 - Multi Rank Ad	justment and Checks	SKIP			
27 - Write Read Sa	nity Check 6	SKIP			

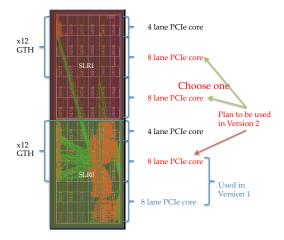

- The two DDR4 modules work well at a speed of 2.11 GT/s.
 - calibration is OK.
 - passed the 100 times of write and read checking.

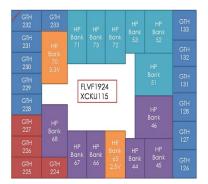
82:00.0 PCI bridge: PLX Technology, Inc. PEX 6732 32-lame, 6-Port PCI Express Gen 3 (8.0 GT/s) Switch (new ca) 83:08.0 PCI bridge: PLX Technology, Inc. PEX 0732 32-lame, 8-Port PCI Express Gen 3 (8.0 GT/s) Switch (new ca) 83:09.0 PCI bridge: PLX Technology, Inc. PEX 0732 32-lame, 8-Port PCI Express Gen 3 (8.0 GT/s) Switch (new ca) 83:09.0 Communication controller: Xilinx Corporation Bevice 7038 85:00.0 Communication controller: Xilinx Corporation Bevice 7039

locks read:		100000	
	6185536.165939 blocks/s 5.898987 GiB/s	800	
MA Read:	2.898987 GLB/S	[franss@argos	build]\$./flx-throughput -b 100000
locks read:	12400000	Blocks read:	
locks rate:	6185905.186155 blocks/s		6196905.903473 blocks/s
MA Read:	5.899339 GiB/s	DMA Read:	5.909830 GiB/s
locks read:	12406060	Blocks read:	
locks rate:	6183939.807421 blocks/s		6185849.312970 blocks/s
MA Read:	5.897465 GiB/s	DMA Read:	5.899286 GiB/s
locks read:	12408080	Blocks read:	12408060
	6185336.614234 blocks/s	Blocks rate:	6184098.089583 blocks/s
MA Read:		DMA Read:	5.897616 GlB/s
locks read:	12406060	Blocks read:	
	6184295.636766 blocks/s		6185390.978649 blocks/s
MA Read:	5.897864 GlB/s	DMA Read:	5.898849 G1B/s
1		Blocks read:	12406060
			6184691.823969 blocks/s
		DMA Read:	5.898182 GiB/s

- Two Xilinx PCIe endpoints are found by *lspci*.
- Reading of the two PCIe endpoints is done in parallel. In this example the firmware sends simple counter data.
- Total throughput is about 101.7 Gb/s.

										Vivado	2016.2
	Ecit Flow Tools Win										
41	a er 🖬 🏦 🗙 🐝				S Dashboa	ird 🖛 🔯					
		st/xilinx_tcf/Xilin	x/00001292be	c301							
ria	I (/O Links										
	Name	TX	RX.	Status	885	Errors	8ER	ERT Reset	TX Pattern	Ric Pattern	i TX
1.5	- Ungrouped Links (0)										
S	Hound Links (48)							Reser			
	-% Found 0	MGT_X0Y8/TX	MGT_X0Y8/RX	12.797 Gb	ps 1.021E15						
1	-% Found 1										
	-% Found 2										
	-% Found 3) PRBS 31-bit	 PRBS 31-bit 	▼ 0.00 c
	-% Found 4										
	-% Found S										
	-% Found 6	MGT_X0Y14/TD	MGT_X0Y14/R	× 12.803 Gb	DS 1.021E15	0E0	9.79E-16	Reset			
	-% Found 7	MGT_X0Y15/TX	MGT_X0Y15/R	× 12.795 Gb	ps 1.021E15	0E0	9.79E-16	Reset			
	-% Found 8								PRBS 31-bit	 PRBS 31-bit 	0.00 d
1	-% Found 9	MGT_X0Y17/D	MGT_X0Y17/R	× 12.795 Gb	ps 1.021E15	0E0	9.79E-16	Reset			
1	-% Found 10					0E0	9.79E-16	Reset			
	-9 Found 11					0E0			PRBS 31-bit	 PR85 31-bit 	× 0.00 r
	-9 Found 12	MGT X0Y28(T)	MGT X0Y28/R	x 12.803 Gb	os 1.021E15	0E0	9.79E-16	Reset	PR85 31-bit	 PR85 31-bit 	+ 0.00 i
	-9 Found 13					0F0	9 79F-16		PRBS 31-bit	· PRBS 31-bit	· 0.00 /
	-9 Found 14								0005 21-Hit	- PPPS 21-Hit	. 0.00
	-% Found 15										
	-9 Found 16	MGT X0132JTX	NGT_KOTS1/K	12.003 00	1 021615						
	-% Found 17	MG1_X0132/13	NG1_X0132/R	12.799 00	ps 1.021E15						
	-% Found 18										
	-% Found 19	MGT_X0Y35/TX	MGT_X0Y35/R	× 12.797 GD	ps 1.021E15						
	-% Found 20	MGT_X0Y36/TX	MGT_X0Y36/R	× 12.803 Gb	ps 1.021E15						
	-% Found 21										
	-% Found 22	MGT_X0Y38/TX	MGT_X0Y38/R	× 15.803 Cb.	ps 1.021E15						
	-% Found 23										
	-% Found 24	MGT_X1Y16/TX	MGT_X1Y16/R	× 12.803 Gb	ps 1.021E15	0E0					
	-% Found 25	MGT_X1Y17/D	MGT_X1Y17/R	× 12.796 Gb	ps 1.021E15	0E0					
	-% Found 26	MGT_X1Y18/TX	MGT_X1Y18/R	× 12.795 Gb	ps 1.021E15	0E0	9.79E-16	Reset			
	-% Found 27	MGT X1Y19/D	MGT X1Y19/R	× 12.800 Gb	os 1.021E15	0E0	9.79E-16	Reset	PRBS 31-bit	 PR85 31-bit 	· 0.00 c
	-9 Found 28					0E0	9.79E-16	Reset	PR85 31-bit	 PR85 31-bit 	· 0.00 c
	-Sh Found 29					0E0	9.79E-16		PRBS 31-bit	· PR85 31-bit	+ 0.00 c
	- % Found 30					0E0	9 79F-1f		PRBS 31-bit	 PR85 31-bit 	v 0.00 c
	-% Found 31								PERS 31-bit	· PERS 31-bit	• 0.00 c
	-% Found 32										
	-9 Found 33										
	-% Found 34										
	-9 Found 35										
	-% Found 36	HOT MINDER	HOLAIT27/R	12 802 Ch	A 1 021E15						
	-% Found 37	MG1, X1128/13	HG1, X1128/K	13 503 00	1 021015						
	-% Found 37										
	-% Found 39										
	-% Found 40	MGT_X1Y32/TX	MGT_X1Y32/R	× 12.802 Gb	ps 1.021E15						
	-% Found 41										
	-% Found 42										
	-% Found 43										
	-% Found 44	MGT_X1Y36/TD	MGT_X1Y36/R	× 12.804 Gb	ps 1.021E15	0E0	9.79E-16				· 0.00 c
	-% Found 45	MGT_X1Y37/TX	MGT_X1Y37/R	× 12.800 Gb	ps 1.021E15	0E0	9.79E-16	Reset		· PR85 31-bit	
	-% Found 46	MGT_X1Y38/TX	MGT X1Y38/R	× 12.800 Gb	DS 1.021E15	OEO	9.79E-16		PRBS 31-bit	 PR85 31-bit 	* 0.00 d
	-% Found 47	MGT_X1Y39/TX	MCT VIVIDIR	12 902 Ch	0 5 20 514		4.922E-13		PRRS 31-MI	 PR85 31-bit 	* 0.00 /


- IBERT testing is done for all the 48 links at 12.8 Gb/s.
 - BER < 1E-15.
 - the last link: RX_P pin on FPGA side is open due to assembly issue.
 - local clock & LMK03200 are used. TTC clock will be used when SI5345 configuration is ready.
- The typical eye diagram is shown above: open area is 5312.



- Firmware version control:
 - the software can configure the FPGA to load firmware from 1 of the 4 bit files in Flash, via the communication with micro-controller.
- Power dissipation:
 - current for 48 \times 12.8 Gb/s IBERT project: VCCINT needs about 9A, MGTAVCC is 10A, MGTAVTT is 5A.
 - project with 4× GBT links, and 2× PCIe cores: VCCINT is 3A, MGTAVCC is 3A, MGTAVTT is 1A, 0.9V for PEX8732 is about 5A.
 - Summary: the power consumption is very close to the analysis done before board design. The whole board will dissipate <64W in the worst case.
- Cooling:
 - for the 48 channel 12.8 Gb/s IBERT project, the FPGA inside temperature is about 63.7 degree.
 - for the IBERT project with 4.8 Gb/s. The temperature inside FPGA is about 53 degree, the outside temperature is about 38 degree.
 - the FPGA will use a fansink, we don't expect MiniPOD (<2W each) will need a heat sink, the air flow in 2U server should be sufficient.
 - One day's running with 12.8 Gb/s links shows no evident problem is related to overheating.
 - the flx-tools will support monitoring temperature of FPGA, MiniPODs and PEX8732.

Plan towards the pre-production design

- Now: bank 224-227 are used for PCIe. This creates congestion in the placement of the logic around that area. The data crossing SLR (Super Logic Region) boundary will increase timing violation.
- Next version: bank 226/227, and 229/230 or 231/232. A complete study will be done to compare these options. If all will work well, the one easier for PCB routing will be chosen.

- Remove the DDR4 modules:
 - the PCB routing will be much easier.
 - no blind via will be used, to minimize sequential lamination.
 - board will be shorter. Space will be available for the integration with TTC PON, or white rabbit modules.

- FELIX prototype development is progressing well.
 - the v1p0 board has been tested extensively and used in the FELIX integration test.
 - the v1p5 board testing is ongoing.
 - good progress after the issue with power chips assembly was resolved.
 - the DDR4, PCIe, transceivers and flash programming have been tested.
 - more boards will be assembled & tested in the coming month, then distributed to FELIX development institutes.
- FELIX pre-production design will be launched soon.
 - major improvements have been identified.
 - new features will be incorporated based on prototype V1P5 test results.
 - board is expected to be available in second half of 2017.