ALPIDE Characterisation Software Framework -
Manual

rev. 1, January 9, 2017

1 Introduction

The software framework described in this document offers a lean software en-
vironment, which facilitates the development of test routines for the ALPIDE
chip and ALPIDE modules.

The guidelines for the architecture development were the following:

e Simplicity of application development: the framework offers a package of
building blocks that allow the user to easily implement applications for
tests. Each test is supposed to be implemented in its own small standalone
application.

e Independence from the readout system: as far as the generic functions of
the readout boards are concerned, the implementation is transparent to
the application, i.e. the high level implementation does not depend on
which readout board is used.

e As a consequence the same Alpide implementation and (within limits) the
same test routines can be used with all readout cards / test systems.

These requirements were addressed by the following class structure:

e An abstract base class TReadoutBoard, which all readout boards are de-
rived from. Common functionality is declared in TReadoutBoard, special
functionality of the different cards in the derived classes.

e A class TAlpide containing the basic chip interface and the register map.

e Two helper classes TAlpideDecoder and TAlpideConfig for event decoding
and standard configuration commands, resp.

e A class TConfig containing configuration information.

This document describes how the framework can be used to implement test
applications. The first part of the document gives a step-to-step guide to the
application development, the last part serves as a reference for the implemented
methods.



2 Manual

2.1 Initialisation of the Setup

The initialisation of the setup is the only part of each application, which neces-
sarily depends on the type of readout board used. In general the initialisation
consists of three steps (four in case of the DAQ board):

1. Generate a config object, which contains all information on the type of
the setup and the settings of chip(s) and readout board(s).

2. Create a readout board object.

3. Create the chip object(s) and the connections between chip and board.
The latter consists in passing the chip object a pointer to the readout
board and “telling” the readout board object, which chip (identified via
the chip ID) is connected to which control interface and which data receiver
(non-trivial only for composed structures modules, HICs, staves).

4. For the DAQ board: power on the chip.

A standard initialisation for a setup with one DAQ board and a single chip
with ID 16 is given in the following example (detailed explanations of the used
methods in the reference part):

// vectors containing all chips and boards
// (in this example only one)

std: :vector <TReadoutBoard *> fBoards;
std::vector <TAlpide *> fChips;

TConfig *fConfig;

// create default config for omne chip with ID 16
fConfig = new TConfig (16);

// USB helper-methods that create a DAQ board and push it into fBoards
InitLibUsb O);
FindDAQBoards (fConfig, fBoards);

if (boards.size() !'= 1) {
std::cout << "Problem in finding DAQ board" << std::endl;
// throw exception

}

// create the chip object and the connections board <-> chip
fChips. push_back(new TAlpide (config->GetChipConfig(16));
fChips. at(0) -> SetReadoutBoard (boards.at(0));
fBoards.at(0) -> AddChip (16, 0, 0);

// DAQ-board specific instructions



TReadoutBoardDAQ *myDAQBoard = dynamic_cast<TReadoutBoardDAQ*> (boards.at
0));

int overflow;

if (myDAQBoard) { // otherwise board was not of type TReadoutBoardDAQ
if (! myDAQBoard->PowerOn(overflow) ) {
std::cout << "LDOs did not switch on" << std::endl;
// throw exception

}
}

Please also have a look at the file SetupHelpers.cpp in the repository /
software package where several initialisations for standard setup types (single
chip, IB HIC, OB HIC, half-stave) are already implemented.

2.2 Interaction with the Readout Board

The basic configuration of the readout board is done automatically according
to the information in the config, when the board object is constructed (configu-
ration for readout see below). For more specialised configurations of the board
each readout board can be configured directly using the generic ReadRegister
and WriteRegister method or the methods of the derived readout board classes
(see list in reference section). To access the methods of the derived classes the
readout board has to be cast on the appropriate class. Checks of the object
type can be done using a dynamic cast, e.g.

TReadoutBoardDAQ *myDAQBoard = dynamic_cast<TReadoutBoardDAQ*>(
myReadoutBoard) ;
if (myDAQBoard)

or alternatively with the method GetBoardType().

2.3 Chip Configuration

The configuration of the chip can be done directly using the methods TAlpide: :
WriteRegister, TReadoutBoard: :SendOpCode and TAlpide::ReadRegister.
The register addresses can be given either directly as integers or using the names
defined in TAlpide.h, e.g. Alpide::REG_VCASN. Additionally several methods
for standard configuration procedures (masking, CMU configuration...) have
been defined in AlpideConfig. All methods in AlpideConfig are used with the
chip object as parameter, e.g.

// unmask all pixels

AlpideConfig: :WritePixRegAll (myChip, Alpide::PIXREG_MASK, false);

// select row 5 for injection

AlpideConfig: :WritePixRegRow (myChip, Alpide::PIXREG_SELECT, true, 5);

A command sequencer that can be used to send a predefined series of com-
mands to the chip is also foreseen.



2.4 Data Taking

In this framework data taking is separated from the data decoding, giving
the possibility to record either the raw data or hit information. Two con-
figuration methods exist to define the sequence of pulse and strobe that is
sent to the chip as well as the trigger source. After configuration one method
(TReadoutBoard: :Trigger (int nTriggers)) can be used to send triggers to
the chip or module, a second one (TReadoutBoard: :ReadEventData()) to re-
trieve the data event by event from the readout board objects. The two methods
can be called one after the other (for low number of triggers, e.g. 50 triggers in
a threshold scan) or can be put in two parallel threads, which is recommended
for larger number of triggers to avoid filling the readout board buffer.

Event decoding is performed by two (static) helper classes AlpideDecoder
and BoardDecoder, which decode the chip event or the readout board header
and trailer, resp. To do so the buffer returned by ReadEventData() is first
passed to BoardDecoder: :DecodeEvent (), then to AlpideDecoder: :DecodeEvent ().

MOSAIC only: In case of the MOSAIC board the StartRun() method has
to be called before the data taking and StopRun() after.

Examples for the implementation of data taking can be seen in the files
main_threshold.cpp, main_digital.cpp, main_noiseocc.cpp

2.5 Scan Class

For better portability of the scans to other softwares, in particular a GUI, a
generic scan class TScan has been implemented. The class implements a generic
scan consisting of three nested loops. The specific functionality performed in
these loops can then be implemented in derived classes. Up to now this has been
done and tested for the threshold scan. A sample application, which performs
the threshold scan using the TThresholdScan class looks like this:

int main() {
initSetup();

TThresholdScan *myScan = new TThresholdScan(fConfig->GetScanConfig(),
fChips, fBoards);

myScan->Init () ;

myScan->LoopStart(2);
while (myScan->Loop(2)) {
myScan->PrepareStep(2) ;
myScan->LoopStart (1);
while (myScan->Loop(1)) {
myScan->PrepareStep (1) ;
myScan->LoopStart (0);
while (myScan->Loop(0)) {



myScan->PrepareStep(0) ;
myScan->Execute ();
myScan—>Next (0);
}
myScan->LoopEnd (0) ;
myScan->Next (1);
}
myScan->LoopEnd (1) ;
myScan—->Next (2);
}
myScan->LoopEnd (2);
myScan->Terminate() ;

return O;

Note that the implementation would be identical for other types of scans,
with the exception of the call to the appropriate constructor.



3 Reference

3.1 Readout Board

All readout board types used for the readout of ALPIDE chips or modules
are derived from the class TReadoutBoard. The following sections describe
the common functionality of all readout boards. (For the special functional-
ity of the different board types for the time being refer to the header files
TReadoutBoardDAQ.h and TReadoutBoardMDSAIC.h)

3.1.1 Board Communication

e int ReadRegister(uint16_t Address, uint32_t &Value):
read value of readout board register at address Address.

e int WriteRegister(uint16_t Address, uint32_t Value):
write value Value into readout board register at address Address.

3.1.2 Chip Control Communication

The methods for the chip control communication are supposed to be called only
through the chip object and are therefore protected. The only exception is the
method to read the chip registers, which can, if needed, also be called directly
through the readout board (e.g. in a module where it is not clear, which chip
addresses exist / function).

e int ReadChipRegister(uintl6_t Address, uintl6_t &Value, uint8_t
ChipID = 0):
read value of chip register at address Address.

3.1.3 Triggering, Pulsing and Readout

Triggering and pulsing consists in sending a combination of first pulse, then
strobe to the chip. Either one can be omitted (i.e. sending only pulse or only
trigger) and the delays between them are programmable. Also the source for
the trigger can be selected:

e void SetTriggerConfig (bool enablePulse, bool enableTrigger, int
triggerDelay, int pulseDelay): Chose which signal to send upon a
trigger (software or external) as well as the delays from pulse to strobe
(triggerDelay) and from strobe to the next pulse (pulseDelay, only
relevant for MOSAIC).

e void SetTriggerSource (TTriggerSource triggerSource): chose be-
tween internal or external trigger, trigger-source type defined in TReadoutBoard.h.

For data taking itself the readout board provides the following two methods:



e int Trigger (int NTriggers): Sends NTriggers triggers to the chip(s).
Here trigger means the strobe opcodes, pulse opcodes or a combination of
pulse then strobe with the programmed distance inbetween. (The latter
kept for redundancy, aim would be to send only pulses and generate the
strobe on-chip.)

e int ReadEventData(int &NBytes, char *Buffer): Returns the event
data received by the readout card. Event data is in raw (undecoded)
format, including readout card headers and trailers. The method returns
one event at a time. Decoding is done in two separate decoder classes.

3.1.4 General

Construction: TReadoutBoard is the abstract base class for all readout boards.
A readout board is therefore typically constructed the following way:

TReadoutBoard *myReadoutBoard = new TReadoutBoardDAQ (config);
TReadoutBoard *mySecondBoard = new TReadoutBoardMosaic(config);

Setup: In order for the control communication and the data readout to work
in all cases (single chips, IB staves and OB modules) the readout card needs to
have information on which chip, defined by its ID, is connected to which control
port and to which data receiver. This information has to be added once from
a configuration and then stored internally, such that the chip ID is the only
parameter for all methods interacting with the chip for control or readout. The
necessary information is added by the method

int AddChip (uint8_t ChipID, int ControlInterface, int Receiver)

3.2 Alpide Chip

This class implements the interface of the alpide chip (control interface and data
readout) as well as the list of accessible register addresses and will be used for
all test setups. All further information on the internal functionality of the chip
are contained in the helper classes AlpideConfig (for configuration information)
and AlpideDecoder (for decoding of event data). The class TAlpide contains
the following functions:

3.2.1 Constructing etc.

e TAlpide (TChipConfig *config):
Constructs TAlpide chip according to chip configuration.

e TAlpide (TConfig *config, TReadoutBoard *myROB):
Constructor including pointer to readout board

e void SetReadoutBoard(TReadoutBoard *myROB):
Setter function for readout board



e TReadoutBoard *GetReadoutBoard ()):
(Private) Getter function for readout board

3.2.2 Low Level Functions

e int ReadRegister(Alpide::TRegister Address, uintl6_t &Value:
read value of chip register at address Address. (A second version with an
integer address exists).

e int WriteRegister(Alpide::TRegister Address, uintl6_t Value:
write value Value into chip register at address (A second version with an
integer address exists). Address.

e int ModifyRegisterBits(Alpide::TRegister Address, int lowBit,
int nBits, int Value): write bits [lowBit, lowBit + nBits - 1] of
register Address.

e int SendOpCode(uint8_t OpCode):
Send an Opcode (NB: in case of modules this sends an opcode to all chips
connected to the same command interface as the current chip.)

3.2.3 Register Definitions
Chip registers are published in an enum type TAlpideRegister

3.2.4 High Level Functions

Higher level functionality of the alpide chip is implemented in two helper classes:
AlpideDecoder for the event decoding and AlpideConfig for all configuration
commands that go beyond mere communication with the chip and act upon the
internal functionality of the chip.

3.3 Event Decoding

Event decoding is done in two static helper-classes (i.e. no object needs to be
instantiated). Both provide a method DecodeEvent:

® bool AlpideDecoder: :DecodeEvent (unsigned char *data, int nBytes,
std: :vector <TPixHit> *hits): Tries to decode the event contained
in data and stores the found hits in hits. Returns true in case of
successful decoding, false otherwise. The pixel hit type is defined in
AlpideDecoder.h.

e bool BoardDecoder: :DecodeEvent (TBoardType boardType, unsigned
char *data, int &nBytes, TBoardHeader &boardInfo): Tries to de-
code board header and trailer of the event contained in data. The com-
plete information of header and trailer (flags, time stamps...) is stored
in boardInfo; data and nBytes are reduced to the chip event only. The
header type is defined in BoardDecoder . h, the board type in TReadoutBoard.h.



3.4 Config class

The class TConfig contains all configuration information on the setup (module,
single chip, stave, type of readout board, number of chips) as well as for the
chips and the readout boards. It is based on / similar to the TConfig class used
by the software for the Cagliari readout board and MATE. In addition to those
versions it will allow modification / creation on the fly by the software (Use
case, e.g.: create a config object after an automated check, which chips of the
module work; modify settings according to parameters entered in the GUI by
the user).

The TConfig object, which is needed for the initialisation of the setup can
be constructed in three different ways:

e TConfig(const char *fName): reads the config from the given file.

e TConfig(int nBoards, std::vector <int> chipIds, TBoardType boardType
= boardMOSAIC): creates a config for a given number of readout boards
of type boardType, and chips with the given chip IDs. In this case stan-
dard settings are used as defined in the header files TBoardConfig.h and
TChipConfig.h.

e TConfig(int chipId), TBoardType boardType = boardDAQ: creates a
standard config for one readout board of type boardType and one chip
with the given chip Id. This is currently the only implemented constructor
and can be used for initial testing of Alpide single chips.



