

ITS Readout Electronic – Production Readiness Review – 13 Apr 2018 – CERN

Cavern Installation

Layout – ITS crates placement

Cavern – ITS crates placement

Cavern – Readout Electronic placement

The readout electronic will be installed in two racks in the so-called mini-frame, about 1m from the beamline axis at around 3m from the interaction center. **0.5 T**

Radiation Levels

Radiation – Total Ionizing Dose

TID levels (10k considering 10× safety factor) are of no practical concern for modern microelectronic technologies, nor for material degradation. Test has been anyway carried and/or planned to ensure components resistance.

7

Radiation – 1 MeV Neutron Equivalent hadron fluence

As for the TID, foreseen NEF levels (10¹¹ including 10× safety factor) are not a concern for material degradation and component reliability.

Radiation – High Energetic hadron fluence

High energy (> 20 MeV) hadrons are the real concern, as the can cause latch-ups in electronic components and SEU on logic devices. Testing did show that <u>latch-ups will not be a problem, while proper design is required to mitigate</u> <u>the SEUs effects</u>.

Radiation levels – summary (all included)

- TID & 1 MeV fluence sum tables 1 and 2, with efficiency and safety factors.
- Ionizing particles flux are the maximum from table 1 (Pb-Pb)

Position respect to beam			Radiation levels (total)			
r	Z	Name	TID	1 MeV neq fluence	High energy hadron flux*	Charged particle flux
[cm]	[cm]		[krad]	[cm ⁻²]	[kHz cm ⁻²]	[kHz cm ⁻²]
2.2	[-13.5 ÷ 13.5]	ITS LO	2734	1.7 × 10 ¹³	765 (770)	890 (910)
43	[-73.7 ÷ 73.7]	ITS L6	20	8.1 × 10 ¹¹	3.4 (4.9)	4.5 (6.7)
79	[-260 ÷ 260]	TPC In	5.6	7.0×10^{11}	1.35 (1.8)	1.7 (3.45)
100	330	RE	≈ 5	$\approx 1.6 \times 10^{11}$	0.86	1.7
258	[-260 ÷ 260]	TPC Out	0.86	1.4×10^{11}	0.27 (0.37)	0.2 (0.3)
290	[-290÷290]	TRD	0.6	1.2×10^{11}	0.23 (0.31)	0.15 (0.23)

• TID & fluence = (table $1 \times 1.3_{data taking efficiency}$ + Table 2 / $10_{better vacuum}$) × $10_{safety factor}$

• Safety factor of 10 on top of TID and fluence calculated as in the above line.

- Hadrons and charged particles as for 50 kHz Pb-Pb collisions (table 1, worst case scenario).
- The average value within the z span is reported first, in brackets the peak value within the z interval.

• * Momentum > 20 MeV.

We will assume 1 kHz cm⁻² for simplicity as baseline.

Expected radiation levels due to primary collisions only. To obtain the total expected value, look at following slides. No safety factors here.

Position respect to beam			Radiation levels (primary collisions)				
r	Z	Name	TID	1 MeV neq fluence	High energy hadron flux*	Charged particle flux	
[cm]	[cm]		[krad]	[cm ⁻²]	[kHz cm ⁻²]	[kHz cm ⁻²]	
2.2	[-13.5 ÷ 13.5]	ITS LO	68.7 (80.3)	9.8 (10.3) × 10 ¹¹	765 (770)	890 (910)	
43	[-73.7 ÷ 73.7]	ITS L6	0.39 (0.81)	2.2 (5.2) × 10 ¹⁰	3.4 (4.9)	4.5 (6.7)	
79	[-260 ÷ 260]	TPC In	0.14 (0.24)	2.0 (4.5) × 10 ¹⁰	1.35 (1.8)	1.7 (3.45)	
100	330	RE	0.13	8.3 × 10 ⁹	0.86	1.7	
258	[-260 ÷ 260]	TPC Out	0.032 (0.038)	6.2 (8.4) × 10 ⁹	0.27 (0.37)	0.2 (0.3)	
290	[-290 ÷ 290]	TRD	0.019 (0.025)	5.2 (7.1) × 10 ⁹	0.23 (0.31)	0.15 (0.23)	

• TID and 1 MeV neq fluence calculated for nominal physics program (13 nb⁻¹ **Pb-Pb** + 50 nb⁻¹ **Pb-p** + 6 pb⁻¹ **p-p**).

• Hadrons and charged particle flux calculated for 50 kHz Pb-Pb collisions (worst case scenario).

• The average value within the z span is reported first, in brackets the peak value within the z interval.

• * Momentum > 20 MeV.

Radiation levels – due to beam gas collisions (table 2)

Expected radiation levels due to beam-gas collisions. To obtain the total expected value, look at following slides. No safety factors here. <u>Relevant for pp collisions only (ions collisions have much less frequency, hence gassing).</u>

Position respect to beam			Radiation levels (beam gas collisions)				
r	Z	Name	TID	1 MeV neq fluence	High energy hadron flux *	Charged particle flux	
[cm]	[cm]		[krad]	[cm ⁻²]	[kHz cm ⁻²]	[kHz cm ⁻²]	
2.2	[-13.5 ÷ 13.5]	ITS LO	1690 (1780)	3.2 (3.3) × 10 ¹²	28.6 (30.2)	1160 (1210)	
43	[-73.7 ÷ 73.7]	ITS L6	10.8 (16.5)	1.3 (3.4) × 10 ¹¹	0.79 (1.2)	7.2 (9.1)	
79	[-260 ÷ 260]	TPC In	2.5 (3.1)	1.2 (2.7) × 10 ¹¹	0.42 (0.53)	1.7 (1.8)	
100	330	RE	≈ 2.3	≈ 5 × 10 ¹⁰	≈ 0.3	≈ 1.4	
258	[-260 ÷ 260]	TPC Out	0.36 (0.45)	3.5 (4.7) × 10 ¹⁰	0.09 (0.12)	0.14 (0.17)	
290	[-290 ÷ 290]	TRD	0.27 (0.43)	2.9 (4.0) × 10 ¹⁰	0.07 (0.10)	0.09 (0.13)	

• TID and fluence from beam-gas collisions assuming the vacuum conditions of Fill 2736 (average pressure 2.3 × 10⁻⁸ mbar).

• High energy hadrons and charged particles flux are those expected for HL-LHC.

• The average value within the z span is reported first, in brackets the peak value within the z interval.

• * Momentum > 20 MeV.