
ALICE

ITS Readout Electronic – Engineering Design Review – 27 Jan 2017 – CERN

ITS Readout Firmware Overview

ALICE ITS UPGRADE 2

Overview

ALICE ITS UPGRADE 3

Power Unit (PU)

Readout Unit Overview

Data @ 3.2 Gb/s

Trigger

GBTx

GBTx

GBTx

3.2 Gb/s

3.2 Gb/s

3.2 Gb/s

3.2 Gb/s

3.2 Gb/s

SRAM

FPGA

FLASH

FPGA

Programmable Logic

FLASH
Memory

SCA

Optical transceiver
VTRx

Optical transceiver
VTRx

Optical transceiver
VTTx

Data @ 3.2 Gb/s

Data @ 3.2 Gb/s

Control
FLASH

Memory

Readout Unit

Clock (40MHz)

Control (80 Mb/s)

Data: 9 x 960 Mb/s
or 16/28 x 320 Mb/s

Main Tasks of the Readout Unit:
• Receive triggers (heartbeat & physics) from CTP & decode
• Receive “control” information from CRU
• Deliver triggers to stave sensors
• Control, configure and monitor stave sensors
• Receive data from stave; decode & compress
• Deliver monitoring information to CRU (forwarded to DCS)
• Deliver CRU framed data packets to CRU
• Determine and handle busy information
• Monitor and control Power Board
• Handle radiation upsets in programmable logic & sensors

GBT Links

Copper Links

From/To ITS
From/To CRU

Power Board

ALICE ITS UPGRADE 4

Firmware Development Rules

• E-group: All communication between firmware developers is organized through membership in a CERN e-
group (alice-its-wp10-firmware@cern.ch). The e-group is also used for access control to the version control
system (gitlab) and the issue tracking system (JIRA)

• Online Documentation: Documentation of hardware, Firmware, and software is posted at the WP10 Twiki
page in the “ALICE Web” Twiki: https://twiki.cern.ch/twiki/bin/view/ALICE/ITS-WP10

• Hardware Programming languages: We decided to allow 3 different firmware languages: VHDL, Verilog and
System Verilog. Currently, the prototype development is on the Xilinx 7-series, and the Vivado toolset
supports all 3 languages.

• Tool Sets: The current design of the Readout Unit (RU) foresees the main programmable logic to be a Xilinx
SRAM based Kintex UltraScale(+). Prototyping was started with a Xilinx Kintex-7. These devices are supported
by the Xilinx Vivado Toolset. We are currently using Vivado version 2016.4. The RU design also includes a
flash-based device to support scrubbing. This device is foreseen to be the ProAsic-3 from Microsemi which is
supported by the Microsemi Libero SoC Design Suite. To develop detector specific logic on the CRU requires
the use of the Altera Quartus toolset. CERN has licenses for Synthesis tool Synopsis Synplify Premier, which
supports Triple-modular-redundancy (TMR). We are considering evaluating this toolset in the future. For FX3
(USB) firmware design, we are using the Cypress EZ-USB Suite & GPIF-II Designer.

• Simulations: Currently two toolsets are used for firmware testbenches: Mentor Modelsim and Cadence
Incisive (NCSim). The Cadence tools is only used by CERN collaborators at the moment.

• Coding Style: For firmware coding in VHDL, a coding style document was developed:
https://twiki.cern.ch/twiki/bin/view/ALICE/FwDevFlowMethods

• Scripting: Most firmware toolsets support scripting in Tcl. Tcl is the scripting languate integrated in the
Vivado tool environment. The firmware projects developed in WP10 are required to include a Tcl script to
create the project and compile it to ensure common project configuration amongst developers. An optional
“Makefile” can be used to call targeted Tcl scripts for various tasks (project creation, compilation, simulation,
etc…)

mailto:alice-its-wp10-firmware@cern.ch

ALICE ITS UPGRADE 5

WP10 Software environment

• Hardware Platform: The main supported platform is currently a PC running the CERN CentOS 7 (CC7)
operating system with Vivado 2016.4 and Modelsim SE 10.4a installed. Similar features can be achieved by
using the Windows mingw platform with the Msys shell, but full compatibility with the Linux development is
not guarantied by WP10

• Software Environment: To ensure compatibility for software co-development it is recommended to install
the Linux Developer Toolset in CC7 (https://linux.web.cern.ch/linux/devtoolset/), which provides more up-
to-date compilers and libraries. Python is used for scripting to interact with the WP10 prototype hardware
(currently via USB). We use the Continuum Analytics Anaconda platform (Python 3.5 version) to provide the
python tools (https://www.continuum.io/anaconda-overview). This platform is also available for Windows.

• Version Control: CERN gitlab is used for version control of the firmware and software development within
WP10. The gitlab group for WP10 is located at: https://gitlab.cern.ch/alice-its-wp10-firmware/. Membership
in this gitlab group is via the e-group. Various projects are hosted in this gitlab group, the main prototype
development is currently in the project “itswp10”.

• Issue Tracking: CERN JIRA is used for issue tracking. The WP10 issues are tracked underneath the ALICE
project JIRA at: https://alice.its.cern.ch/jira/projects/IT.

• File exchange: Files that are too big or not version controlled are exchanged via a shared CERNbox. Currently,
this is by invitation only, since the CERNbox account used is a private account.

https://linux.web.cern.ch/linux/devtoolset/
https://www.continuum.io/anaconda-overview
https://gitlab.cern.ch/alice-its-wp10-firmware/
https://alice.its.cern.ch/jira/projects/IT

ALICE ITS UPGRADE 6

Gitlab Repository Structure

Repository root

user firmware software

RUv0

source

ip

sim doc

e.g. prj2

sw

rtl bench

vivado

<prj_name> scripts

Synth. Impl. hw

constraints

sub-mod

• The ITS WP10 repository structure is derived from the opencores directory structure recommendation.

• Firmware submodules are currently located in the same folder structure as the containing project itself, but in the
future will use the Git “super-project/submodule” paradigm, where a Git “super project” can import modules
located in other repositories as “submodules” (https://git-scm.com/book/en/v2/Git-Tools-Submodules).

ALICE ITS UPGRADE 7

Gitlab Based Development Flow

• The development of firmware within WP10 is following the gitlab suggested development flow:

• The master branch is a protected branch that should contain only stable code.

• Only the repository owner(s) are allowed to modify the master branch.

• To develop a new feature or fix an issue in an existing feature, a new issue is created in JIRA.

• The developer clones the repository to his/her development workstation.

• A developer then creates a “feature” or “development” branch derived from the master branch on his/her
workstation referencing the issue in JIRA.

• When the development is close to being done, this new branch will be pushed to the repository in gitlab.

• The developer then “pulls” the latest commits from the gitlab repository at CERN.

• The developer merges the “master” branch into his/her development branch to identify any conflicts that
might arise from commits since the branching and resolves these conflicts.

• The updated branch will be pushed to gitlab again.

• A new “merge request” will be opened in gitlab and an online discussion of the merge request starts.

• Other developers in WP10 test the code in this branch with their own code to verify that no conflicts are
created by this branch.

• Once the merge-request discussion is concluded, the repository owner “accepts” the merge request in the
online gitlab interface, which performs the actual merge of the branch into the master branch, resolving any
conflicts that were identified.

• The JIRA issue associated with this development is “closed” (gitlab/Jira integration).

• The repository owner then notifies all developers to “pull” the latest repository changes and to merge them
into their development branches.

• Special features in the code base not needed in the main development flow can be kept in separate
repositories, or in special long-lived feature-branches (e.g. code for special hardware tests)

ALICE ITS UPGRADE 8

Firmware Structure

ALICE ITS UPGRADE 9

Firmware Module Structure

Clock
Generators

RU_Top

I/O
Interfaces

Fabric Logic

USB
Interface

Wishbone
Bus

Alpide Power
& Monitoring

Alpide
Control

Alpide
Readout

Power Unit
Interface

Trigger
Handling

GBT
Interface …

• The firmware module structure starts with a top level module called <project_name>_top (e.g. “RU_Top” in
the diagram below). This module only instantiates child modules.

• All physical ports are declared in this top level module.

• Physical interfaces of the ports are converted into single-ended logic ports in an I/O Interface module
instantiated by <project>_top.

• All user clocks to be used in the fabric logic are derived in a separate “Clock Generator” module instantiated
by <project>_top

• All fabric logic is instantiated by a “Fabric Logic” top module (“fabric_top”) which only instantiates various
child modules for various tasks (such as wishbone bus, Alpide Readout, …..), i.e. no user logic.

• The fabric_top module instantiates all other user logic child modules.

completed

in progress

ALICE ITS UPGRADE 10

Firmware module configuration: Wishbone Bus Interconnect

• All User Logic Module high-speed data exchange is accomplished via FIFOs that also allow proper clock-
domain crossing between modules.

• Communication between user logic modules and the outside world (both for configuration and monitoring)
is accomplished via the open-source “Wishbone Bus Interconnect” used by many opencores projects:
http://cdn.opencores.org/downloads/wbspec_b3.pdf.

• The specific implementation chosen (different interconnect structures are defined in the standard) is a
Shared-Bus interconnect with a multiplexer implemented in an “InterCon” module.

Wishbone
Slave

IP Core

Wishbone
Master
IP Core

Wishbone
Master
IP Core

Wishbone
Slave

IP Core

Wishbone
Slave

IP Core

Shared Bus

Optional

• Prototype Firmware implements a wishbone bus with
currently only one master (no arbiter needed)

• The Wishbone Data Bus width is 16-bit

• Partial Address Decoding: 8-bit addresses are used internal to
each Wishbone-slave, additional address bits used to identify
a specific Wishbone Slave. Currently we use 4-bits for up-to 16
slaves, but this can be extended as needed

• Only Wishbone required signals are implemented; also no
byte-select (SEL) signals are used.

http://cdn.opencores.org/downloads/wbspec_b3.pdf

ALICE ITS UPGRADE 11

Acquisition & Sensor Control Firmware Implementation - Overview

GBT Tx

GBT RxControls driver

High speed
data receiver

Heartbeat
extraction

Commands
interpreter

Trigger
extraction

Controls/Trigger &
Configuration I/F

Buffering CRU packet builder

Error / busy
extraction

Fast latch-up /
power controller

Slow ctrl

LHC clock

Trigger

Busy?

Busy

Control

Data

Pwr ctrl

Readout state
control

Clock

Data

Slow controls
feedback

GBT Rx

From/To
ITS sensors

From/To
CRU, CTP
and DCS

• The main firmware tasks of the RU are outlined in this diagram.

• Additionally, Firmware needs to be developed to handle Radiation Induced failures.

• Firmware in the flash-based FPGA for scrubbing and configuration of the S-RAM based FPGA is not shown
in the above diagram

• Also not shown are firmware for USB I/F and Flash-FPGA communication

• When GBT is not available, a CAN IP (not shown here) provides power unit control & monitoring

ALICE ITS UPGRADE 12

Alpide Data Path – Inner Barrel

Implemented with
high-speed GTX
transceiver IPsIncludes

encoding

Not yet defined;
e.g. create busy

map

ALICE ITS UPGRADE 13

Alpide Data Path – Outer Barrel

Implemented with GPIO
DDR SerDes IPs and user

decodingIncludes
encoding

ALICE ITS UPGRADE 14

Trigger Handling

Send a trigger to the
sensor.

Reset last trigger timer
Generate and store

SENSOR trigger event

Store CTP trigger and/or
HBF reference

Yes

No

Data

Trigger

Associate every SENSOR
frame with all stored CTP

triggers associated with it.

Busy
detected?

No

CTP Physics trigger

Store Busy condition for
current trigger event

Yes

Data

The sensor receives a trigger and responds with a complete, partial or empty data
frame and/or a busy state depending on the status of its internal resources. Triggers
need to be separated by TW > 1 µs. The CTP trigger time (BC & Orbit) are stored for
every CTP trigger, and later associated to outgoing data by the Readout Electronics.

Heart Beat Trigger / BCX counter

Time since last
trigger > TW ?

Sensor

ALICE ITS UPGRADE 15

Prototype Firmware Development

ALICE ITS UPGRADE 16

Prototype Development Hardware

• A Readout Unit prototype was designed and fabricated in WP10 to allow firmware development and
interface and radiation testing. The prototype hardware was divided into two boards:

• RUv0: a Xilinx Kintex-7 based board; contains interfaces to sensors, power unit and an FMC connector

• GBTxFMC: an FMC card containing GBTx, SCA, and VTRx.

• RUv0 also provides an SFP+ fiber module, which allows the board to be used as a substitute for the CRU
and/or CTP, where the FPGA firmware includes the GBT_FPGA IP core provided by the CERN GBT group.

• In lieu of a complete GBT setup to control the prototype boards, RUv0 also includes a USB interface provided
by a Cypress FX-3 chip, which allows the prototype hardware to be controlled and monitored by a PC via USB.

• RUv0 also includes controllable power regulators to provide power to the attached Alpide sensors/modules.

• Most Firmware development to date has been done on this hardware platform.

• For Radiation Susceptibility testing, small firmware reference test structures have been to check relevant
logic cross-sections

• The same prototype hardware was also used for evaluation of error mitigation techniques: TMR, safe FSMs,
ECC for memory, ….

• Configuration of the FPGA is possible over JTAG from both a JTAG header or the GBT-SCA on the GBTxFMC

• Different scrubbing methods were investigated over JTAG

ALICE ITS UPGRADE 17

Prototype Hardware: RUv0 and GBTxFMC

10 high-speed e-links and associated clocks, as well as various SCA interfaces are connected between RUv0 and GBTxFMC as
shown here:

ALICE ITS UPGRADE 18

Prototype Development Setup with 2 RUv0

CRU
and/or
CTP

ALICE ITS UPGRADE 19

RUv0 USB Interface

• FX3 firmware implements 3 endpoints: 1 IN/OUT, and 2 IN

• FX3 interface to FPGA is via a synchronous slave FIFO

• FPGA FX3 control interface module provides interface to FX3 firmware

• FPGA FX3 control interface provides 4 FIFOs to the rest of the firmware: 1 input and 3 outputs

• Wishbone master uses 1 in and 1 out FIFO to interpret USB data as wishbone transactions

• The other 2 out FIFOs are used for (fast) bulk data transmission from FPGA to PC

ALICE ITS UPGRADE 20

GTX Data Readout Path for Inner Barrel

GTX
Transceiver

CDC
FIFO

20 bit
60 MHz

10 bit
120 MHz

GTX
Input

Comma Alignment
10B-8B

Decoder

Idle Suppress

Protocol
Checker

Data Format

PRBS
Checker

10 bit
120 MHz

8 bit
120 MHz

8 bit
120 MHz

8 bit
120 MHz

FIFO
16 kBytes

| ……….. | ………. | ………. | ………. |
| Status | Byte2 | Byte1 | Byte0 |

32 bit
120 MHz

72 bit
120 MHzCRU

Framer

USB

1 bit
1200 MHz

ALICE ITS UPGRADE 21

GPIO Data Readout Path for Outer Barrel

Delay ISERDES

32 steps
78ps resolution

CDC
FIFO

1 bit
200 MHz

DDR

10 bit
40 MHz

delayed
input

10 bit
120 MHz

data
enable

GPIO
input

GPIO Transceiver
400 Mbps

Comma Alignment
10B-8B

Decoder

Idle Suppress

Protocol
Checker

Data Format

PRBS
Checker

10 bit
120 MHz

8 bit
120 MHz

8 bit
120 MHz

8 bit
120 MHz

FIFO
16 kBytes

| ……….. | ………. | ………. | ………. |
| Status | Byte2 | Byte1 | Byte0 |

32 bit
120 MHz

Replaces GTX Transceiver

72 bit
120 MHzCRU

Framer

USB

ALICE ITS UPGRADE 22

Data Path Resource Estimates

Resource Usage GPIO vs GTX Data Path

Current Full Implementation on RUv0:

Use all Alpide inputs available on RUv0 (< total 28
needed in final version):
• 12 GTX Data Receiver Paths
• 13 GPIO Data Receiver Paths
• 16k FIFO per Receiver Path
• 32bit 64k FIFO per USB High-Speed Bulk data port
• Logic also contains other firmware modules (e.g.

USB, FX3 I/F, I2C, …)

LUT FF BRAM

GPIO Readout 620 1350 6.5

GTX Readout 800 1680 6.5

Resource Used Available Util. %

LUT 22354 203800 11%

FF 42492 407600 10%

BRAM 287 445 64%

RUv0: Kintex-7

Resource Used Available Util. %

LUT 20650 331680 6%

FF 40404 663360 6%

BRAM 356 1080 33%

Kintex Ultrascale (XCKU060)

Target Device:

Maximum Resource Usage: Layers 5 & 6

• 28 GPIO Data Receivers

To estimate the effect of e.g. TMR, simply
implement 3 times the actual data paths:

• 84 GPIO Data Receivers

Resource Used Available Util. %

LUT 58177 331680 18%

FF 115106 663360 17%

BRAM 832 1080 77%

(from M. Bonora’s test firmware)

