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Overview
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Power Unit (PU)

Readout Unit Overview
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Main Tasks of the Readout Unit:
• Receive triggers (heartbeat & physics) from CTP & decode
• Receive “control” information from CRU
• Deliver triggers to stave sensors
• Control, configure and monitor stave sensors
• Receive data from stave; decode & compress
• Deliver monitoring information to CRU (forwarded to DCS)
• Deliver CRU framed data packets to CRU
• Determine and handle busy information
• Monitor and control Power Board
• Handle radiation upsets in programmable logic & sensors

GBT Links

Copper Links

From/To ITS
From/To CRU

Power Board
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Firmware Development Rules

• E-group: All communication between firmware developers is organized through membership in a CERN e-
group (alice-its-wp10-firmware@cern.ch). The e-group is also used for access control to the version control 
system (gitlab) and the issue tracking system (JIRA)

• Online Documentation: Documentation of hardware, Firmware, and software is posted at the WP10 Twiki
page in the “ALICE Web” Twiki: https://twiki.cern.ch/twiki/bin/view/ALICE/ITS-WP10

• Hardware Programming languages: We decided to allow 3 different firmware languages: VHDL, Verilog and 
System Verilog. Currently, the prototype development is on the Xilinx 7-series, and the Vivado toolset 
supports all 3 languages.

• Tool Sets: The current design of the Readout Unit (RU) foresees the main programmable logic to be a Xilinx 
SRAM based Kintex UltraScale(+). Prototyping was started with a Xilinx Kintex-7. These devices are supported 
by the Xilinx Vivado Toolset. We are currently using Vivado version 2016.4.  The RU design also includes a 
flash-based device to support scrubbing. This device is foreseen to be the ProAsic-3 from Microsemi which is 
supported by the Microsemi Libero SoC Design Suite. To develop detector specific logic on the CRU requires 
the use of the Altera Quartus toolset. CERN has licenses for Synthesis tool Synopsis Synplify Premier, which 
supports Triple-modular-redundancy (TMR). We are considering evaluating this toolset in the future. For FX3 
(USB) firmware design, we are using the Cypress EZ-USB Suite & GPIF-II Designer.

• Simulations: Currently two toolsets are used for firmware testbenches: Mentor Modelsim and Cadence 
Incisive (NCSim). The Cadence tools is only used by CERN collaborators at the moment.

• Coding Style: For firmware coding in VHDL, a coding style document was developed: 
https://twiki.cern.ch/twiki/bin/view/ALICE/FwDevFlowMethods 

• Scripting: Most firmware toolsets support scripting in Tcl. Tcl is the scripting languate integrated in the 
Vivado tool environment. The firmware projects developed in WP10 are required to include a Tcl script to 
create the project and compile it to ensure common project configuration amongst developers. An optional 
“Makefile” can be used to call targeted Tcl scripts for various tasks (project creation, compilation, simulation, 
etc…) 

mailto:alice-its-wp10-firmware@cern.ch
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WP10 Software environment

• Hardware Platform: The main supported platform is currently a PC running the CERN CentOS 7 (CC7) 
operating system with Vivado 2016.4 and Modelsim SE 10.4a installed. Similar features can be achieved by 
using the Windows mingw platform with the Msys shell, but full compatibility with the Linux development is 
not guarantied by WP10

• Software Environment: To ensure compatibility for software co-development it is recommended to install 
the Linux Developer Toolset in CC7 (https://linux.web.cern.ch/linux/devtoolset/), which provides more up-
to-date compilers and libraries. Python is used for scripting to interact with the WP10 prototype hardware 
(currently via USB). We use the Continuum Analytics Anaconda platform (Python 3.5 version) to provide the 
python tools (https://www.continuum.io/anaconda-overview). This platform is also available for Windows.

• Version Control: CERN gitlab is used for version control of the firmware and software development within 
WP10. The gitlab group for WP10 is located at: https://gitlab.cern.ch/alice-its-wp10-firmware/. Membership 
in this gitlab group is via the e-group. Various projects are hosted in this gitlab group, the main prototype 
development is currently in the project “itswp10”.

• Issue Tracking: CERN JIRA is used for issue tracking. The WP10 issues are tracked underneath the ALICE 
project JIRA at: https://alice.its.cern.ch/jira/projects/IT. 

• File exchange: Files that are too big or not version controlled are exchanged via a shared CERNbox. Currently, 
this is by invitation only, since the CERNbox account used is a private account.

https://linux.web.cern.ch/linux/devtoolset/
https://www.continuum.io/anaconda-overview
https://gitlab.cern.ch/alice-its-wp10-firmware/
https://alice.its.cern.ch/jira/projects/IT
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Gitlab Repository Structure
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• The ITS WP10 repository structure is derived from the opencores directory structure recommendation.

• Firmware submodules are currently located in the same folder structure as the containing project itself, but in the 
future will use the Git “super-project/submodule” paradigm, where a Git “super project” can import modules 
located in other repositories as “submodules” (https://git-scm.com/book/en/v2/Git-Tools-Submodules).
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Gitlab Based Development Flow

• The development of firmware within WP10 is following the gitlab suggested development flow:

• The master branch is a protected branch that should contain only stable code.

• Only the repository owner(s) are allowed to modify the master branch.

• To develop a new feature or fix an issue in  an existing feature, a new issue is created in JIRA.

• The developer clones the repository to his/her development workstation.

• A developer then creates a “feature” or “development” branch derived from the master branch on his/her 
workstation referencing the issue in JIRA.

• When the development is close to being done, this new branch will be pushed to the repository in gitlab.

• The developer then “pulls” the latest commits from the gitlab repository at CERN.

• The developer merges the “master” branch into his/her development branch to identify any conflicts that 
might arise from commits since the branching and resolves these conflicts.

• The updated branch will be pushed to gitlab again.

• A new “merge request” will be opened in gitlab and an online discussion of the merge request starts.

• Other developers in WP10 test the code in this branch with their own code to verify that no conflicts are 
created by this branch.

• Once the merge-request discussion is concluded, the repository owner “accepts” the merge request in the 
online gitlab interface, which performs the actual merge of the branch into the master branch, resolving any 
conflicts that were identified.

• The JIRA issue associated with this development is “closed” (gitlab/Jira integration).

• The repository owner then notifies all developers to “pull” the latest repository changes and to merge them 
into their development branches.

• Special features in the code base not needed in the main development flow can be kept in separate 
repositories, or in special long-lived feature-branches (e.g. code for special hardware tests)



ALICE ITS UPGRADE 8

Firmware Structure
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Firmware Module Structure
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• The firmware module structure starts with a top level module called <project_name>_top (e.g. “RU_Top” in 
the diagram below). This module only instantiates child modules.

• All physical ports are declared in this top level module.

• Physical interfaces of the ports are converted into single-ended logic ports in an I/O Interface module 
instantiated by <project>_top.

• All user clocks to be used in the fabric logic are derived in a separate “Clock Generator” module instantiated 
by <project>_top

• All fabric logic is instantiated by a “Fabric Logic” top module (“fabric_top”) which only instantiates various 
child modules for various tasks (such as wishbone bus, Alpide Readout, …..), i.e. no user logic.

• The fabric_top module instantiates all other user logic child modules. 

completed

in progress
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Firmware module configuration: Wishbone Bus Interconnect

• All User Logic Module high-speed data exchange is accomplished via FIFOs that also allow proper clock-
domain crossing between modules.

• Communication between user logic modules and the outside world (both for configuration and monitoring) 
is accomplished via the open-source “Wishbone Bus Interconnect” used by many opencores projects: 
http://cdn.opencores.org/downloads/wbspec_b3.pdf. 

• The specific implementation chosen (different interconnect structures are defined in the standard) is a 
Shared-Bus interconnect with a multiplexer implemented in an “InterCon” module. 

Wishbone
Slave 

IP Core

Wishbone
Master 
IP Core

Wishbone
Master 
IP Core

Wishbone
Slave 

IP Core

Wishbone
Slave 

IP Core

Shared Bus

Optional

• Prototype Firmware implements a wishbone bus with 
currently only one master (no arbiter needed)

• The Wishbone Data Bus width is 16-bit

• Partial Address Decoding: 8-bit addresses are used internal to 
each Wishbone-slave, additional address bits used to identify 
a specific Wishbone Slave. Currently we use 4-bits for up-to 16 
slaves, but this can be extended as needed

• Only Wishbone required signals are implemented; also no 
byte-select (SEL) signals are used.

http://cdn.opencores.org/downloads/wbspec_b3.pdf
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Acquisition & Sensor Control Firmware Implementation - Overview
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• The main firmware tasks of the RU are outlined in this diagram.

• Additionally, Firmware needs to be developed to handle Radiation Induced failures.

• Firmware in the flash-based FPGA for scrubbing and configuration of the S-RAM based FPGA is not shown 
in the above diagram

• Also not shown are firmware for USB I/F and Flash-FPGA communication

• When GBT is not available, a CAN IP (not shown here) provides power unit control & monitoring 
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Alpide Data Path – Inner Barrel
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Alpide Data Path – Outer Barrel
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Trigger Handling

Send a trigger to the 
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Reset last trigger timer
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The sensor receives a trigger and responds with a complete, partial or empty data 
frame and/or a busy state depending on the status of its internal resources. Triggers 
need to be separated by TW > 1 µs. The CTP trigger time (BC & Orbit) are stored for 
every CTP trigger, and later associated to outgoing data by the Readout Electronics.

Heart Beat Trigger / BCX counter

Time since last 
trigger > TW ?

Sensor
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Prototype Firmware Development
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Prototype Development Hardware

• A Readout Unit prototype was designed and fabricated in WP10 to allow firmware development and 
interface and radiation testing. The prototype hardware was divided into two boards:

• RUv0: a Xilinx Kintex-7 based board; contains interfaces to sensors, power unit and an FMC connector

• GBTxFMC: an FMC card containing GBTx, SCA, and VTRx.

• RUv0 also provides an SFP+ fiber module, which allows the board to be used as a substitute for the CRU
and/or CTP, where the FPGA firmware includes the GBT_FPGA IP core provided by the CERN GBT group.

• In lieu of a  complete GBT setup to control the prototype boards, RUv0 also includes a USB interface provided 
by a Cypress FX-3 chip, which allows the prototype hardware to be controlled and monitored by a PC via USB.

• RUv0 also includes controllable power regulators to provide power to the attached Alpide sensors/modules.

• Most Firmware development to date has been done on this hardware platform.

• For Radiation Susceptibility testing, small firmware reference test structures have been to check relevant 
logic cross-sections

• The same prototype hardware was also used for evaluation of error mitigation techniques: TMR, safe FSMs, 
ECC for memory, ….

• Configuration of the FPGA is possible over JTAG from both a JTAG header or the GBT-SCA on the GBTxFMC

• Different scrubbing methods were investigated over JTAG
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Prototype Hardware: RUv0 and GBTxFMC

10 high-speed e-links and associated clocks, as well as various SCA interfaces are connected between RUv0 and GBTxFMC as 
shown here:
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Prototype Development Setup with 2 RUv0

CRU
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RUv0 USB Interface

• FX3 firmware implements 3 endpoints: 1 IN/OUT, and 2 IN

• FX3 interface to FPGA is via a synchronous slave FIFO

• FPGA FX3 control interface module provides interface to FX3 firmware

• FPGA FX3 control interface provides 4 FIFOs to the  rest of the firmware: 1 input and 3 outputs

• Wishbone master uses 1 in and 1 out FIFO to interpret USB data as wishbone transactions

• The other 2 out FIFOs are used for (fast) bulk data transmission from FPGA to PC



ALICE ITS UPGRADE 20

GTX Data Readout Path for Inner Barrel
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GPIO Data Readout Path for Outer Barrel
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Data Path Resource Estimates

Resource Usage GPIO vs GTX Data Path

Current Full Implementation on RUv0:

Use all Alpide inputs available on RUv0 (< total 28 
needed in final version):
• 12 GTX Data Receiver Paths
• 13 GPIO Data Receiver Paths
• 16k FIFO per Receiver Path
• 32bit 64k FIFO per USB High-Speed Bulk data port
• Logic also contains other firmware modules (e.g.  

USB, FX3 I/F, I2C, …)

LUT FF BRAM

GPIO Readout 620 1350 6.5

GTX Readout 800 1680 6.5

Resource Used Available Util. %

LUT 22354 203800 11%

FF 42492 407600 10%

BRAM 287 445 64%

RUv0: Kintex-7

Resource Used Available Util. %

LUT 20650 331680 6%

FF 40404 663360 6%

BRAM 356 1080 33%

Kintex Ultrascale (XCKU060)

Target Device:

Maximum Resource Usage: Layers 5 & 6

• 28 GPIO Data Receivers

To estimate the effect of e.g. TMR, simply 
implement 3 times the actual data paths:

• 84 GPIO Data Receivers

Resource Used Available Util. %

LUT 58177 331680 18%

FF 115106 663360 17%

BRAM 832 1080 77%

(from M. Bonora’s test firmware)


