
ALICE ITS UPGRADE

DCS CAN Bus Interface
ITS WP10 Uprade PRR

ALICE ITS UPGRADE
Introduction

• Readout Unit must be able to communicate with DCS via
• GBT

• CAN bus

• CAN bus to be used when GBT is down (e.g. during shutdowns)

• CAN transceiver on RUv1 is wired to PA3
• CAN controller and HLP engine with wishbone interface should reside in US

• CAN signals will pass through PA3 via GPIOs on the US

• DCS group has given us freedom to define our own protocol

• OpenCores CAN controller will be used
• Has been tested in the PA3 firmware

• Verified that OpenCores controller and external CAN transceiver works

2

ALICE ITS UPGRADE
OpenCores CAN Protocol Controller

• https://opencores.org/project,can

• Written in Verilog

• Supports basic CAN and extended CAN
• 11-bit ID and 29-bit ID

• ID mask and filtering

• Up to 1Mbps operation

• Transmit/receive/error interrupts

• Wishbone interface (8-bit address and data)

• Register map compatible with Philips SJA1000 CAN Controller IC
• https://www.nxp.com/docs/en/data-sheet/SJA1000.pdf

• Size: 12k gates (930 flip-flops)

3

https://opencores.org/project,can
https://www.nxp.com/docs/en/data-sheet/SJA1000.pdf

ALICE ITS UPGRADE
Planned firmware implementation in UltraScale

4

• CAN DCS module based on OpenCores CAN controller
• Custom “High Level Protocol” (HLP)

• Simple READ and WRITE commands from DCS

• READ_RESPONSE and WRITE_RESPONSE provided by Readout Unit

• Wishbone master
• DCS commands access wishbone bus via CAN bus

ALICE ITS UPGRADE
Backup/Reference

13-Apr-2018 Production Readyness Review 5

ALICE ITS UPGRADE
OpenCores CAN Protocol Controller Simulations

• Tested using a simple Bitvis UVVM style testbench

• Two instances of the CAN controller connected

• Two separate WB interfaces to write to each controller

• 40 MHz clock

6

ALICE ITS UPGRADE
OpenCores CAN Protocol Controller Simulations

• Bit Timing Register (BTR0) configured for 4x baud clock prescale

• tSEG1 set to 7 baud clocks, tSEG2 set to 3 baud clocks, in BTR1

• tSYNCSEG is always 1 baud clock

• Gives us a bit rate of 40 MHz / (4 * (1+7+3)) = 1Mbps

7

ALICE ITS UPGRADE
OpenCores CAN Protocol Controller Simulations

8

• Simulation waveforms, showing initial WB transactions on both controllers, CAN
transmission, and CAN IRQ lines going low after message

ALICE ITS UPGRADE
OpenCores CAN Protocol Controller Simulations

9

• sample_point marks the point where bits on rx_i are being sampled

• The simulated bit period is 1 us, as it was configured for

• The sampling point is located at 7/10ths of a microsecond into each
bit, corresponding to what tSEG1 and tSEG2 were configured for

ALICE ITS UPGRADE
OpenCores CAN Protocol Controller Simulations

10

Testbench log

UVVM: ID_LOG_HDR 4940.0 ns TB seq. Start a transaction from CAN0 to CAN1

UVVM: ---

UVVM: ID_BFM 5115.0 ns TB seq. wb_write(A:x"0A", x"BB") completed. Set TXID1 to xBB

UVVM: ID_BFM 5465.0 ns TB seq. wb_write(A:x"0B", x"08") completed. Set TXID2 to x08, 8 bytes data

UVVM: ID_BFM 5815.0 ns TB seq. wb_write(A:x"0C", x"11") completed. Set data1 to x11

UVVM: ID_BFM 6165.0 ns TB seq. wb_write(A:x"0D", x"22") completed. Set data2 to x22

UVVM: ID_BFM 6515.0 ns TB seq. wb_write(A:x"0E", x"33") completed. Set data3 to x33

UVVM: ID_BFM 6865.0 ns TB seq. wb_write(A:x"0F", x"44") completed. Set data4 to x44

UVVM: ID_BFM 7215.0 ns TB seq. wb_write(A:x"10", x"55") completed. Set data5 to x55

UVVM: ID_BFM 7565.0 ns TB seq. wb_write(A:x"11", x"66") completed. Set data6 to x66

UVVM: ID_BFM 7915.0 ns TB seq. wb_write(A:x"12", x"77") completed. Set data7 to x77

UVVM: ID_BFM 8265.0 ns TB seq. wb_write(A:x"13", x"88") completed. Set data8 to x88

UVVM: ID_BFM 8615.0 ns TB seq. wb_write(A:x"01", x"01") completed. Request transmission on CAN0

UVVM:

UVVM:

UVVM: ID_LOG_HDR 8615.0 ns TB seq. Wait for CAN1 to receive message

UVVM: ---

UVVM:

UVVM:

UVVM: ID_LOG_HDR 125613.5 ns TB seq. Got interrupt from CAN1.

UVVM: ---

UVVM: ID_BFM 125790.0 ns TB seq. wb_check(A:x"00", x"XX")=> OK, received data = x"3E". Check that CAN0 transmit interrupt was set

UVVM: ID_BFM 126140.0 ns TB seq. wb_check(A:x"02", x"XX")=> OK, received data = x"2C". Check that CAN0 transmit complete status bit is set

UVVM: ID_BFM 126315.0 ns TB seq. wb_check(A:x"00", x"XX")=> OK, received data = x"3E". Check that CAN1 receive interrupt was set

UVVM:

UVVM:

UVVM: ID_LOG_HDR 127315.0 ns TB seq. Verify message received by CAN1

UVVM: ---

UVVM: ID_BFM 127490.0 ns TB seq. wb_check(A:x"14", x"BB")=> OK, received data = x"BB". Verify received RXID1

UVVM: ID_BFM 127840.0 ns TB seq. wb_check(A:x"15", x"08")=> OK, received data = x"8". Verify received RXID2, 8 bytes data

UVVM: ID_BFM 128190.0 ns TB seq. wb_check(A:x"16", x"11")=> OK, received data = x"11". Verify received data byte 1

UVVM: ID_BFM 128540.0 ns TB seq. wb_check(A:x"17", x"22")=> OK, received data = x"22". Verify received data byte 2

UVVM: ID_BFM 128890.0 ns TB seq. wb_check(A:x"18", x"33")=> OK, received data = x"33". Verify received data byte 3

UVVM: ID_BFM 129240.0 ns TB seq. wb_check(A:x"19", x"44")=> OK, received data = x"44". Verify received data byte 4

UVVM: ID_BFM 129590.0 ns TB seq. wb_check(A:x"1A", x"55")=> OK, received data = x"55". Verify received data byte 5

UVVM: ID_BFM 129940.0 ns TB seq. wb_check(A:x"1B", x"66")=> OK, received data = x"66". Verify received data byte 6

UVVM: ID_BFM 130290.0 ns TB seq. wb_check(A:x"1C", x"77")=> OK, received data = x"77". Verify received data byte 7

UVVM: ID_BFM 130640.0 ns TB seq. wb_check(A:x"1D", x"88")=> OK, received data = x"88". Verify received data byte 8

Set up TX buffer on CAN0 with
message for CAN1 (ID 0xBB)

Wait for CAN1 to receive message

Verify message contents

ALICE ITS UPGRADE
CAN bus testing on RUv1

13-Apr-2018 Production Readyness Review 11

AnaGate CAN Monitor program

Readout Unit PA3 GUI software (RX buffer registers) Readout Unit PA3 GUI software (TX buffer registers)

• AnaGate CAN adapter used for testing (same as DCS group is using).
• Successfully sent/received CAN messages to/from CAN controller in PA3

