ALICE ITS UPGRADE [Cf&

DCS CAN Bus Interface

ITS WP10 Uprade PRR

| nt ro d u Ct i O n ALICE ITS UPGRADE

e Readout Unit must be able to communicate with DCS via
* GBT
e CAN bus

* CAN bus to be used when GBT is down (e.g. during shutdowns)
 CAN transceiver on RUv1 is wired to PA3

* CAN controller and HLP engine with wishbone interface should reside in US
* CAN signals will pass through PA3 via GPIOs on the US

* DCS group has given us freedom to define our own protocol

* OpenCores CAN controller will be used

* Has been tested in the PA3 firmware
 Verified that OpenCores controller and external CAN transceiver works

OpenCores CAN Protocol Controller

ALICE ITS UPGRADE (G

* https://opencores.org/project,can

* Written in Verilog

e Supports basic CAN and extended CAN
* 11-bit ID and 29-bit ID
* ID mask and filtering

* Up to 1Mbps operation
* Transmit/receive/error interrupts
* Wishbone interface (8-bit address and data)

* Register map compatible with Philips SIA1000 CAN Controller IC
* https://www.nxp.com/docs/en/data-sheet/SJIA1000.pdf

e Size: 12k gates (930 flip-flops)

https://opencores.org/project,can
https://www.nxp.com/docs/en/data-sheet/SJA1000.pdf

Planned firmware implementation in UltraScale

ALICE ITS UPGRADE (G

* CAN DCS module based on OpenCores CAN controller

e Custom “High Level Protocol” (HLP)
e Simple READ and WRITE commands from DCS
* READ_RESPONSE and WRITE_RESPONSE provided by Readout Unit

* Wishbone master
e DCS commands access wishbone bus via CAN bus

CAN DCS

CAN HLP

WISHBONE

CANH

CAN Controller |« paz |y _ CAN
nscel

CANL

UltraScale

Backup/Reference
p/ ALICE ITS UPGRADE

13-Apr-2018 Production Readyness Review 5

OpenCores CAN Protocol Controller Simulations

e Tested using a simple Bitvis UVVM style testbench

e Two instances of the CAN controller connected

* Two separate WB interfaces to write to each controller

e 40 MHz clock

Tx

WB IF #0 <::'|> CAN #0

Rx

Tx
CAN #1

Rx

-<":{> WB IF #1

ALICE ITS UPGRADE (G

OpenCores CAN Protocol Controller Simulations | . &

* Bit Timing Register (BTRO) configured for 4x baud clock prescale
* t.rq; S€t to 7 baud clocks, t¢, set to 3 baud clocks, in BTR1

* toyneseg 1S @always 1 baud clock
* Gives us a bit rate of 40 MHz / (4 * (1+7+3)) = 1Mbps

e B R

— L— LK | Baud Rate Prescaler (BRP)
tscl [~

‘*7 TSEG1 e rseG2 —=

ISYNCSEG
- nominal bit time -

L VS TSEGH TSEG2 ~ |SYNC TSEGH
/ SEG L1 | |1 SEG I I R B L/

|
| BN

sample point(s)

OpenCores CAN Protocol Controller Simulations

ALICE ITS UPGRADE

e Simulation waveforms, showing initial WB transactions on both controllers, CAN
transmission, and CAN IRQ lines going low after message

3
>
>
=
" ___________ [| = L L
> i LL L| |4| |4|é|4| '
- SI'EEE [N S| I
- IIIIIIIIIIIIIIIIIIIIIllllIIIIIIllllIIIIIIIIIIIIIIIIIIII Illll
v IIIII llllllllllIllllIIIIIIIIIIIIIIIIIIII
B [{8h00T {8h2CT]
B
B 4 Bhaq |
B fBhoo |
>]
v
v
v
>
3 N A
>
3
>
S

T
T

e

[

OpenCores CAN Protocol Controller Simulations

ALICE ITS UPGRADE [

* sample_point marks the point where bits on rx_i are being sampled
* The simulated bit period is 1 us, as it was configured for

* The sampling point is located at 7/10ths of a microsecond into each
bit, corresponding to what t¢.-, and t., were configured for

fcan_uvwm_th/iCAN1/sample_point 1'h0
can_uvvm_tbhfiCAN1/sampled bit

OpenCores CAN Protocol Controller Simulations

ALICE ITS UPGRADE

Testbench log

Set up TX buffer on CANO with
message for CAN1 (ID OxBB)

UVVM: ID_LOG_HDR 4940.0 ns TB seq. Start a transaction from CANO to CAN1

B OUVVM oo oo oo -
UVVM: ID_BFM 5115.0 ns TB seq. wbh_write(A:x"0A", x"BB") completed. Set TXID1 to xBB

UVVM: ID_BFM 5465.0 ns TB seq. wh_write(A:x"0B", x"08") completed. Set TXID2 to x08, 8 bytes data

UVVM: ID_BFM 5815.0 ns TB seq. wb_write(A:x"0C", x"11") completed. Set datal to x11

UVVM: ID_BFM 6165.0 ns TB seq. wb_write(A:x"0D", x"22") completed. Set data2 to x22

UVVM: ID_BFM 6515.0 ns TB seq. wbhb_write(A:x"OE", x"33") completed. Set data3 to x33

UVVM: ID_BFM 6865.0 ns TB seq. wh_write(A:x"OF", x"44") completed. Set data4 to x44

UVVM: ID_BFM 7215.0 ns TB seq. wb_write(A:x"10", x"55") completed. Set data5 to x55

UVVM: ID_BFM 7565.0 ns TB seq. wbh_write(A:x"11", x"66") completed. Set data6 to x66

UVVM: ID_BFM 7915.0 ns TB seq. wh_write(A:x"12", x"77") completed. Set data7 to x77

UVVM: ID_BFM 8265.0 ns TB seq. wh_write(A:x"13", x"88") completed. Set data8 to x88

UVVM: ID_BFM 8615.0 ns TB seq. wb_write(A:x"01", x"01") completed. Request transmission on CANO

AV Wait for CAN1 to receive message
UVVM: ID_LOG_HDR 8615.0 ns TB seq. Wait for CAN1 to receive message

B OUVVM . m oo oo oo o -
UVWM:

UVWM:

UVVM: ID_LOG_HDR 125613.5 ns TB seq. Got interrupt from CANL.

B UVVM . m o oo oo o
UVVM: ID_BFM 125790.0 ns TB seq. wb_check(A:x"00", x"XX")=> OK, received data = x"3E". Check that CANO transmit interrupt was set

UVVM: ID_BFM 126140.0 ns TB seq. wb_check(A:x"02", x"XX")=> OK, received data = x"2C". Check that CANO transmit complete status bit is set
UVVM: ID_BFM 126315.0 ns TB seq. wb_check(A:x"00", x"XX")=> OK, received data = x"3E". Check that CANl receive interrupt was set

UVWM:

UVWM: .

UVWM: ID_LOG_HDR 127315.0 ns TB seq. Verify message received by CAN1 Verify message contents
UVWM: —mm e e oo
UVVM: ID_BFM 127490.0 ns TB seq. wb_check(A:x"14", x"BB")=> OK, received data = x"BB". Verify received RXID1

UVVM: ID_BFM 127840.0 ns TB seq. wb_check(A:x"15", x"08")=> OK, received data = x"8". Verify received RXID2, 8 bytes data

UVVM: ID_BFM 128190.0 ns TB seq. wb_check(A:x"16", x"11")=> OK, received data = x"11". Verify received data byte 1

UVVM: ID_BFM 128540.0 ns TB seq. wb_check(A:x"17", x"22")=> OK, received data = x"22". Verify received data byte 2

UVVM: ID_BFM 128890.0 ns TB seq. wb_check(A:x"18", x"33")=> OK, received data = x"33". Verify received data byte 3

UVVM: ID_BFM 129240.0 ns TB seq. wb_check(A:x"19", x"44")=> 0K, received data = x"44". Verify received data byte 4

UVVM: ID_BFM 129590.0 ns TB seq. wb_check (A:x"1A", x"55")=> OK, received data = x"55". Verify received data byte 5

UVVM: ID_BFM 129940.0 ns TB seq. wb_check(A:x"1B", x"66")=> OK, received data = x"66". Verify received data byte 6

UVVM: ID_BFM 130290.0 ns TB seq. wb_check(A:x"1C", x"77")=> OK, received data = x"77". Verify received data byte 7

UVVM: ID_BFM 130640.0 ns TB seq. wb_check(A:x"1D", x"88")=> OK, received data = x"88". Verify received data byte 8

=
o

CAN bus testing on RUv1

 AnaGate CAN adapter used for testing (same as DCS group is using).
» Successfully sent/received CAN messages to/from CAN controller in PA3

AnaGate CAN Monitor program

| AnaGate CAN at 192.168.1.254:5001 (1Msg/s) (3IMsg) View:continuous

08.03.2018 16:10:28 657 682 (0=02aa) : Oxaa Oxbb 0Omcc 0O0xdd 0Orxee 0O0=xff 0xll 0x22 - Sended to partner
08.03_2018% 16:02:29.638 1496 {(0=05d8) : 1 0x22? 0=x33 0=x44 0x55 O0=66 O0=x77

08.03_201%8 16:02:02.569 1496 {(0=05d8) : O0=x1l1 O=x22 O0=x33 O0O=x44 O0O=x5%5% O0=x66 O=x77 O=x88

08.03.2018 15:58:40.707 170 {(0=00aa) :<Wzaa 0Oxbb 0Ozcc 0xdd 0Omxee O0=ff 0xll 0=27>- Sended partner
08.03_2018 15:56:26.850 1496 (0=05d8) : 0O=xll O0=22 0=x33 O0=44/ 0=55 O=b6 O0=77 O0=88

‘AnaGate device succesfully connected. /

44|CAN_TXB_ID1

54|CAN_RXB_ID1 8212 8
55 CAN_RXB_ID2 8213 8 45| CAN_TXB_ID2 L
56| CAN_RXB _DATAL 8214 8 46| CAN_TXB_DATA1 v
57 |CAN_RXB_DATAZ 8215 8 47| CAN_TXB_DATAZ v
58| CAN_RXB_DATA3 8216 8 48| CAN_TXB_DATA3 v
59| CAN_RXB_DATA4 8217 8 49| CAN_TXB_DATA4 v
60 CAN_RXB_DATAS 8218 8 50| CAN_TXB_DATAS v
61 CAN_RXB_DATASG 8219 8 51| CAN_TXB_DATAE]
62 CAN_RXB_DATA7 8220 8 52| CAN_TXB_DATA7 -
63 CAN_RXB_DATAS 8221 8 53| CAN_TXB_DATAS -

Readout Unit PA3 GUI software (RX buffer registers) Readout Unit PA3 GUI software (TX buffer registers)

13-Apr-2018 Production Readyness Review 11

