

ITS Readout Electronics

01 Oct 2017

RUv1 testing – Full board testing (CHARM)

We may have overlooked something critical, therefore whole board testing is anyway necessary. Specific DCDC testing will be carried out at LBNL BASE facility (55 MeV protons)

Proton Beam Conditions PS T8

- 1e11 5e11 p's per spill
- Up to 6 spills per super cycle for CHARM
- Average:
 3 spills per min
 3e11 p's per spill
 - 1.8e10 p's per s
 - 1.5e15 p's per day
- FWHM 1 2cm
- "blown-up" beam with 8 12 cm FWHM

	6	~~~zero~~~	24		-	NTOF	Comments (15-Nov- 08:07:12)		
	/	TOF_	23	623	P+	NTOF			
	8	EAST_Irrad	3	47.91	P+	EAST_T8			
	10	EAST_Irrad		46.99	P+	EAST_T8			
	12	~~~zero~~~	24						
	13	~~~ zero ~~~	24						
	14	~~~zero~~~	24						
	15	~~~zero~~~	24						
	16	SFTPRO_CT_	21	766	P +	SFTPRO1			
	17	SFTPRO_CT_	21		P+	FTARGET			
	/31	TOF_	23		P+	NTOF			

1 spill lasts about 300ms, making any scrubbing useless. Testing from Prague anyway show the expected number of particle per spill per cm² is within our "working range", i.e. we will survive each spill with very reasonable amount of error (with or without TMR).

Not really worth for verifying firmware!

but very useful to test with broad spectrum of particles/energies to check that everything works as expected (other option installing in the cavern).

Constraints we have in proton testing of the **firmware** (we can shield all others components on RUv1):

RUv1 testing – Neutron testing basics 1

Impossible to have energetic heavy ions interacting with our electronic (they cannot reach it), yet <u>neutrons</u> can generate ions ($_{14}$ Si nuclei, $_{2}\alpha$ particles, oter fragment) by nuclear interaction within the device. These secondary then act as ionizing particles in the active volume of the device. Range × dQdx×1

ALICE ITS UPGRADE 4

RUv1 testing – Neutron testing basics 2

Given a neutron spectrum, there is an upper limit to the energy transfer to the Si nuclei (or any other recoil fragment, see previous slide) and consequently an <u>upper limit to the induced ionization in the Si lattice</u>. For a complete math description see the excellent: C. Leroy and P. G. Rancoita Rep. Prog. Phys. **70** (2007) 493–625

Fast neutron spectra at VESUVIO and LANSCE.

ig. 4. Charge collection spectra in ISEEM at VESUVIO and LANSCE.

RUv1 testing – Neutron testing basics 3

Therefore (also considering the neutron spectrum at the experiment is anyway within 1 GeV) there is an upper limit to the kind of ionizing damage neutrons can induce in devices. This upper limits its reached for neutrons around 100 MeV, and it is roughly equivalent to the damage produced by 100 MeV protons.

RUv1 testing – Neutron testing practical details

Neutron would allow long-exposure testing without being limited by TID. Cross section is not constant below about 14 MeV, but it is easy to set upper limits with neutron measurements.

Facility	Energy	Flux (cm ⁻² s ⁻¹)	
CERN	0.1 ÷ 1 and 10 ÷ 100 MeV	To be verified (SPS spill dependent)	
LBNL	8-30 MeV	Up to 10 ⁸	
Frascati	14 MeV	Up to 10 ¹¹	
PSI	Investigating		
Aachen	Investigating		

Xilinx test data (SRAM FPGA):

- Proton Cross Section 3.40e-14 cm² (10 to 100 MeV)
- Neutron Cross Sections (LANSCE Hess Spectrum)
- >1.5 MeV 1.80e-14 cm²
- >10.0 MeV 3.43e-14 cm²

Not necessary in this order:

- CHARM: board testing (diagnostic on current and voltages, plus power board).
- Prague 1: firmware with full readout channels (w/ optical RUv1 control if early).
- Prague 2: firmware with final-like firmware shape (w/ optical RUv1 control if early).
- Neutron (facility to be booked): full RUv1 board testing to avoid TID limit on ancillary components.
- Backup (likely in Prague)

RUv1 testing – Statistical limits when testing with protons

Proton testing is limited due to accumulated TID

```
TID_p \cong LET_p \times Fluence \times 1.6 \times 10^{-5}
\downarrow
1.6×10<sup>-2</sup> (30 MeV, Prague )
9.6×10<sup>-3</sup> (55 MeV, Berkeley )
```

We are TID-limited with proton testing to a statistic equivalent to about <u>60 days of ITS operation for the FPGA</u> (250 kRad) firmware and about <u>1 day of ITS operation for the DCDC</u> converter (TID-induced failure supposed to happen around 10 kRad). Testing *n* devices in parallels increases the operation equivalent period by *n*.

Fluence [p cm ⁻²]	ITS operation eqv. for FPGA [days] ¹	ITS operation eqv. for DCDC [days] ²	TID @ 30 MeV [Rad]	TID @ 55 MeV [Rad]
1×10 ¹⁰	0.6	0.08	2.5k	1.5k
1×10 ¹¹	5.8	<u>0.83</u>	25k	15k
1×10 ¹²	<u>57.9</u>	8.3	250k	150k
1×10 ¹³	579	83	2.5M	1.5M
1×10 ¹⁴	5787	827	25M	15M

¹ FPGA equivalent operational period for 200 RUs, each with 1 FPGA

² DCDC equivalent operational period for 200 RUs, each with 7 DCDC

RUv1 testing – Neutron possibilities

Neutron testing provides cross sections for SEU/SEL comparable to 100 MeV proton for neutron energies > 10 MeV, no issue with TID effects. In table statistical coverage with reasonable irradiation times (< 2 days, single device).

Irradiation at 10⁷ n cm⁻² s⁻¹ will not give more statistics than proton testing!

Total fluence [n cm ⁻²]	Hours at 10 ⁷ [n cm ⁻²]	ITS operation eqv. for FPGA [days] ¹	ITS operation eqv. for DCDC [days] ²
1×10 ¹⁰	0.28	0.6	0.08
1×10 ¹¹	2.8	5.8	0.83
1×10 ¹²	28	<u>57.9</u>	<u>8.3</u>

¹ FPGA equivalent operational period for 200 RUs, each with 1 FPGA

² DCDC equivalent operational period for 200 RUs, each with 7 DCDC

Irradiation at 10⁸ n cm⁻² s⁻¹ necessary, or 10 device in parallel!

Total fluence [n cm ⁻²]	Hours at 10 ⁸ [n cm ⁻²]	ITS operation eqv. for FPGA [days] ¹	ITS operation eqv. for DCDC [days] ²
1×10^{11}	0.28	5.8	0.83
1×10 ¹²	2.8	57. <u>9</u>	8.3
1×10 ¹³	28	<u>579</u>	<u>83</u>

¹ FPGA equivalent operational period for 200 RUs, each with 1 FPGA

² DCDC equivalent operational period for 200 RUs, each with 7 DCDC

RUv1 testing – Roadmap

Particle type	Target eqv. HEH fluence [cm ⁻²]	Target flux [cm ⁻² s ⁻¹]	Duration [hours]	Number of DUT	Facility	Date	Notes	
RUv1 Board (broad showstopper verification)								
mixed field	≈10 ¹²	Pulsed	96 Death of DUT	1	Charm	24 Oct	CHARM gives ≈2×10 ⁷ HEH (30% to 80% being neutron) for each delivered kRad of TID. <u>Destructive test due to TID.</u>	
neutron	≈2×10 ¹²	2×10^{7}	12	1	Louvain Frascati LBL?	Low priority	Extended reliability test sor SEL/SEU only (no TID effects at first order). <u>NON destructive.</u>	
Firmware protection verification								
Proton	10 ¹²	107	24	1	Prague LBL	High priority	Beam limited to the FPGA only. Most effective way to check firmware design.	
Neutron	10 ⁹	104	24 ÷ 48	1	CERN Aachen	Low priority	Realistic scrubber speed testing (non mandatory). Neutron could <u>underestimate</u> MBU.	
DCDC validation								
Proton	10 ¹¹	10 ⁸	1	5	LBL	Mid priority	Further testing of TID response to increase statistics (and specifically targeted at 10A model). <u>Destructive</u> <u>test</u> .	
Neutron	10 ¹³	2×10 ⁷	12	5	Louvain Frascati LBL?	High priority	Realistic scrubber speed testing (non mandatory). Neutron could <u>underestimate</u> MBU.	