

Imperial College London

FULL CHAIN DEMONSTRATOR

Tom James, Imperial College London TMTT: L1 Tracking Review 08/Dec/2016

SYSTEM ARCHITECTURE - THE TRACK FINDING PROCESSOR (TFP) - RECAP

- Track Finding Processor (TFP) boards receive links from adjacent detector (DTC) octants, corresponding to a single processing octant
- > Each TFP processes 1/8 in $\varphi \& 1/\text{tmp}$ in time

Tom James (Imperial College) TMTT

No further duplication or sharing between regions is required downstream

- ► System is compartmentalised
 - One processing octant becomes the demonstrator slice unit

SYSTEM ARCHITECTURE - MAPPING TO DEMONSTRATOR SLICE

- > TFP is internally divided into logical elements, each on separate boards (MP7s)
- Simplifies division of labour and algorithm development/testing
- > Presently available FPGA resources is not necessarily a limit to the scale/performance of algorithms we want to implement
- > Can extrapolate FPGA resources to those of a future processing card, allowing demonstration of what could be final system performance with currently in hand technology

Tom James (Imperial College) TMTT

DEMONSTRATOR HARDWARE - THE MASTER PROCESSOR 7 (MP7)

- The MP7 is a generic high-performance data-stream processing double width AMC card, developed for use in the Phase I calorimeter trigger upgrade
- Equipped with a Xilinx Virtex-7 690-T FPGA

- 12 Avago Technologies MiniPOD optical transmitters/receivers
 - Each provide 12 optical links running at up to 10.3 Gbps
 - Total optical bandwidth 0.74 Tbps each way

Tom James (Imperial College) TMTT

DEMONSTRATOR HARDWARE - THE MASTER PROCESSOR 7 (MP7)

- Comes with well supported firmware and software infrastructure
- Firmware already provided for core tasks such as transceiver buffering, I/O formatting & external communication and configuration
 - Simplifies demonstration process greatly -> can focus on the algorithms
- Using well understood hardware means that details of timing and synchronisation were not an issue - we benefit from a great deal of work previously done

Tom James (Imperial College) TMTT

TMTT: L1 Tracking Review

DEMONSTRATOR HARDWARE

- Location: Tracker Integration Facility (TIF) B186, CERN
- **CERN Blue rack -** Turbine, 3-phase power, air deflector, water cooling/heat exchangers
- **Schroff** MicroTCA crate powered by external PowerOne 48V PSU & Vadatech power modules
- Equipped with NAT-MCH (Gigabit Ethernet communication via backplane) & AMC13 (synchronisation, timing & control)
- PowerEdge R620 CMS rack PC
- 11 MP7-XE's installed in Schroff crate
 - 5 for algorithm demonstration (one TFP)
 - 3 as large buffers for source & sink
 - 3 spares/backup
- Boards daisy-chained with optical fibres to meet required demonstrator configuration

Tom James (Imperial College) TMTT

TMTT: L1 Tracking Review

DEMONSTRATOR OVERVIEW - DATA TAKING

- ► 8 daisy-chained MP7 boards
- ► Five boards emulate one Track Finder Processor
- > Processes Monte Carlo stubs for any one octant in φ , all of η at once
- ► We take take data for all eight octants to generate hardware results for entire tracker

Tom James (Imperial College) TMTT

TMTT: L1 Tracking Review

DEMONSTRATOR OVERVIEW - SOURCE & SINK

- The source represents up to 36 virtual DTCs, covering a φ -octant in both z+ and z-
- **Source** stores ~30 events for playback
- The **sink** stores output of ~30 events

Tom James (Imperial College) TMTT

Where a virtual DTC is a time multiplexed stream of data as if it were coming from a real DTC

DEMONSTRATOR OVERVIEW - SOURCE & SINK

- Same fw for both source & sink
- 72 Big Buffers 16k deep Dual port RAMS
- Acts like a **FIFO**
- 16k deep rams -> 8k 32 bit half-stubs, as 2 bits must be used for data valid & strobe
- Read/Write via **IPBus**

Tom James (Imperial College) TMTT

TMTT: L1 Tracking Review

DEMONSTRATOR OVERVIEW

We compare hardware output **directly** with cmssw simulation software -> can measure performance directly with hardware

- > Objective To run standard physics samples through a hardware demonstrator to ensure that expected performance, as seen in simulation results, is realistic
- simulation/emulation software

Tom James (Imperial College) TMTT

Full MC events passed through hardware, and tracks found are compared with those found by our CMSSW

08/Dec/2016

TMTT: L1 Tracking Review

Tom James (Imperial College) TMTT

	Efficiency (%)	Av Rate	Matched track
hw	94.5	76.5	007
SW	94.8	79.4	90.7

TMTT: L1 Tracking Review

DEMONSTRATOR RESULTS - MUONS 8-100 GEV + 200 PU (1100 EVENTS)

Tom James (Imperial College) TMTT

	Efficiency (%)	Matched tracl
hw	97.1	00.2
SW	97.1	99.2

DEMONSTRATOR RESULTS - MUONS 8-100 GEV + 200 PU (1100 EVENTS)

► Well matched efficiency in CMSSW and demonstrator allow for extrapolation of results to the higher statistics currently available in software

Tom James (Imperial College) TMTT

	Efficiency (%)	Matched trac
hw	97.1	00.2
SW	97.1	99.Z

DEMONSTRATOR RESULTS - ELECTRONS IN TTBAR + 20

- ► Particle-gun electron samples not available until yesterday
 - ► Using electrons in ttbar + 200 PU samples instead
- ► Performance matches CMSSW simulation

Tom James (Imperial College) TMTT

08/Dec/2016

)0 PU	(1800	EVENTS
)0 PU	(1800	EVENTS)

	Efficiency (%)	Matched trac
hw	81.4	007
SW	81.8	90.7

DEMONSTRATOR RESULTS - DIGITISED RESOLUTIONS (TTBAR + 200PU)

- ► Resolution of track helix parameters good in simulation and hardware
- Realised very recently that demonstrator z₀ resolution was degraded by our choice of 12 and 10 bit encoding of r and z stub coordinates
- Simulation shows we can recover optimal resolution in demonstrator by using 2 more bits to encode:
 - ► r of stubs in the barrel
 - ► z in endcaps
 - Can trivially accommodate this change in demonstrator without degrading resolution of other helix parameters, but did not have time before review
 - Software configuration for demonstrator comparison plots use the smaller number of bits for better matching

Tom James (Imperial College) TMTT

DEMONSTRATOR RESULTS - TTBAR + 200PU RESOLUTIONS (1800 EVENTS)

Excellent helix parameter resolutions measured in demonstrator

q/p_T resolution [1/GeV]

Tom James (Imperial College) TMTT

08/Dec/2016

φ_0 resolution [rad]

DEMONSTRATOR RESULTS - TTBAR + 200PU RESOLUTIONS (1800 EVENTS)

Excellent helix parameter resolutions measured in demonstrator

z₀ resolution [cm]

Tom James (Imperial College) TMTT

08/Dec/2016

η resolution

TMTT: L1 Tracking Review

DEMONSTRATOR RESULTS - RATE FOR TTBAR + 200PU

- ► Av. rate out tracks of the duplicate removal stage is measured in hw as ~76 tracks per event
- > Duplicate removal recently integrated into processor chain and shows good results
- > Small discrepancies in duplicate rate will be debugged over the next couple of weeks

TTbar + 200 PU	Av Rate	
hw	76.5	
SW	79.4	

08/Dec/2016

DEMONSTRATOR RESULTS - DEAD COOLING LOOP SCENARIO - TTBAR + 200 PU (900 EVENTS)

- > As seen in CMSSW simulation, the demonstrator can also be configured to recover performance in a dead cooling loop scenario
- > Online configuration of Hough Transform over ipbus all that is required

Tom James (Imperial College) TMTT

08/Dec/2016

- ► In this dead cooling loop example, eta regions 5-8 have been configured to accept HT candidates with only 4 stubs
- ► Average efficiency is preserved at 94.6% in hardware

	Efficiency (%)	Matched tracks (%)
hw	94.2	
SW	94.5	70.4

TMTT: L1 Tracking Review

DEMONSTRATOR RESULTS - FPGA RESOURCES

- ► Although we are using 5 MP7's, to demonstrate one Track Finding Processor, the actual resource usage of the system is much smaller than we have available
- ➤ One can see that the GP+HT, and the KF+DR could each fit inside Ultrascale or Ultrascale+ generation chips

Kin

Virte

Tom James (Imperial College) TMTT

08/Dec/2016

er Tracker octant one TFP	LUTS	BRAM (36Kb)	DSPs
GP + HT	412k	1566	1560
KF + DR	382k	1750	5040
Virtex 7 690	433k	1470	3600
tex Ultrascale 115	663k	2160	5520
ex Ultrascale+ 11P	1296k	1970	9216

TMTT: L1 Tracking Review

DTC REQUIREMENTS

- ► TMTT requirements of the DTC FPGA
 - Conversion to global coordinates (48 bits)
 - > Sorting data by event into N time multiplexed streams (demonstrator N = 36)

Tom James (Imperial College) TMTT

> Duplicating data at our processing node boundaries, so no cross-node data flow downstream required

reminder of DTC input

TMTT: L1 Tracking Review

PROPOSED DTC - IMPLEMENTATION & LATENCY EST

- > We have proposed a DTC solution that provides us with our time multiplexed streams, but also avoids large fan-outs and fan-ins at all costs

Tom James (Imperial College) TMTT

DTC Latency estimate:

60 clocks 250 ns at 240 MHz

Experience delivering a timemultiplexed calorimeter trigger and track-trigger demonstrator give us confidence that this is realistic

TMTT: L1 Tracking Review

08/Dec/2016

PROPOSED DTC - IMPLEMENTATION & LATEN

Tom James (Imperial College) TMTT

08/Dec/2016

DEMONSTRATOR LATENCY - MEASUREMENTS

Latency of all parts of the demonstrator chain are **fixed**

Independent of pileup or event

Latency measured for each block and set of links independently, and also of the total chain for validation

Tom James (Imperial College) TMTT

08/Dec/2016

DEMONSTRATOR LATENCY MEASUREMENTS

Demonstrator target processing latency of 4 us has been achieved

- ► Latency has been tuned for worst case scenario (ttbar+200PU, flat tracker geometry)
- ► However, final system latency must also include the DTC, but fewer serdes & optics within the Track Finding Processor

Demonstrator Chain	Latency (n
Serdes & optical length 1	143
Geometric Processor	310
Serdes & optical length 2	144
Hough Transform	1025
Serdes & optical length 3	129
Kalman Filter + Duplicate removal	1658
Serdes & optical length 4	129
Total First out - First in	3538
Last out - First out	225
Total Last out - First in	3763

DEMONSTRATOR LATENCY MEASUREMENTS

► Final system latency must also include the DTC, but fewer serde & optics within the *Track Finding Processor*

- Have already explored ways we could reduce the latency further
 - ► All parts of system currently clocked at 240 MHz
 - ► Accumulation periods as we wait for all data to arrive in HT KF could be reduced with faster link/smaller TMUX

	System Latency	
	DTC estimate	250
les	Serdes & optical length x 3	450
ſ	Geometric Processor	310
	Hough Transform	1025
or	Kalman Filter	1620
	Duplicate removal	38
	Total First out - First in	3693
	Last out - First out	225
	Total Last out - First in	3918

TMTT: L1 Tracking Review

SUMMARY

- Capable of finding and fitting real physics tracks
 - > over the entire 2π and $|\eta| < 2.4$ solid angle
 - > one octant in φ at a time
- ► Have demonstrated
 - high efficiency and rate reduction in Monte-Carlo physics events
 - ➤ including TTbar + 200 PU
- ► With a fixed processing latency < 4.0 us

Tom James (Imperial College) TMTT

> Have built a track-finding & fitting hardware demonstrator with currently available MicroTCA boards

data flov

BACKUP - DEMONSTRATOR RESULTS - RATE REDUCTION

► Hough Transform does the vast majority of the rate reduction

Tom James (Imperial College) TMTT

08/Dec/2016

