
ON BEHALF OF TMTT GROUP

Track Finding:
Geometric Processor &
Hough Transform

Thomas Schuh | 08.12.2016
(KIT+RAL)

z

x

y

z

x

y



Track-Finding Processor

GP HT TF DR

Thomas Schuh – TMTT – Track Finding 1/24



Geometric Processor (GP)

Thomas Schuh – TMTT – Track Finding 2/24



Divide and Conquer
we subdivide each tracker octant in 2f ⇥18h sectors
and perform subsequently track-finding independently in each sector in parallel

z [mm]

500 1000 1500 2000 2500

r[
m

m
]

0

200

400

600

800

1000

1200

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.8

2.0

2.2

2.4

2.6

2.8
3.0
3.2

4.0

h0

1 2 3 4 5 6 7 8 9

-1000

x [mm]

-1000 -500 0 500 1000

y
[m

m
]

-500

0

500

1000

The Geometric Processor:

assigns stubs to sectors
also divides each h sector into 2 virtual sub-sectors, and records which one(s)
each stub is in
ensure tracks found are ⇠consistent with line in r -z plane

formats the stub data in a way that is convenient for the subsequent track-finding
routes all stubs in a given sector to dedicated output links

Thomas Schuh – TMTT – Track Finding 3/24



FPGA-Based GP Implementation – Routing Block
the GP routes stubs from 72 inputs (one per DTC) to 36 outputs (one per sector)
Routing happens in three steps:
rough h sorting ! fine h sorting ! f sorting

Input Cluster
Input Cluster
Input Cluster
Input Cluster
Input Cluster

Input Cluster
Input Cluster
Input Cluster
Input Cluster
Input Cluster

Input Cluster
Input Cluster
Input Cluster
Input Cluster

Input Cluster = 6 DTC’s

(Each arrow corresponds to a connection which transports 1 stub / clk)

72 DTC’s
delivering
48 stubs / clk
(240 MHz)

sort in 6
rough ÷

bins sort in 3
fine ÷
bins

sort in 3
fine ÷
bins

sort in 3
fine ÷
bins

sort in 2
„ bins

36 stubs / clk
(240 MHz)

• Uses 12% BRAMs (Virtex 7 690)
running at 240 MHz

• Each arbitrator block is highly
configurable – alternative sector
definitions can easely be adapted

• Experimental 480 MHz version
to improve latency is being tested

Thomas Schuh – TMTT – Track Finding 4/24



FPGA-Based GP Implementation – Routing Block
the GP routes stubs from 72 inputs (one per DTC) to 36 outputs (one per sector)
Routing happens in three steps:
rough h sorting ! fine h sorting ! f sorting

Input Cluster
Input Cluster
Input Cluster
Input Cluster
Input Cluster

Input Cluster
Input Cluster
Input Cluster
Input Cluster
Input Cluster

Input Cluster
Input Cluster
Input Cluster
Input Cluster

Input Cluster = 6 DTC’s

(Each arrow corresponds to a connection which transports 1 stub / clk)

72 DTC’s
delivering
48 stubs / clk
(240 MHz)

sort in 6
rough ÷

bins sort in 3
fine ÷
bins

sort in 3
fine ÷
bins

sort in 3
fine ÷
bins

sort in 2
„ bins

36 stubs / clk
(240 MHz)

• Uses 12% BRAMs (Virtex 7 690)
running at 240 MHz

• Each arbitrator block is highly
configurable – alternative sector
definitions can easely be adapted

• Experimental 480 MHz version
to improve latency is being tested

Thomas Schuh – TMTT – Track Finding 5/24



FPGA-Based GP Implementation – Routing Block
the GP routes stubs from 72 inputs (one per DTC) to 36 outputs (one per sector)
Routing happens in three steps:
rough h sorting ! fine h sorting ! f sorting

Input Cluster
Input Cluster
Input Cluster
Input Cluster
Input Cluster

Input Cluster
Input Cluster
Input Cluster
Input Cluster
Input Cluster

Input Cluster
Input Cluster
Input Cluster
Input Cluster

Input Cluster = 6 DTC’s

(Each arrow corresponds to a connection which transports 1 stub / clk)

72 DTC’s
delivering
48 stubs / clk
(240 MHz)

sort in 6
rough ÷

bins sort in 3
fine ÷
bins

sort in 3
fine ÷
bins

sort in 3
fine ÷
bins

sort in 2
„ bins

36 stubs / clk
(240 MHz)

• Uses 12% BRAMs (Virtex 7 690)
running at 240 MHz

• Each arbitrator block is highly
configurable – alternative sector
definitions can easely be adapted

• Experimental 480 MHz version
to improve latency is being tested

Thomas Schuh – TMTT – Track Finding 6/24



FPGA-Based GP Implementation – Routing Block
the GP routes stubs from 72 inputs (one per DTC) to 36 outputs (one per sector)
Routing happens in three steps:
rough h sorting ! fine h sorting ! f sorting

Input Cluster
Input Cluster
Input Cluster
Input Cluster
Input Cluster

Input Cluster
Input Cluster
Input Cluster
Input Cluster
Input Cluster

Input Cluster
Input Cluster
Input Cluster
Input Cluster

Input Cluster = 6 DTC’s

(Each arrow corresponds to a connection which transports 1 stub / clk)

• Uses 12% BRAMs (Virtex 7 690)
running at 240 MHz

• Each arbitrator block is highly
configurable – alternative sector
definitions can easely be adapted

• Experimental 480 MHz version
to improve latency is being tested

72 DTC’s
delivering
48 stubs / clk
(240 MHz)

sort in 6
rough ÷

bins sort in 3
fine ÷
bins

sort in 3
fine ÷
bins

sort in 3
fine ÷
bins

sort in 2
„ bins

36 stubs / clk
(240 MHz)

Thomas Schuh – TMTT – Track Finding 7/24



FPGA-Based GP Implementation – Results

plot compares # tracks / h region in h/w (black dots) vs s/w (red lines)

200 t t̄@200PU events were used

first in to first out latency is constant at 310 ns

 Region η 

Av
er

ag
e 

N
um

be
r o

f O
ut

pu
t S

tu
bs

0

500

1000

1500

2000

2500

3000

Hardware Software
 TTbar, 200 events pile-upTMTT Demonstrator: Geometric Processor

 regionη
0 2 4 6 8 10 12 14 16 18

R
at

io
 H

W
/S

W

0.8
0.9

1
1.1
1.2

Thomas Schuh – TMTT – Track Finding 8/24



Track-Finding Processor

GP HT TF DR

Thomas Schuh – TMTT – Track Finding 9/24



Hough Transform (HT)

Thomas Schuh – TMTT – Track Finding 10/24



Hough Transform – Theory
search for primary tracks in the r -f plane
infinite number of circles

�
f0,

q
pT

�
consistent with beam-line & any individual stub

position (r , f )

stub

x

y

f0

R ⇠ pT

they must obey constraint:

f0 ⇡ f +
q
pT

⇥ r

stub positions corresponds to straight lines in the track parameter plane

Thomas Schuh – TMTT – Track Finding 11/24



Hough Transform – Algorithm

f 0

x

y track

1
2

3
4

5

6

q/pT

f0

6

5

4

3

2
1

track
) )

q/pT

1 2

3

1 for each stub calculate f0 for each q/pT

2 fill the stub into corresponding cells of an array with 32⇥64 cells in q/pT ⇥f0

ignore q/pT values inconsistent with the pT estimate of the stub
3 define cells with stubs in at least 4 or 5 tracker layers as track candidates

4 layer threshold used to cope with dead layer (cooling loop failure) or
barrel-endcap transition region (where a track can not cross more then 5 layers)

Thomas Schuh – TMTT – Track Finding 12/24



FPGA-Based HT Implementation – Overview

array is implemented as a pipeline, it processes one stub per clock cycle (240 MHz)

first step is the filling of the array

second step is the readout of track candidates

1 stub / clk 1 stub / clk
Book Keeper

· · ·

stubs candidates

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT

Book Keeper unpacks stub data from input link, which then propagate to each q/pT
Bin in turn

track candidates found by the Bins propagate back to the Book Keeper, which
transmits them over output link

Thomas Schuh – TMTT – Track Finding 13/24
f 0

q/pT



FPGA-Based HT Implementation – Overview

array is implemented as a pipeline, it processes one stub per clock cycle (240 MHz)

first step is the filling of the array

second step is the readout of track candidates

1 stub / clk 1 stub / clk
Book Keeper

· · ·

stubs candidates

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT

Book Keeper unpacks stub data from input link, which then propagate to each q/pT
Bin in turn

track candidates found by the Bins propagate back to the Book Keeper, which
transmits them over output link

Thomas Schuh – TMTT – Track Finding 14/24
f 0

q/pT



FPGA-Based HT Implementation – Bin

each Bin represents a q/pT column in HT array

Hough Transform

gets f0 at left boundary

calculates f0 at right boundary

f0 Buffer

duplicates stubs if it belongs to two cells

Track Builder

sorts stubs in f0 cells

marks f0 cells with stubs from at least 4 or 5
layers within one h subsector for read-out

Hand Shake

controls the read-out of track candidates

Thomas Schuh – TMTT – Track Finding 15/24

�

0

q/pT

stub

stubs !

track candidates !

stubs !

track candidates !

enable

Buffer
�0

Hough
Transform

Track
Builder

Hand
Shake



FPGA-Based HT Implementation – Bin

each Bin represents a q/pT column in HT array

Hough Transform

gets f0 at left boundary

calculates f0 at right boundary

f0 Buffer

duplicates stubs if it belongs to two cells

Track Builder

sorts stubs in f0 cells

marks f0 cells with stubs from at least 4 or 5
layers within one h subsector for read-out

Hand Shake

controls the read-out of track candidates

Thomas Schuh – TMTT – Track Finding 16/24

�

0

q/pT

stub

track candidates ! track candidates !

enable

Buffer
�0 Track

Builder

Hand
Shake

stubs ! stubs !
Hough

Transform



FPGA-Based HT Implementation – Bin

each Bin represents a q/pT column in HT array

Hough Transform

gets f0 at left boundary

calculates f0 at right boundary

f0 Buffer

duplicates stubs if it belongs to two cells

Track Builder

sorts stubs in f0 cells

marks f0 cells with stubs from at least 4 or 5
layers within one h subsector for read-out

Hand Shake

controls the read-out of track candidates

Thomas Schuh – TMTT – Track Finding 17/24

�

0

q/pT

stub

track candidates ! track candidates !

enable

Buffer
�0 Track

Builder

Hand
Shake

stubs ! stubs !
Hough

Transform



FPGA-Based HT Implementation – Bin

each Bin represents a q/pT column in HT array

Hough Transform

gets f0 at left boundary

calculates f0 at right boundary

f0 Buffer

duplicates stubs if it belongs to two cells

Track Builder

sorts stubs in f0 cells

marks f0 cells with stubs from at least 4 or 5
layers within one h subsector for read-out

Hand Shake

controls the read-out of track candidates

Thomas Schuh – TMTT – Track Finding 18/24

�

0

q/pT

stub

track candidates ! track candidates !

enable

Buffer
�0 Track

Builder

Hand
Shake

stubs ! stubs !
Hough

Transform



FPGA-Based HT Implementation – Bin

each Bin represents a q/pT column in HT array

Hough Transform

gets f0 at left boundary

calculates f0 at right boundary

f0 Buffer

duplicates stubs if it belongs to two cells

Track Builder

sorts stubs in f0 cells

marks f0 cells with stubs from at least 4 or 5
layers within one h subsector for read-out

Hand Shake

controls the read-out of track candidates

Thomas Schuh – TMTT – Track Finding 19/24

�

0

q/pT

stub

stubs !

track candidates !

stubs !

track candidates !

enable

Buffer
�0

Hough
Transform

Track
Builder

Hand
Shake



FPGA-Based HT Implementation – Truncation
Input Truncation

one HT array processes one new stub per clock cycle (240 MHz)
that implies a lot of arrays working in parallel
per octant: 2 f ⇥ 18 h = 36 independent arrays
2 MP7s needed, since 18 arrays fit into one MP7
each array has 900 ns processing time (36 BX), that corresponds to 216 stubs
lost stubs due to input truncation in t t̄@200PU measured to be at per mille level

Thomas Schuh – TMTT – Track Finding 20/24



FPGA-Based HT Implementation – Truncation
Output Truncation

on average the HT reduces the number of stubs by one order of magnitude
problematic are only local fluctuations, mainly caused by jets
therefore we balance the output load
output bandwidth can easily be increased by splitting the chain of bins

1 stub / clk 2 stubs / clk
Book Keeper

· · ·

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT· · ·

we split the bins in 6 chains
and interleave the chains of 3 different not neighbouring not opposite h sectors
efficiency loss due to truncation in t t̄@200PU measured to be at per mille level

Thomas Schuh – TMTT – Track Finding 21/24



FPGA-Based HT Implementation – Results
plots compares # tracks / q/pT bin in h/w (black dots) vs s/w (blue lines)
2000 t t̄@200PU events were used
first in to first out latency is constant at 1025 ns (dominated by the 900 ns TMP)

T
 q/p

To
ta

l N
o.

 o
f C

an
di

da
te

 T
ra

ck
s

10000

15000

20000

25000

30000

35000

40000

firmware softwareHT - ttbar PU200 2000 Events

T
 q/p

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

ra
tio

 fw
/s

w

0.8

0.9

1

1.1

1.2

Thomas Schuh – TMTT – Track Finding 22/24



FPGA-Based HT Implementation – Results
plots compares algorithmic efficiency in h/w (black dots) vs s/w (blue lines)
2000 t t̄@200PU events were used
hardware achieved 97.94 % algorithmic efficiency

η
-2 -1 0 1 2

Al
go

rit
hm

ic
 E

ffi
ci

en
cy

0.8

0.85

0.9

0.95

1

1.05

1.1

firmware software
HT - ttbar PU200 2000 Events

Thomas Schuh – TMTT – Track Finding 23/24



Summary

z

x

y

z

x

y

high track finding efficiency within 1.5 µs achieved using the Hough Transform
(GP first in to HT first out)

Capability to perform L1 track finding under high luminosity conditions has been
demonstrated with current technology.

Thomas Schuh – TMTT – Track Finding 24/24


