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Geometric Processor (GP)
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Divide and Conquer
we subdivide each tracker octant in 2f ⇥18h sectors
and perform subsequently track-finding independently in each sector in parallel
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The Geometric Processor:

assigns stubs to sectors
also divides each h sector into 2 virtual sub-sectors, and records which one(s)
each stub is in
ensure tracks found are ⇠consistent with line in r -z plane

formats the stub data in a way that is convenient for the subsequent track-finding
routes all stubs in a given sector to dedicated output links
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FPGA-Based GP Implementation – Routing Block
the GP routes stubs from 72 inputs (one per DTC) to 36 outputs (one per sector)
Routing happens in three steps:
rough h sorting ! fine h sorting ! f sorting
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(Each arrow corresponds to a connection which transports 1 stub / clk)
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• Uses 12% BRAMs (Virtex 7 690)
running at 240 MHz

• Each arbitrator block is highly
configurable – alternative sector
definitions can easely be adapted

• Experimental 480 MHz version
to improve latency is being tested
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FPGA-Based GP Implementation – Results

plot compares # tracks / h region in h/w (black dots) vs s/w (red lines)

200 t t̄@200PU events were used

first in to first out latency is constant at 310 ns
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Hough Transform (HT)
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Hough Transform – Theory
search for primary tracks in the r -f plane
infinite number of circles

�
f0,

q
pT

�
consistent with beam-line & any individual stub

position (r , f )

stub

x

y

f0

R ⇠ pT

they must obey constraint:

f0 ⇡ f +
q
pT

⇥ r

stub positions corresponds to straight lines in the track parameter plane
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Hough Transform – Algorithm
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1 for each stub calculate f0 for each q/pT

2 fill the stub into corresponding cells of an array with 32⇥64 cells in q/pT ⇥f0

ignore q/pT values inconsistent with the pT estimate of the stub
3 define cells with stubs in at least 4 or 5 tracker layers as track candidates

4 layer threshold used to cope with dead layer (cooling loop failure) or
barrel-endcap transition region (where a track can not cross more then 5 layers)
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FPGA-Based HT Implementation – Overview

array is implemented as a pipeline, it processes one stub per clock cycle (240 MHz)

first step is the filling of the array

second step is the readout of track candidates

1 stub / clk 1 stub / clk
Book Keeper

· · ·

stubs candidates

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT

Book Keeper unpacks stub data from input link, which then propagate to each q/pT
Bin in turn

track candidates found by the Bins propagate back to the Book Keeper, which
transmits them over output link
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FPGA-Based HT Implementation – Bin

each Bin represents a q/pT column in HT array

Hough Transform

gets f0 at left boundary

calculates f0 at right boundary

f0 Buffer

duplicates stubs if it belongs to two cells

Track Builder

sorts stubs in f0 cells

marks f0 cells with stubs from at least 4 or 5
layers within one h subsector for read-out

Hand Shake

controls the read-out of track candidates
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FPGA-Based HT Implementation – Truncation
Input Truncation

one HT array processes one new stub per clock cycle (240 MHz)
that implies a lot of arrays working in parallel
per octant: 2 f ⇥ 18 h = 36 independent arrays
2 MP7s needed, since 18 arrays fit into one MP7
each array has 900 ns processing time (36 BX), that corresponds to 216 stubs
lost stubs due to input truncation in t t̄@200PU measured to be at per mille level
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FPGA-Based HT Implementation – Truncation
Output Truncation

on average the HT reduces the number of stubs by one order of magnitude
problematic are only local fluctuations, mainly caused by jets
therefore we balance the output load
output bandwidth can easily be increased by splitting the chain of bins
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· · ·

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT

Bin
q/pT· · ·

we split the bins in 6 chains
and interleave the chains of 3 different not neighbouring not opposite h sectors
efficiency loss due to truncation in t t̄@200PU measured to be at per mille level
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FPGA-Based HT Implementation – Results
plots compares # tracks / q/pT bin in h/w (black dots) vs s/w (blue lines)
2000 t t̄@200PU events were used
first in to first out latency is constant at 1025 ns (dominated by the 900 ns TMP)
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FPGA-Based HT Implementation – Results
plots compares algorithmic efficiency in h/w (black dots) vs s/w (blue lines)
2000 t t̄@200PU events were used
hardware achieved 97.94 % algorithmic efficiency
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Summary
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high track finding efficiency within 1.5 µs achieved using the Hough Transform
(GP first in to HT first out)

Capability to perform L1 track finding under high luminosity conditions has been
demonstrated with current technology.
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