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The Problem

— Rare events hard to trigger by conventional methods

SPHE

sPHENIX challenge p+p@200GeV:

- Very high p+p collision rate: ~10MHz
- Charm production rate: ~100kHz
- 0.5mb/42mb ~1%
- Beauty production rate: ~ 500Hz
- 2ub/42mb ~ 0.005%

- No effective trigger to select low pT HF events
- Triggered MB rate ~1kHz << 10MHz
- Lost most of the HF events at low pT

- High pT jet trigger, pT > 10GeV MVTX
- Streaming readout -> huge data volume, DAQ/tape cost

EIC challenge: 4
- high rate e+p and e+A collisions

Our approach:

Develop effective HF (or other rare events) triggers for p+p and e+p

- Streaming readout key detectors for high efficiency

- Al-based beam/detector monitoring and autonomous feedback & control

- ML-trained algorithm for HF tagging Beam spot:
- Rare physics don’t require “slow detectors” for measurements ~100um
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The DOE FOA Call in 2021 sprelix

DEPARTMENT OF ENERGY

* Proposals called on 3/16, 2021 QFFICE OF SCIENCE
— Short deadline, 4/30/2021
— Very intense work

DATA ANALYTICS FOR AUTONOMOUS OPTIMIZATION AND
CONTROL OF ACCELERATORS AND DETECTORS

* |nitial team of NP, HEP and CS
FUNDING OPPORTUNITY ANNOUNCEMENT (FOA) NUMBER:

— LANL, MIT, FNAL and NJIT DE-FOA-0002490
« ORNL, CCNU and NTU joined later

ANNOUNCEMENT TYPE: INITIAL
CFDA NUMBER: 81.049
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Our Proposal sPHE

Intelligent experiments through real-time Al: Fast Data Processing and
Autonomous Detector Control for sSPHENIX and future EIC detectors

A proposal submitted to the DOE Office of Science
April 30, 2021

. Embed Al/ML algorithms on fast FPGA-based trigger system
— Low trigger decision latency ~10us

«  Streaming readout key inner trackers to FPGAs to identify HF events through track topology
— High efficiency in HF tagging with Al/ML
— HLS4ML package developed by HEP

*  Monitor and update beam-spot and detector alignment in real time
— Update geometry in real time

*  Send HF-trigger signal to the rest of other detectors
— Initiate readout if not already in the data stream
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DOE Awards Announced 12/2/2021

Office of Science

$1.5M for our proposal
FY22-23 Department of Energy Announces $5.7
Million for Research on Artificial
Intelligence and Machine Learning
el (Al/ML) for Nuclear Physics Accelerators
om e e advancements at #RHIC and Detectors

lonCollider.

b

Brookhaven National Laboratory

k( 26,734 followers
3w - ®

New funding fr

will support arti

on
and the #Electr DECEMBER 2, 2021

Office of Science »

1111 fsameag RARA R Department of Energy Announces $5.7 Million for Research on Artificial Intelligence and Machine Learning (Al/ML) for Nuclear
) —“—“

Physics Accelerators and Detectors

Projects will advance understanding of atomic structure and the nature of matter and antimatter

WASHINGTON, D.C. - Today, the U.S. Department of Energy (DOE) announced $5.7 million for six
projects that will implement artificial intelligence methods to accelerate scientific discovery in
nuclear physics research. The projects aim to optimize the overall performance of complex
accelerator and detector systems for nuclear physics using advanced computational methods.

nounces $5.7 Million for e . e | . |
. ach"ne", “Artificial intelligence has the potential to shorten the timeline for experimental discovery in
lligence and M

An
epartment of E_ng(gy
lF)lezearch on Artificial Inte

nuclear physics,” said Timothy Hallman, DOE Associate Director of Science for Nuclear Physics.

“Particle accelerator facilities and nuclear physics instrumentation face a variety of technical
bnl.gov * 2 min read challenges in simulations, control, data acquisition, and analysis that artificial intelligence holds

1 /6/. promise to address.” 5
¢ —



The Team .2

« LANL (NP)
— Yasser Corrales, Cameron Dean, Zhaozhong Shi, Noah Wuerfel, Kun Liu, Cesar da Silva,
Hugo Pereira da Costa, Ming Liu ... new PDs
« MIT (NP, HEP)
— Gunther Roland, Philip Harris (HLS4ML), Yen-Jie Lee, Or Hen, Cristiano Fanelli et al
«  FNAL(HEP)
— Nhan Tran(HLS4ML), Engineer, Yu-Dai Tsai (Theorist, ML) et al

*  NJIT(CS)

— Dantong Yu, students + PDs
«  ORNL(NP)

— Jo Schambach

« CCNU(EE, NP)

— Kai Chen(FELIX), Yaping Wang et al
« NTU (CS)

— Fu Song, students + PDs

In collaboration with experts from BNL - Jin Huang, Martin Purschke, John Haggerty et al
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HF Al Trigger: sPHENIX as a Test Ground SPHE

Sensor hit readout time:
MVTX: ~3us
INTT: ~0.4us (4 BC)

W

T
MVTX (Si Pixels)

_’ .

W . Online

INTT (Si Strips)  F buffer

W Trigger signal
T -

sPHENIX DAQ & Trigger integration challenge
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Timeline o,

2021 2022 2023 2024 2030+
EEEEEN #
* Project « MVTX&INTT <+ Refineinterface * Deploy * Design * Deploy
started SRO between system device at updated device at
e Initial * Fast tracking and detectors SPHENIX system for EIC EIC
simulations algorithmsin ¢ Improve * pp/pArun * Take
place algorithms with advantage of
constructed GPU feedback latest data new
* First data for machine R&D stream technology if
algorithm e Initial FPGA e Pre- required
training bitstream commissioning
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Physics and Detector Simulations Q

(Pythia + GEANT) — MVTX/INTT hit maps -> raw data (pixel hits) in JSON

1) trigger Al-ML training
2) generate raw real data like electronics bit stream for hardware simulations

Cameron, Zhaozhong, Jin,
Yasser, Noah et al
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MVTX + INTT: 3 + 2 layers S

| Silicon Strips:
Front View /’r-:\ 78um x 16mm (A)/20mm (B) INTT

Barrel Center of Sensor
Tangent Radius (mm)

1la (Inner)

1b (Outer)

2a (Inner)

2b (Outer)

3-layer sensor barrel SiIiCOn pixels:
- 48 staves, 432 chips 27um X 29um

Layer O 2461 25.23 27.93
Layer 1 3198 33.35 36.25
Layer 2 39.93 41.48 44.26
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Event Timing: Reject out of time MVTX hits with INTTsrHeglix

| Collisions: +/-35ps | TPC:#-35ps [ MVTX:#-2ps  INTT:[-20ns, 80 ns]
10/ LI B T LA N
All Truth hits ' | Truth hits with recongr{icted MVTX clusters
10° Truth hits witl ructed TPC clusters | o | Truth hits with reeonstructed INTT clusters<
10° Nn
nL
W
o || T
(RREN | R

-40000  -30000  -20000  -10000 0 10000 20000 30000 40000
Truth time of hits in tracking detectors
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Detector/Physics Simulations (SPHENIX) Hﬁ

= From "Cam'eron '
Can simulate any number of signal o =
and background events with full

digitization ~  EEE

Package developed to extract raw
hit information, used for

— algorithm training (JSON output)
— sim data to raw data bit pattern

L 3ptp collisions
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Case study: Al HF selections =mrE(ix

* Is ML better for selecting HF _ |
decays over conventional J) | s
selections? i |

» Challenge: D

— Must run online, in FPGA. Hence
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Event Data Descriptions — NJIT/LANL

Moving from images to points

+ Image-based methods face challenges scaling up to
realistic HL-LHC conditions

* High dimensionality (1k * 0.5K * 9 per MVTX stave alone)
and sparsity

* lIrregular detector geometry

» Instead of forcing the data into an image, use the space
point representation

* Harder to design models (variable-sized inputs/outputs,
MVTX + INTT)

* But now we can exploit the structure of the data with full
precision

« What ML models are appropriate for the event
— Recurrent Neural Networks and Graph Neural Networks

15
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Trigger Algorithm R&D — NJIT/LANL sPHEIX

Implemented several models to solve the trigger detection problem:

- Directly applied GNN model to trigger detection problem (GNN)

- Added a global vector to the GNN model to represent some global feature
(VPGNN)

- DiffPool model (DiffPool)

- VpGNN + DiffPool (GNND:iffPool)

- ParticleNet , Giorgian

Another model we tried: Set2Graph (Affinity Matrix Prediction)

Inputs  Weights Net input Activation
function function

ol

WORK IN PROGRESS

@ output

1/6/2022 Fast-ML for sPHENIX & EIC 16



Initial Study from NJIT: Efficiency and Purity = sere{ix

Proper mix of simulated data: 100(BG) + 1 HF(charm) events

Current performance |[Goal 1 Goal 2
Efficiency | 50% 25% 20-50% 90%
Purity 2% 9% 9% 2%
Background | 90% 95% 99% 95%
Rejection

17
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Translating Models to FPGA Firmware, FNAL/MIT SPHE@

Keras
TensorFlow
PyTorch

e Algorithms must have
low latency and
resource usage

v
.~ hls 4 ml FPaA flow

Compressed
« hls4ml translates NN model )| onwersion
algorithms into high e
|eve| SyntheSiS Machine learning model ASIC flow
optimization, compression »lf
Tune configuration
» Also generates IP \p'c?‘@%?f?éé?,[,‘izgt‘;:‘g’/
cores for easy
implementation Red — typical ML algorithm development stages

Blue — HLS conversion to FPGA IP
Black — typical implementation onto chips
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Al-Trigger SW/FW Pipeline - Status ==}

1. Fetch events from event buffer (Work in Progress, sim to raw data)

\ ¢

2. Data Pre-processing Clustering (Work in Progress on FPGA
implements) ‘

3. Tracking + Outlier hits Removal (Done in FPGA)

\ ¢

4. Triggering (Done in FPGA, need performance tuning)

\ ¢

5. Triggers on TPC (Interface and integration with sPhenix Detector, last
step)
1/6/2022 Fast-ML for sPHENIX & EIC 19




Hardware and Computing e

Hardware implementation
1. data stream processing
2. Test Al algorithms on FPGA

1/6/2022 Fast-ML for sPHENIX & EIC 20



A Toy Model — Hardware Implementation (sPHEN#X)= 3

Beam vtx(x,y)
alignment,

calibration etc.

e .
VC 709 ||»

Simulation e-Link/PCle -Link
(Online Buffer) |—— KC 705 g_} FPEEAL

(INTT) Fast HF
trigger output

Streaming readout sim data:
8b/10b MVTX/INTT data (KC705) to FPGA/AI Engine (VC709)

1/6/2022 Fast-ML for sPHENIX & EIC 21



Realizing in Firmware sPHE

 FELIX card shares same FPGA as
Xilinx VC709, ideal testing ground

 KC705 represents our
MVTX+INTT Data Aggregation
Module

» Successfully transmit data from
host PC to DMA

— Convert MVTX sim data to real-
data-like bit-stream in progress

 Next:
— Transmit MVTX/INTT sim data to
VC709(Al-Engine) through G-
Links

1/6/2022 Fast-ML for sPHENIX & EIC 22



The Electron-lon Collider

* Next generation accelerator

— To be operating at BNL from the
early 2030s

— the future of nucleon structure
probes and many other studies

* Three collaborations have
submitted detector proposals:

1. ATHENA
2. CORE
3. ECCE

1/6/2022 Fast-ML for sSPHENIX & EIC [https://www.bnl.gov/eic/] 23



https://www.bnl.gov/eic/

Simulating events (ECCE) serex

« EIC physics simulations progressed rapidly in 2021
« Large volume of data already at hand (>800M events)

* No digitization yet but we can use smeared hits to
understand potential

Cameron
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)

Project Workflow Status =P
Simulate signil/background ‘ \c/\é(rjrzlr(ngcr)mted
/ Extract hit locations ‘ Work started
Train algorithms for tracking, aP\I;zliiI;nI;reary

monitoring and selection

4

Write

Convert to bit pattern

Convert to HLS ‘ ‘

F

1/6/2022

firmware

AW

Upload to test bench

Convert to bitstream ‘

Output decision to rest of system '

Fast-ML for sPHENIX & EIC
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) N
Summary of Progress e

Success stories since proposal approved

1/6/2022

1.

Full Geant4 simulations of MVTX and INTT plus Geant4
simulation of EIC detectors

Tracking GNN algorithms are being developed at NJIT

Prototype hardware set up at LANL with host-to-client
transfers running

Second lab (FELIX) being set up at MIT
HLS4ML development at Fermilab, MIT and NJIT
FELIX FW development at ORNL and LANL

Fast-ML for sPHENIX & EIC 26



Outlook -

Next several months:
1. Convert simulation output to equivalent bit pattern through G-Link
2. Develop initial tracking and selection algorithms
3. Convert algorithms to HLS code to run on FPGA
4. Pass simulated data to FPGA as if it were real data

1. Build a full prototype and benchmark performance with simulations by 2023;
2. Install device in sSPHENIX before 2024 (RHIC pp run)

* Project will significantly improve sPHENIX HF capabilities
* Project relies on inner tracker MVTX and INTT SRO

» After successful deployment at sPHENIX, focus shifts to future EIC
detectors

1/6/2022 Fast-ML for sPHENIX & EIC 27



Backup i,
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from sPHENIX to EIC e

« sPHENIX takes data from 2023

— Can be used as a proof-of-principle (as well as a real use case)

« EIC has lower average multiplicity

— relatively easier to select

— likely to use similar tracker technology to MVTX (ITS-2 vs ITS-3)
« Large overlap of team between sPHENIX and EIC/ECCE

— knowledge preservation
— share a simulation framework

1/6/2022 Fast-ML for sPHENIX & EIC 29



Discussions at MIT, 12/14/202+&)
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Fast Inference of

Deep Neural Networks

for Real-Time

Physics Applications

his 4 ml

Giuseppe Di Guglielmo?, Javier Duarte®, Song Han®, Philip Harris¢,Burt Holzman®, Sergo Jindariani?, Edward
Kreinar?, Benjamin Kreis?, Viadimir Loncar®, Jennifer Ngadiuba®, Maurizio Pierini¢, Dylan Rankin, Ryan

Rivera®, Sioni Summers', Nhan Tran®, Zhenbin Wu¢
‘Columbia University, New York, NY 10027, USA, "

Batavia, IL 6051

U

0,
‘Camridge, MA 02139 USA, *HawkEye360, Herndon, VA 20170, USA, “CERN, CH-1211 Geneva 23 Switzerland,

Suniversity of linols at Chicago, Chicago, IL 60607, USA

LHC data rates are >100 T8/s. Data is filtered down and saved at
arate of 1 GB/s. The filtering involves 3 tiers of reconstruction.

.T::"tm —8

o

o o
First Stagectoys  Second Stagertoms T Sage: 108
Acorror ol compti Gl amputing
e Gt o

At the first stage of reconstruction
| LHC data is processed with
dedicated all-FPGA systems
interconnected by high speed fiber
links. This system requires a
reconstructed event within 10s
with an initiation interval of 25ns.
Higgs bosons (left) and other event
are often lost due to limited
rec uality in

ops.

HLS4ML Flow

To enhance algorithmic complexitiy we introduce HLS4ML
a tool to translate DNN to Vivado HLS then to an FPGA.

his 4 ml

To ensure the lowest latency and initiation interval we.
translate the specific NN into dedicated HLS code.

J

A MLP used to identify quark showers from massive particles is
trained yielding quark (a), gluon (g). W boson (W), Z boson (2),
or top quark (1) separation. This tagger used in the first stage of
triggering would greatly reduce background processes used to
search for dark matter and measure the Higgs boson.

actvaon Somatee

latency (below 1s)

To achieve the smallest initiation interval (below 25ns) and

FPGA. Also, arrays are fully parititioned and no Block RAM is

jsed. We aim to minimize FPGA resources through features:
» Fixed-point number representation and reduced precision
+ Compressing NN to reduce the size, and number of operations.
- C

S, i of Technology,
mperial College London, London, SW7 24, UK,

the whole algorithm is unrolled onto the

With the jet tagger

resource utiisation of

to cover most modern

htps://his-fpga-m:

Network architecture (left) and ROC curves (right)

numbers achieves equivalent performance to 32 bit floating-
point (left). Using L1

it impacting on performance, reduci

HLSAML project has been tested o
be used in the next running of the LHC. The project is expanding

network architectures up to several millon weights. Fullstatus s
shown below: (*denotes large NN support s being developed)

s5€ to perform multiple oper

model, inference with 16-bit

-point
Regularization, 70% of weights can b

the model

n dedicated boa

DNN architectures and support for

achine-lear
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ALPIDE Timing sPHEQLX

~10ns

Signal Analog “slow” shaping time
acts as a memory (us order)
to buffer the signal until the
trigger arrives.
Called “pulse length”

Rising 1~2us
Width ~5us
Threshold

Amplifier

Threshold

T
|
|
|

-

Amp. out

Comparator

Only pixel with signal higher

‘ than threshold DURING the
Cmp. out strobe window will get

~V latched in memory
~5us ‘

Confirmed at LANL: pulse
length can be extended to
meet sPHENIX trigger

Strobe window

Strobe window

Latch set

latency requirement

July 29-30, 2019 MVTX C&S Review: Electronics 37 31




Tracking at sSPHENIX

* Tracking consists of 3 sub-detectors:
* Pixel Vertex Detector (MVTX)
* Intermediate Silicon Tracker (INTT) . ifiﬂqviif’vuebl'f;fﬁider :
* Time Projection Chamber (TPC) * Silicon strip detector
e MVTX and INTT are both capable of
streaming readout
e Combined trackingtor=10.3 cm

3 active layers
9 ASICs/stave
27 cm active length/stave
Pixel detector

1/6/2022 Fast-ML for sPHENIX & EIC 32



sPHENIX HF constraints e

 SPHENIX has great tracking and calorimetry

 However, limited by calorimetry backend readout rate
(1 5kH Z) in triggered mOde Year | Species sNN | Cryo | Physics Rec. Lum. Samp. Lum.

. [GeV] | Weeks | Weeks |z| <10 cm |z| <10 cm
 RHIC pp rate is ~10 MHz -
2023 | Au+Au | 200 |24(28) | 9(13) 3.7 (5.7) nb~1 4.5 (6.9) nb~1
o Plan: Use traCker SRO 1:0 2024 | p'pt 200 | 24(28) | 12(16) 0.3 (0.4)pb~ ! [5kHz] | 45 (62) pb~!
recover some heavy flavor 45 (62) b [10%-str]
2024 | p'+Au | 200 - 5 0.003 pb~! [5 kHz] 0.11pb~!

physics potential

0.01 pb~! [10%-str]

2025 | Au+Au | 200 | 24(28) | 20.5 (24.5) 13 (15) nb~? 21 (25)nb~!

SPHENIX beam-use proposal. 5 kHz refers to final
rate with triggered readout, 10%-str refers to
10% streaming readout
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)Y

SPHENRIX

How are FPGAs programmed?

L C, C++, Constraints/
Hardware Description Languages algorithm Directives

HDLs are programming languages which describe electronic circuits

High Level Synthesis € XILINX. [ Vivado HLS [::l j

Compile from C/C++ to VHDL

Pre-processor directives and constraints used to optimize the design

Drastic decrease in firmware development time!

VHDL/Verilog
Today we'll use Xilinx Vivado HLS [*]

Firmware block

[] https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
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https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf

Constructing ML algorithms H@

« Aim to develop algorithms as Graph Neural Networks (GNN)

« Advantageous over Convolutional Neural Networks (CNN) by
adding edge information

« Detector and physics knowledge will improve predictions

» Algorithms deployed at several points:

1. Fast tracking on FPGA

2. Topological separation of HF signals on FPGA
3. Beam-spot and anomaly detection on GPU

Part of feedback system to improve 1 & 2 plus inform detector
operators

1/6/2022 Fast-ML for sPHENIX & EIC 35



Constructing ML algorithms HQ

 Anomaly detection is important in all experiments

* RHIC experiments cannot be accessed during beam to
fix issues

 AIm to use variational autoencoders
* Incoming data can be compared for:
1. Noisy pixels
2. Dead strips
3. Change in beam spot or alignment
» Pass info. back to selection system to improve yield
« Pass back to control room

1/6/2022 Fast-ML for sPHENIX & EIC 36



Case study: Al HF selections =€)

e Several algorithms trained using
TMVA
* Fast turnaround due to proposal
time constraints
* Algorithms used “out-of-the-
box”, no optimizations
* Trained using samples with no HF
Signal and with D® — K~m* Signal Green — The signal selection efficiency
* Selection tuned for approx. equal Red — The background rejection efficiency
signal efficiency

Efficiency [%0]
o 0
wn (=]

I
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I
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Conventional Selection ML Selection
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What we actually used in Json Data Files?smﬁ

‘RawHit’ contains two part: [u'MVTXHits', u'Description’]
‘MVTXHits’ contains all the hits information.
Each hit contains: [u'Coordinate u'lD']
‘ID’ contains: [u'Layer’, u'PixelZlndex', u'Chip’, u'Stave’,
u'PixelPhilndexInLayer’, u'HitSequencelnEvent’,

u'PixelPhilndexInHalfLayer',u'PixelHalfLayerindex’,
u'Pixel’,

u'HalfLayer']
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