

MVTX Overview (WBS 3.2)

Ming X. Liu Los Alamos National Laboratory sPHENIX Collaboration Meeting @NCU 03/25-27,2019

- MVTX science & technology
- Recent reviews and R&D progress
 - LBNL MVTX/HF workshop highlights
- MVTX project status
 - Near term plan and to-do list

A Monolithic Active Pixel Sensor Detector for the sPHENIX Experiment

The sPHENIX Detectors

MVTX Enables the 3rd Science Pillar

- 1. Jets
- 2. Upsilons
- 3. Open Heavy Flavor

- Bottom quarks are heavy (4.2 GeV)
- Produced in initial collision, probe QGP evolution
- Well controlled in pQCD
- Access fundamental transport properties of QGP

Jin/Xin's talk

Complementarity of LHC and sPHENIX for QGP studies

There are two central goals of measurements planned at RHIC, as it completes its scientific mission, and at the LHC: (1) Probe the inner workings of QGP by resolving its properties at shorter and shorter length scales. The complementarity of the two facilities is essential to this goal, as is a state-of-the-art jet detector at RHIC, called sPHENIX. (2) Map the phase diagram of QCD with experiments planned at RHIC.

2015 US NP LRP

"This programme after LS2 includes precision studies of the **flow of heavy quarks and of open heavy flavor and quarkonia** production, the detailed analysis of fluctuations of conserved charges and of **quenched jet fragmentation via high statistics photon/Z-jet correlations,** and access to signals of electromagnetic radiation from the dense medium. This will enable to fully establish the long-wavelength matter properties of the plasma produced at the LHC, and to get <u>access to the partonic dynamics that underlies</u> **the observed surprisingly strong collective phenomena.** "

"As the temperature dependence of transport properties can be accessed experimentally by varying the center of mass energy over a logarithmically wide range, the <u>combined analysis of LHC data</u> and future high precision data from RHIC offers a qualitatively novel handle on the temperature dependence of properties of hot and dense matter. The Town Meeting observes that the recently approved sPHENIX proposal targets these opportunities by bringing greatly extended capabilities to RHIC...

WG5 for 2019 ECFA document

MVTX Physics Highlights

"B meson and b-jet flow"

R_{cP} (0-10%/60-80%

0.8

0.6

0.4

0.2

Advantages of ALICE PIxel DEtector (ALPIDE) sensor:

SPHENIX

- Very fine pitch (27µm x 29µm), for superb spatial resolution
- High efficiency (>99%) and low noise ($<10^{-6}$), for excellent tracking
- Time resolution, as low as $\sim 5 \mu s$, for less pileup
- Ultra-thin/low mass, $50\mu m$ (~0.3% X₀), for less multiple scatterings
- 0.5M channels with on-pixel digitization, for zero-suppression and fast readout

Monolithic Active Pixel Sensors (MAPS)

The Next-Generation, State-of-the-Art Pixel Tracker

Low power dissipation, 40mW/cm², for minimal service materials

Flexible Printed Circuit(FPC) 9 Chips Cold plate

An ideal detector for QGP physics!

ALPIDE sensor:

1.5cm x 3.0cm, 0.5M pixels

MVTX Detector – Modified from ALICE/ITS Design

Scope of the MVTX Project

- MAPS Staves & Electronics
 - Readout Integration R&D (LANL LDRD)
 - Frontend: ALICE/ITS, RU
 - Backend: ATLAS FELIX
 - Reprogram RU & FELIX into RCDAQ/sPHENIX
 - Production @CERN: \$1.36M
 - 84 ALICE/ITS-IB staves from CERN
 - Acceptance test @LBNL, 48+spares(2-inner layers+)
 - 60 ALICE/ITS-RU from CERN
 - Acceptance test @UT-Austin, 48+spares(12)
 - Production & Assembly @US: ~\$5M
 - Production QA & assembly
 - Half detector assembly & test @LBNL
 - FELIX test & integration @LANL/BNL, 6+spares(2)
 - Ancillary systems
 - "adopt" ALICE ITS system
 - Power, slow control & monitoring etc.

- Mechanics & Cooling
 - Modify ALICE/ITS inner tracker mechanical structures
 - End Wheels
 - Cylindrical structure shells
 - Detector half barrels
 - Detector and Service half barrels
 - Mechanical system integration,
 - Conceptual design (LANL LDRD)
 - Design & simulations, MIT/LANL
 - Composite structure production, LBNL
 - Non-composite structure, MIT
 - Installation tooling etc., BNL/LANL/MIT/LBNL
 - Adopt ALICE cooling plant design
 - Modifications to fit sPHENIX, MIT/BNL

Final test @BNL, Installation & commissioning (BNL + MVTX group)

MVTX Readout, Power and Controls

MVTX Detector Electronics consists of three parts

Sensor-Stave (9 ALPIDE chips) | Front End-Readout Unit | Back End-FELIX/DAM

MVTX Full Readout Chain Demonstrated (3/2018)

Highlights from Recent Reviews and R&D

- July 2018 Stave and RU Production Readiness Review
- November 2018 mechanical system integration review
- April 2019 Review : "CD-1 equivalent"

<u>The Tracking System Upgrades</u> consist of a silicon strip detector provided as an in-kind contribution by RIKEN, and a vertex detector using state-of-the-art Monolithic Active Pixel Sensors. The tracking systems are ready for a "CD-1 equivalent" review.

Stave and RU Procurement Readiness BNL Director's Review, 7/19-20, 2018

https://indico.bnl.gov/event/4729/

- To produce RU and staves as part of ALICE production
 - Reduce technical risks
 - Cost saving
- To meet sPHENIX installation & run schedule.

DAY-1 PHYSICS

Recommendations:

- 1) RU, proceed with production
- 2) Resolve MVTX/INTT space conflict
 - 1) modify stave design, longer power cables
 - 2) build a 3-D model
 - 3) Simulation TF to optimize INTT layers
- 3) Stave radiation hardness

60cm-PW

Confirmed HIC with Extended 40(60)cm Power FPC

m PWR FPC

- Built and tested two HICs at CERN in the week of 9/17/2018
 - No change in sensor performance (noise, threshold) observed, as expected;

Ocm PWR FPC

Followed identical ALICE IB QA test procedure, with a 8m SamTec cable!

MVTX + 4-layer INTT 3-D Mockup Demonstrated

Office of System Integration – led by Mickey & Bob, a team of engineers and physicists

MVTX and INTT Space conflict resolved!

Sensor Irradiation Test – OK at 2.7MRad

Irradiated chip#41 (2.7Mrad) : efficiency & fake hit rate

- Continuous effort by ALICE (@NPI, Czech)
- BNL review recommendation: test sensor up to 1MRad

https://indico.cern.ch/event/758048/

Conclusion

Irradiated ALPIDE sensor (2700 krad) over a large range of threshold settings

has :

1) good efficiency up to threshold ~190 e (Ithr = 100 DAC units) at Vbb = - 3 V, Vcasn = 90, Vcasn2 = 102

2) fake hit rate remains orders of magnitude smaller than the requirement (<< 10^{-6})

red line - fake hit rate- sensitivity limit of ALPIDE black line - efficiency - the project goal (99%)

For non irradiated 2 noisy pixels were masked out. No pixel was masked out for the 2.7Mrad chip.

MVTX Overview, NCU sPHENIX Collaboration Mtg

Address July 2018 Review Recommendations

Stave and RU procurement readiness

- Completed sensor/HIC/stave evaluations at CERN
 - Built, tested and confirmed two HICs with 40cm and 60cm long power FPC
 - Sensors irradiated up to 2.7MRad, no issues (updated 9/18/2018).

Addressed all recommendations on stave/sensor R&D

https://docs.google.com/document/d/1vsm_G7ZLgqv-kBZqK0jF69T_Nx2Uwk0Zxv86jRVxybw/edit?usp=sharing

• Cost are set for staves & RUs, procurement through US-ALICE/UTK!

- Technical specs document completed for production, BNL/DOE agreed
- sPHENIX RU and stave production starts ~April 2019, practically already in progress
- MVTX/INTT mechanical integration
 - Mechanical design being updated and 3-D mockup demonstrated
 - Inner tracking task force completed evaluation, preferred INTT-layers =2
- Christof, Rachid, Itaru's talks

- Readout cables
 - BNL approved the use of SamTec blue cables
 - Electrically better & mechanically compact
 - ALICE confirmed signal performance with 8m long readout cables. For MVTX, 10m very likely works (30AWG/sPHENIX vs 32AWG/ALICE), to be confirmed by on-going R&D at LANL
 - Samples ordered for system integration mockup and test

MVTX Design Interim Review 11/19/2019, led by John Haggerty

https://indico.bnl.gov/event/5351/

Detector assembly & installation in sPHENIX
 No evident showstoppers

Interim design review report, draft

Recommendations

- 1. The outline of the step-by-step assembly procedure for the MVTX showing installation of the barrel staves, power cables, and signal cables, should be written down and summarized in one or two slides. This does not have to be the final, more comprehensive assembly procedure, but should show the installation of major components and at what point tests are conducted.
- 2. The cables to the racks probably need to be longer than 8m, and this should be assessed conservatively.
- 3. A memo approving the halogenated cables should be on file from the fire protection group.
- 4. A proposal for extending the beam pipe to move the flanges further from the IP should be discussed with CAD and sPHENIX, as well as beginning a discussion of the beam pipe support. ROSS' talk

MVTX Interim Design Review

■ Monday Nov 19, 2018, 1:00 PM → 4:00 PM US/Eastern

? 2-219 (BNL 510)

Description	For those at BNL we will meet in 2-219 To join the Meeting: https://bluejeans.com/822435626 To join via Browser: https://bluejeans.com/822435626/browser To join with Lync: https://bluejeans.com/822435626/jabbe To join via Cisco Jabber Video: https://bluejeans.com/822435626/jabbe To join via Room System: Video Conferencing System: bjn.vc -or-199.48 To join via phone : 1) Dial: +1.408.740.7256 +1.888.240.2560 +1.408.317.9253 (see all numbers - http://bluejeans.com/numbers) 2) Enter Conference ID : 822435626
1:00 PM → 1:20 PM	Scope and Overview
	Speaker: Ming Liu (Los Alamos)
	MVTX-Overview-Inte & Scope and Overview
I:20 PM → 1:40 PM	Electronic Components
	Speaker: Sho Uemura (Los Alamos National Laboratory)
	electronics.pdf
1:40 PM → 2:20 PM	Mechanical Components and Installation
	Speaker: Walter Sondheim (Los Alamos National Laboratory)
	Walter-MVTX-interi

"Conduct a technical review with subject matter experts for the installation of the MVTX into sPHENIX (conduct before November 14, 2018). The details of the installation need to be understood and agreed upon before issuing the procurement for the power cables."

Detector Assembly & QA Plan at LBNL

Precision positioning and installation of staves on end-wheels

- Follow ALICE IB assembly procedures to build half-detectors for MVTX
- QA records in DB, travelers
- Modified jigs for MVTX
- Build two full half-barrel detector with the service structures

Install SamTec & power cables during half-barrel assembly with the service barrel at LBNL (under discussion)

IB Prototypes: Layer 2 Prototype

MVTX Global Mechanical System Integration

Ross' talk

- MVTX service barrel preliminary design, with two parts:
 - Part-1: from MVTX to PP-1b, all power PCB, 40cm
 - Part-2: length TBD later, from PP-1b to PP-2

MVTX Services - Work in Progress

- Service racks located close to MVTX detector
 - Electronics, power etc
 - "Minimal cable length", 8m tested at CERN;
 - L~7.9m
 - R&D on 10m cables at LANL
- 48 RU and 24 PU

SPHENIX

- 1PU ->2RU
- 6-U VME crates
- CAEN bulk power supply
 - located nearby
- Cooling plant
 - Location TBD

MVTX Readout and Power Cable Rout

ALICE ITS/IB final readout cables: ~8m

sPHENIX MVTX: 7.9+m Cable-A: 1.4 m Cable-B: 6.5+ m Power cable:4.7+ m On-going R&D for ~10m

^{■■■■●●}Major Topics for LBNL HF/MVTX Workshop 2/28-3/2, 2019

- New HF physics program development
- Total project Cost, \$5M cap
- Cost of the mechanical system

Heavy Flavor / sPHENIX-MVTX Workshop

Feb. 28 - Mar. 2, 2019

Lawrence Berkeley National Laboratory, Berkeley, CA, USA

This is a three-day workshop on heavy flavor physics and sPHENIX-MVTX project.

Day-1 (Feb. 28): Heavy flavor mini-workshop to review recent experimental and theoretical progress in heavy ion collisions

Day-2 (Mar. 1) and Day-3 (Mar. 2) morning: Two parallel sessions

- HF/sPHENIX-MVTX workfest: focusing on MVTX HF physics and tracking/simulation studies. Would extremely welcome our theory friends to participant and offer your valuable comments.
- MVTX engineering workfest: focusing on MVTX (+INTT) mechanical integration and cost/schedule

Day-3 (Mar. 2) afternoon: MVTX project and HF topical working group joint meeting on physics simulation, project status etc.

Mechanical System Discussions @LBNL

Discussed major carbon structures' design & production cost line by line, also production schedule @LBNL

Carbon Structures – Work in Progress

- Conical sectors are expensive!
- A new design under development to avoid the conical structures

Ross' talk

27

	Mon 3/	/11/19)							MVTX-	Barrel-0311	19-final-di	raft										
		Tac	WBS	Task Namo	Duration	Start	Finish	Fixed Ca	louisted Perc	Pure Perouree	Cost	netitut Mat	TotaOveloo	st+conting									
		Mod		rask Name	Duradon	Start	1 111511	Cost Fix	ed Cost Nam	es Costs	COSL	cont	Con	screening									
SPHEN]									00515		-											
	1															20	19			2020	2021	2022	
															<u>H</u> 1	H	2	<u> </u>		H2	H1 H2	<u>H1 H2</u>	
	1	-4	1	MVTX Inner Barrel	4492 days	Fri 10/21/05	Fri 1/27/23	\$0 \$1	,206,230	\$2,492,893	\$3,699,123		0 \$4	,909,462									
	2	-4	1.6	ALICE ITS Key Tasks	878 days	Mon 11/28/16	Tue 4/28/20	\$0 \$0		\$0	\$0	0	0 \$0) –									
	3	-4	1.6.7	ALICE MAPS Production	240 days	Mon 11/28/16	Mon 11/6/17	\$0 \$0		\$0	\$0	0	0 0 \$0)									
	4	-4	1.6.8	ALICE ITS IB FPC Production	200 days	Thu 6/1/17	Thu 3/22/18	\$0 \$0		\$0	\$0	0	0 0 \$0)									
	5	4	1.6.9	ALICE ITS IB Stave frame Production	240 days	Fri 7/28/17	Thu 7/12/18	\$0 \$0		\$0	\$0	0	0 0 \$0)									
	6	-	1.6.10	ALICE ITS IB Stave Assembly	300 days	Mon 9/25/17	Thu 11/29/18	so so		\$0	S 0	0	0 0 \$0)	_								
	7		1.6.13	MVTX stave production at CERN	260 days	Wed 5/1/19	Tue 4/28/20	\$0 \$0		\$0	\$0	CERN	0 \$0)	-	-							
	8		1 6 13 10	Stave production batch #1	13 wks	Wed 5/1/19	Tue 7/30/19	so so		\$0	50	0	0 0 50		uction batch	#1	-		•				
	9		1.6.13.11	Stave production batch #2	13 wks	Wed 7/31/19	Tue 10/29/19	so so		\$0	\$0	0	0 0 50) /	e production	n batch #	2 👗	-					
	10		1.6.13.12	Stave production batch #3	13 wks	Wed 10/30/19	Tue 1/28/20	\$0 \$0		\$0	\$0	0	0 0 50)	Stave pro	oduction	batch #	3					
	11		1.6.13.13	Stave production batch #4	13 wks	Wed 1/29/20	Tue 4/28/20	SO SO		\$0	\$0	0	0 0 50)	s	tave proc	luction	batch #4					
	12		1.6.11	ALICE ITS Electronics Pre-Production	100 days	Mon 1/1/18	Fri 5/18/18	\$0 \$0		\$0	S 0	0	0 0 50										
	13		1.6.12	ALICE ITS Electronics Production	240 days	Mon 5/21/18	Fri 4/19/19	\$0 \$0		\$0	SO	0	0 0			_							
	14		17	sPHENIX Milestones	1332 days	Mon 5/8/17	Fri 7/1/22	\$0 \$0		\$0	\$0		0 \$0										
	21		1.5	MVTX Project	4492 days	Eri 10/21/05	Eri 1/27/23	to ti	206 230	\$2 492 893	\$3 699 123		0 4	909 462								•	
	22	-+	154	MVTY Project Management	904 days	Mon 10/1/19	Thu 2/47/23	¢0 ¢5	0.000	\$492.050	¢E (2) (30)		0 40	AC 201									MAP
	22		1511	Milestene Stat M//TV	0 days	Map 4/1/10	Map 4/1/10	40 04 0 0	0,000	\$455,050	4.4.9.100					A 4/1							
	23		1.0.1.1	Interstone Start WVTA	774 days	Mon 4/1/19	Thu 2/17/22	90 90 60 60		30		2	2 0 90		Coordinator	-							
	24	-	1.5.1.2	Project Manager	774 days	Mon 4/1/10	Thu 3/17/22	00 00 02 02	MGE	90 2 Inc\$204.479	\$204.479	.2	2 0 90	72 274	coordinator	+						MGR Inst	litutio
	20	+	1.0.1.0	Machanical Interaction Engineering	774 days	Mon 4/1/19	Thu 3/17/22	90 90 60 60	RBO	C_IIIS\$384,470	\$384,470	.2	2 0 94	10,000	- Environ	+						PROFA in	-
	20	-+	1515	Electronics Integration	774 days	Mon 4/1/19	Thu 3/17/22	0 00 00 00	FRO	r4_1980,072	390,072 \$0	.2	2 0 9	10,200	on Engineer	+						FROF4_IN	sutu
	21	*	1.0.1.0	Engineer(sPHENIX)	14 days	WON 4/1/18	1110 3/17/22	90 90		30	30	.2	.2 0 90	′ Ē		•							
	28	*	1.5.1.6	Travel	242 days	Mon 10/1/18	Tue 1/21/20	\$50.000 \$5	0.000	\$0	\$50,000	0	0 0 \$5	0.000									
	29	-	1.0.2	Electronics	3824.33 days	Fri 10/21/05	Wed 7/8/20	\$0 \$2	98.544	\$102,336	\$400,880		0 \$4	92.285									
	30		1.5.2.1	Stave Extension Cable	182 days	Wed 8/1/18	Thu 4/11/19	\$0 \$0	,	\$0	\$0		0 \$0)		_							
	31		15211	design	4 mons	Wed 8/1/18	Tue 11/20/18	so so		50	50	35	35 0 \$0			T							
	32	-	1.5.2.1.2	prototype	2 mons	Wed 11/21/18	Tue 1/15/19	so so		\$0	\$0	.35	35 0 \$0)	e 2								
	33		15213	review	2 days	Wed 1/16/19	Thu 1/17/19	so so		50	50	35	35 0 \$0		eview								
	34	-	15214	procure	2 mons	Eri 1/18/19	Thu 3/14/19	so so		50	50	30	30 0 0650										
	35	-	15215	test	20 days	Fri 3/15/19	Thu 4/11/19	so so	SCI3	3 Ins \$0	50	35	35 0 0950	<u> </u>	test	SCI3	Institu	tion LAN					
	26	-	4522	PII	2622 days	Eri 10/21/05	Eri 9/27/49	to to	C 005	\$21 694	\$97 699		0 41	16 167			_						
	30	-	15222	Cold Plate	3022 uays	Mon 4/1/10	Eri 4/28/10	\$12 104 \$1	2 104 Elect	Teci \$5.472	\$17,578	35	35 0 00\$2	2 728	Cold Plate	Ele	ctTech	Institutio	UTAusti	n[38%]			
	38		15228	Transition board for PU	2 w/s	Mon 4/29/19	Eri 5/10/19	\$9,716 \$9	716 Elect	Tecl\$720	\$0,436	2	2 0 \$1	1 323	n board for F		ectTech	Instituti	UTAus	tin[10%]			
	30	*	15220	Power Mezzanine for RU	2 wks	Mon 5/13/10	Eri 5/24/10	\$4,895 \$4	.710 Elect	Tecl\$720	\$5,405	2	2 0 9	496	ezzanine for		lectTec	h Institut		stin[10%]			
	40		15222	Test/OA PU	1.25 mons	Mon 5/27/10	Eri 6/29/10	\$7,500 \$7	500 5013	loc \$12,500	\$21,000	-2	25 0 00\$2	9 250	Tect/O					%1 ElectTech l	netitution UTAustin[75%]		
	41	*	15225	Progure 60 SamTec Cables	60 days	Mon 7/1/10	Eri 9/20/10	\$30,000 \$3	0.000 TEC	H4 18022	\$30,022	ANI 35	35 0.0094	1 745	60 SamTec	Cables		TECHA	netitution	I ANI [1%]			
	42	-	15227	Shin to UT Austin from CERN	1 wk	Mon 9/23/19	Fri 9/27/19	\$2,000 \$2	000	50	\$2,000	35	35 0.00\$2	700	in to LIT Aus	tin from (FRN						
	43		152210	Ship to BNI	5 days	Fri 10/21/05	Thu 10/27/05	\$1,000 \$1	000 Elect	tTecl\$360	\$1,360	35	35 0 \$1	836				1	1 11				
	44	-	4 5 2 2	EELIX	70.22 days	Wed 4/4/20	Wed 7/9/20	¢1,000 ¢1	C 400	\$20.275	¢1,000		0 44	46 240									
	44		15221	Produce, first production unit	TU.SS Uays	Wed 4/1/20	Tuo 4/20/20	30 37 02 000 02	000 TEC	\$20,275	\$36,673	2	2 0 1291	2 202		Produce	firsto	Induction	it it	TECHA Instituti	on LANI [10%]		
	48		15222	Produce first production unit	- + wks	Wed 4/1/20	Tue 4/20/20	\$5,000 \$5	000 TEC	H4_193,152	\$285	.2	2 0.0054	120		louuce	Procure	Ontical	iber	FCHA Institutio			
	47	-	15222	Toct/OA	2 wks	Wed 4/15/20	Tue 4/29/20	900 90 90 90	5 FEC	loc \$0	0000	-2	2 0.0090	1				Т	100	Cl2 Institution			
	49	-	15234	Procure 7 Remaining Units	2 wks	Wed 4/10/20	Tue 6/23/20	\$56,000, \$5	8 000 TEC	LA 151 261	\$57 281	ANI 2	2 0.0690	9 712		Prov			Unite 1	TECHA Inc	titution ANI [2%]		
	40	-	15235	Procure 57 ontical fibers	2 w/ks	Wed 4/20/20	Tue 5/12/20	\$2,850 \$2	850 TEC	H4 1\$315	\$3,165	2	2 0.1283	708			TOCUTO	57 ontical	fibers	TECHA Institu			
	50	-	15238	test/OA	5 32 days	Wed 4/28/20	Wed 7/1/20	\$2,600 \$2 \$7,500 \$7	500 501	line \$15 222	\$22,732	.2	2 0.00\$2	7 279			TOQUIE	or optical	toctio	A SCI3 Institu	tution I ANI TECHA Institution	ANI Electrical En	ainee
		-	1.0.2.0.0	lesbar	0.00 days	Wed 0/24/20	Wed // 1/20	\$7,500 \$7	Engi	neer	422,152	.2	.2 0.0642	1,210					lesug				anice
	51	-4	1.5.2.3.7	ship to BNL	1 wk	Wed 7/1/20	Wed 7/8/20	\$2,000 \$2	.000	\$0	\$2,000	.35	.35 0.12\$2	2,700					Ship to B	IL 💰			
	52		1.5.2.4	MAPS Power System	2692.77 davs	Fri 10/21/05	Mon 1/6/20	\$0 \$1	56,139	\$60,367	\$216,506	LBNL	0 \$2	59,807		_		╇┥╾┶					
	53		1.5.2.4.1	Power Boards	3567 days	Fri 10/21/05	Fri 7/12/19	\$0 \$7	9.020	\$49,672	\$128,692	LBNL	0 \$1	54,431		_	.						
	54		1.5.2.47	Fabricate Break Out Boards	20 days	Mon 4/1/19	Fri 4/26/19	\$6,600 \$6	.600	\$0	\$6,600	.2	.2 0.06\$7	.920	Out Boards	.	·						
	55		1.5.2 4.1.8	Fabricate PB to Stave Cables	0 hrs	Mon 4/29/19	Wed 5/8/19	\$8,000 \$8	.000 ELTE	ECH-\$7.080	\$15,080	.2	.2 0.09\$1	8.096	Stave Cabl	es 🝎 EL	тесн4	Institutio	n LBNL				
	56		1.5.2 4.1.10	Fabricate cold (cooling) plates	2 wks	Mon 4/29/19	Fri 5/10/19	\$3,420 \$3	420 MEC	HTE\$2,112	\$5,532	.2	.2 0 \$6	3.638	cooling) plat	es 🗴 Mi	СНТЕС	H4 Instit	ution LB	L[20%]			
	57		1.5 2.4.1.9	Fabricate Production PB	40 days	Mon 4/29/19	Fri 6/21/19	\$60,000 \$6	0.000 ELEI	NG3 \$8.620	\$68,620	.2	.2 0.09\$8	2.345	Production I	в	ELEN	3 Institu	tion LBN	[13%].POSTD	Institution LBNL[25%].STAFFPH	YS Institution LBN	IL[25
	58		5 4 1 11	Assemble power boards	30 hrs	Mon 6/24/19	Thu 6/27/19	so so	ELT	ECH-\$3.540	\$3,540	2	2 0 \$4	248	mble power	boards i	ELTE	H4 Insti	ution LB	NL			
	59		5.14.1.12	Test PB	90 prs	Thu 6/27/19	Fri 7/12/19	\$0 \$0	ELT	ECH-\$10.620	\$10.620	2	2 0 81	2.744	Т	est PB	ELTI	CH4 Inst	itution L	BNL			
	60		5.24113	Power cable harness	15 days	Mon 4/29/19	Fri 5/17/19	\$0 \$0	FLT	ECH-\$14 160	\$14 160	2	2 0 81	6.992	cable harne	ss 💑 F	LTECH	Instituti		-			
	61		5.2.41.14	Ship to BNL	30 hrs	Fri 10/21/05	Wed 10/26/05	\$1,000 \$1	.000 ELTE	ECH-\$3,540	\$4.540	2	2 0 55	5.448					_				
	62		1.5.242	Power Supplies	3692.7/ days	Fri 10/21/05	Mon 1/6/20	\$0 \$7	7,119	\$10.695	\$87.814		0 \$1	05,377		_		╫┽━━┶					
	63		1.5.2.4.2	CAEN A3484 48V PS	200.77 days	Mon 4/1/19	Mon 1/6/20	\$8,607 \$8	.607 POS	TD SO	\$8,607	.2	.2 0.0951	0.328	3484 48V PS	*		₩┥ Б	POSTD	stitution LBNI	[13%]		
	64	-	1.5.2.4.2.2	CAEN SY4527 Main Frame	30 days	Fri 10/21/05	Thu 12/1/05	\$11,620 \$1	1,620	\$0	\$11,620	.2	.2 0.09\$1	3,944				ľ	· · · ·				
																		11 I					

Latest Budget Update

- The cost is \$3,699K, and if we add BNL's global contingency of 30%, the project total cost would be \$3.7M x 1.3 = \$4.81M
- If we go with the detailed contingencies discussed at LBNL (some less but some are higher than 30%), the total project cost is \$4.91M
- Moved the Electrical Integration Project management (~\$100K) and Commissioning effort (~\$155K) from MVTX to sPHENIX

Double checking all the numbers and update the budget in the P6 SOON

MVTX Production Schedule Update

- Stave production @CERN
 - May 2019- May 2020, 84 staves
 - 4-stave/week
- Stave acceptance test @LBNL
 - MOSAIC system, 9/2019 5/2020
- Final mechanical design work
 - May 2019 \$\$ available soon(?)
 - CYSS, End wheels
 - Service barrel and interface
- MVTX detector assembly at LBNL
 - LBNL ALICE ML stave production ends ~12/2019, a total of 60 ML staves
 - Start MVTX detector assembly ~ late summer of 2019 (or after the completion of ALICE ML?)
- MVTX full half-barrel detector test @LBNL
 - Starts ~mid of 2021
 - Using full readout system if ready: 24RU + 12PU + 3FELIX/2 servers

MVTX Schedules and Milestones, in progress (3/2019)

Upcoming BNL Director's Review "Breakout Session 4" – Silicon Upgrade

• April 9-11 Reviews@BNL

The review panel is requested to answer the following questions for the sPHENIX Tracking System Upgrades:

- <u>Conceptual Design</u>: Is the conceptual design sound and likely to meet the project's technical
 performance requirements most efficiently and effectively?
- Project Scope: Are the project's scope and specifications sufficiently defined to support the preliminary cost and schedule estimates? Are the interfaces with the sPHENIX MIE project and the Infrastructure and Facility Upgrade Project properly understood and documented?
- 3. <u>Risks</u>: Are the project risks properly identified and appropriate mitigation strategies in place?
- 4. <u>Cost and Schedule:</u> Are the cost and schedule estimates credible and realistic for this stage of the project? Do they include adequate scope, cost, and schedule contingency?
- Management: Is the project being properly managed at this stage? Is the documentation
 appropriate at this stage of the project?
- ES&H: Is ES&H being properly addressed given the project's current stage of development?

We will present the latest updates at the review - ready for the final design and full production

Wednesday, April 10, 2019 – Breakout Session 4 – Silicon							
Detectors *	-						
8:30 am	MVTX Overview/Management(20+10)						
9:00 am	MVTX Sensors/Staves/Det Assembly(20+10)						
9:30 am	MVTX Electronics(20+10)						
10:00 am	MVTX Mechanics. Integration &						
Infrastructure	e(20+10)						
10:30 am	Break(15)						
10:45 am	MVTX Cost and Schedule(20+10)						
11:15 am	INTT Overview/Management(20+10)						
11:45 am	INTT Sensors/Staves/Det Assembly(20+10						
12:15 am	Lunch(60)						
1:15 pm	INTT Electronics(20+10)						
1:45 pm	INTT Mechanics, Integration &						
Infrastructure	e(20+10)						
2:15 pm	INTT Cost and Schedule(20+10)						
2:45 pm	Committee Executive Session						

Detector R&D in Progress

- MVTX prototype telescope beam test at Fermilab
 - Staves with "final" electronics and cables
 - Test beam planned for May, with sPHENIX INTT
- SamTec cables
 - AWG30(MVTX) vs AWG32(ITS), ~10m cables
- ALPIDE sensor characterization and optimization
 - Readout and trigger optimization for sPHENIX
 - Laser system setup in preparation

2019 Test Beam: 4-stave Telescope

- Scheduled for May 22-28, @Fermilab
- Additions compared to the 2018 test beam:
 - Staves (from single chips)
 - Full-length MVTX signal cables (from 5 m off-the-shelf cables)
 - FELIX v2.0 (from v1.5)
 - Cooling system
 - Power board
 - sPHENIX GTM

Readout Electronics

From Sho

FELIX v1.5

- RU v2.1, Power Board in production by ALICE
- FELIX v2.0 in production by **ATLAS**

Prototype PB RU v1.0

same functionality production-qualified

MVTX firmware and software in sync with current ALICE and ATLAS work, with MVTX-specific logic developed under this LDRD

Key readout boards qualified and in production

Production PB RU v2.1 @LANL ~May

in discussion with LBNL

FELIX v2.0 in hand @LANL

sPHENIX DAQ integration

- sPHENIX detectors implement "plugins" to tie in to the central DAQ; the MVTX plugin was demonstrated at the 2018 test beam
- sPHENIX clock and trigger is distributed by Granule Timing Module (GTM): one BNL prototype at LANL
 - We have implemented the "receiver" in FELIX that allows MVTX to receive a trigger from sPHENIX;
- MVTX is participating in discussions for the sPHENIX DAQ design

HW trigger FEM Emulator

MVTX is fully integrated with sPHENIX

From Sho

Readout Cable Testing

- BNL has approved non-halogen-free cables (30 AWG, FEP dielectric); improved signal integrity
- sPHENIX cable run estimates are converging: 1.4 + 6.5 m
- Ordered SamTec cables for 1.2/2.65 + 5.3/8.8 m (total length 6.5 11.45 m)
- We will qualify these cables using stave and RU (bit error rates, statistical eye), and scope/network analyzer

We will test full-length MVTX cables in the next months

Summary of Near Term Tasks & Schedule

- RU production through ALICE: 60 RUs
 - Started at CERN, first batch of ALICE production ~ Dec., 2018
 - sPHENIX RUs available: ~Summer 2019
 - Acceptance test and QA at UT-Austin: starting ~summer 2019
- Stave production through ALICE: 84 staves (ALICE Gold/Silver QA)
 - sPHENIX sensor production ~April 2019
 - Stave assembly starts @CERN, ~ April 2019, ~12 months to finish
 - Acceptance test and QA at LBNL, ~late summer 2019
 - Hand-carrying staves to LBNL, ~4 trips, ~20 staves each trip
- Mechanical system integration design
 - In good progress, under OSI
- Carbon and non-composite structure design and fabrication
 - Design & review LANL/MIT/LBNL
 - Carbon structures fabrication @LBNL
 - Non-composite structure fabrication @MIT
- Half-detector assembly at LBNL: starting ~ late summer 2019
 - To setup assembly & test lab as soon as fund available
- Safety, slow-control and monitoring in progress Mike's talk
- MVTX detector commissioning at BNL: ~summer 2021
 - Setup lab, pre-installation commissioning
 - IR installation
- (Physics & detector simulations, tracking improvement etc., work in progress) Jin's talk

QA)
Great opportunity for university
groups to join the effort & contribute
QA & Test
Detector assembly
Control & monitoring
Simulations and analysis

SPHEN

Summary: MVTX - WBS 3.2

- MS Project being updated, now in the sPHENIX P6
 - Latest Cost & Schedule under review, under \$5M cap
- Stave and RU production through US-ALICE
 - Early procurements of staves and readout units (RU) through US-Alice
 - DOE and BNL agreed, DOE directly pays UTK/US-ALICE
 - Received signed letter from CERN on the cost of 60 RUs and 84 Stave, ~\$1.36M
 - Purchase paperwork in progress at UTK, aiming to complete by ~ April 2019
- MVTX detector design & construction
 - About \$5M to be added to the sPHENIX Management Portfolio
 - As a separated project from the MIE
 - Mechanical system design and fabrication
 - Update baseline cost and schedule soon
 - Monthly report to sPHENIX and BNL upper management
 - Will NOT be part of CD-2/3 DOE review
 - Engineering design work in progress, MIT/LANL et al
 - Construction and assembly work in late summer 2019
 - Open MVTX accounts in progress, for full production

sPHENIX Status and Plan

Thank You!

SPHENIX MVTX Group: Institution Roles

• Major institutions lead key tasks

Los Alamos National Laboratory (LANL) : Overall readout electronics and mechanical system integra- tion, project management.
Brookhaven National Laboratory (BNL) : Global system integration and services, safety and monitor- ing, project management.
Lawrence Berkley National Laboratory (LBNL) : Carbon structure production, LV and HV power system, full detector assembly and test, project management.
Massachusetts Institute of Technology (MIT/Bates) : Global mechanical system integration and cooling.
Massachusetts Institute of Technology (MIT) : Stave assembly and test at CERN.
University of California at Los Angeles (UCLA) : Simulation and readout testing.
University of California at Riverside (UCR) : Detector assembly and test, simulations.
Central China Normal University (CCNU/China): MAPS chip and stave test at CERN and/or CCNU.
 Charles University (CU/Czech) : MAPS stave production and QA.
University of Colorado (UCol) : <i>b</i> -jet simulations and future hardware.
Czech Technical University (CTU/Czech) : MAPS stave production and QA at CERN.
Florida State University (FSU) : Offline software and simulations.
Georgia State University (GSU) : Online software and trigger development.
Iowa State University (ISU) : Detector assembly and test, simulations.
National Central University (NCU/Taiwan)* : Stave assembly and test, simulations.
University of New Mexico (UNM) : Cabling & connectors.
New Mexico State University (NMSU) : Tracking algorithm and physics simulations.
Purdue University (PU): Detector assembly and test, simulations.
Univ. of Science and Technology of China (USTC/China) : MAPS chip and stave test, simulations.
Sun Yat-Sen University (SYSU/China) : MVTX detector and physics simulations.
University of Texas at Austin (UTA) : MVTX readout electronics integration, Readout Units production and test.
Yonsei University (YSU/Korea) : MAPS chip production QA, readout electronics test and simulations

MVTX Overview, NCU sPHENIX conaporation witg

Open Charm & Beauty Production

Hadron	Abundance	c τ (μm)
D ⁰	61%	123
D+	24%	312
D _s	8%	150
$\Lambda_{\sf c}$	6%	60
B ⁺	40%	491
B ⁰	40%	455
B _s	10%	453
Λ_{b}	10%	435

b-tagged jet and cor.
$$p_T > 15 \text{ GeV}$$

$$\underline{B} \rightarrow \overline{D}^0 + X \qquad 60\%$$

$$p_T < 15 \text{ GeV}$$

$$\underline{B}^+ \rightarrow \overline{D}^0 \pi^+ \qquad 0.5\%$$

Exploring $B \rightarrow J/\psi + X$ and more

B-Hadron & b-Jet Tagging

Jin, Tony, Sanghoon

- Detected using the long lifetime of bottom quark hadrons:
 - Displaced tracks
 - Large 2nd vertex invariant mass
- Need high precision tracking and vertex determination MVTX!
- Need excellent jet detection capabilities **sPHENIX!**

Expected Performance

Tony's talk

Projected Radiation Level after 5-year Runs

http://www.rhichome.bnl.gov/RHIC/Runs/RhicProjections.pdf

sPH-TRG-2018-001

Year	Species	Energy [GeV]	Phys. Wks	Rec. Lum.	Samp. Lum.	Samp. Lum. All-Z
Year-1	Au+Au	200	16.0	7 nb^{-1}	8.7 nb^{-1}	34 nb^{-1}
Year-2	p+p	200	11.5		48 pb^{-1}	267 pb^{-1}
Year-2	p+Au	200	11.5		0.33 pb^{-1}	1.46 pb^{-1}
Year-3	Au+Au	200	23.5	14 nb^{-1}	26 nb^{-1}	88 nb^{-1}
Year-4	p+p	200	23.5		149 pb^{-1}	783 pb^{-1}
Year-5	Au+Au	200	23.5	14 nb^{-1}	48 nb^{-1}	92 nb^{-1}

Projected sPHENIX integrated luminosities after 5-year operation

- AuAu: Lum. = 214 nb⁻¹
- pp+pAu: Lum. = 1340 pb⁻¹

PHENIX study arXiv: 0710.2676 [nucl-ex]

Projected sPHENIX MVTX L0 fluence: TID = 1060krad $NIEL = 6x10^{12} N_{eq}/cm^{2}$

Outer layers: $L1 = 0.6 \times L0; L2 = 0.4 \times L0$

Sensors tested to full MVTX NIEL and ~3x TID @ALICE (as of 9/18/2018)

MVTX Sensors and Electronics Production

Major hardware:

SPHENIX

- 48 ALICE ALPIDE Staves + Interface Cables
- 48 Front End Electronics (ALICE RUv2)
- 6 Back End Electronics (ATLAS FELIX v2)
- 6 EBDC Linux servers
- 24 Power Boards + CAEN Supplies + Cables
- 48 Stave to RU cables
- 144 data fiber optic cables (3 fibers x 48 FEE)

Stave production: total 84, 75% spares

- Two inner layers: 12+16=28
- 10% spares: 8 staves

RU production: 60 in total, 25% spares

ALICE ITS/IB stave

ALICE ITS RU

Design & Production Plan Detector Assembly and Integration

LBNL Scope

- Stave reception from CERN and testing
- Power system
- Carbon composite structure production
- Half-barrel assembly and testing

MIT/Bates Responsibilities

- Cooling System (1.5.4.2)
 - Modify ALICE design
 - Safety system
- Mechanical model (1.5.3.2.1.1)
 - Inner support structures (1.5.3.2.2.1, 1.5.3.2.3.2?)
 - Service barrel (1.5.3.2.3.3?)
 - Interface to sPHENIX exterior (1.5.3.2.1.1?)
 - Installation procedure (1.5.3.2.1.1?)

Detailed sharing of engineering design, FEA/simulations, review and fabrication discussed Engineering resources at LANL/MIT/LBNL

2

Stave and RU Production QA Plan Documents Available

https://indico.bnl.gov/event/4729/

Staves

- Purchase 84 staves from ALICE/CERN
 - 48 + 28(spares for 2 inner layers) + 8 spares
 - Production following the completion of ALICE ITS/IB
 - Starting ~Oct. 2018, will last 6-12 months
 - Fully tested at CERN before shipping to US
 - All Gold/Silver staves (same as ALICE IB)
 - A LANL postdoc (Dr. Yasser Morales) oversees production QA at CERN
- Acceptance QA at LBNL
 - Full test and QA
 - Electrical
 - Mechanical
 - Detector assembly at LBNL

Readout Units

- Purchase 60 RUs from ALICE/CERN
 - 48 + 12 spares(20%)
 - To be part of ALICE production
 - Cost saving
 - Minimize technical risks
 - Initial test at CERN
- Acceptance QA at UT-Austin
 - Full test
 - LANL as the 2nd test site

Stave Production and Shipping etc.

- Hand carry staves from CERN to LBNL, 4 trips
- Preliminary design from CERN for stave transportation plates
 - To be produced at CERN, paid by LBNL/sPHENIX

MXTX Model with Correct Length Power Cables:

Ross's talk

New shorter 40 cm overall length for power extension cables from stave, more than 220. mm shorter than was shown in previous model, same length service-barrel – 1200.0mm, location for a new patch panel 1B.

MVTX detector in sPHENIX

Signal Cable Design

- The Samtec twinax cables carry clock (40 MHz), control (40 Mbps bidirectional), data (9x1.2 Gbps)
- ALICE is using halogen-free cables (32 AWG, LDPE dielectric) due to CERN LSZH requirement; 2.65 + 5.3 m cables have been tested and are now in production

CCS-183564-XX-03-TB						
Parameter	Reference value					
Impedance tolerance [%]	100Ω ±5%					
Maximum insertion loss [db @ 1GHz for 1m]	-1.72 dB					
Maximum return loss [dB @ 1GHz for 1m]	-18.40dB					
Maximum within pair skew [ps/m]	10ps/m					
Maximum pair to pair skew [ps/m]	50ps/m					

.969[50.01] REF

<u>J2</u>

13

N-HOUSE

Stave

Stave

ALL CABLES DISCRETE ſι 7) SEE NOTE 6 <u>J3</u> RU X0000(-222 X00000X (1) 882[60.00] RE HDM-309ALI-XX (4) SEE NOTE 6 J1 X0000X <u>J2</u> .874[22.19] RU ALL CABLES ARE DISCRETE

209.860 [5330.44] REF

I.000[25.40] REF

Two HICs Produced and Tested at CERN w/ Extended Power Cables NO noticeable difference in sensor performance, as expected, 9/2018

HICs Test Results from CERN (9/2018)

- Threshold and noise (from charge injection turn-on curve) are indistinguishable
- Other tests also see no change: supply currents, high-speed data transmission

Noise level: ~4 e's; Threshold with 80e's you MIR: 1000 e's

Before: 2 ALICE IB HICs

After: same ALICE HICs, replaced power FPCs • top 40 cm, bottom 60 cm:

Chip-87

FPC Extension for Connection to Electrical Services

The connection to the service cables is achieved by a double FPC extension which is soldered to the HIC

FPC Extension for Connection to Electrical Services

From Antonello Di Mauro

ALICE ITS Upgrade

Stave

- Production stave consists of three flex circuits: one signal FPC that carries the ALPIDE sensors, two power FPCs that carry AVDD and DVDD
- For MVTX mechanical integration, the power FPCs must be lengthened to 40 cm (from 15 cm)
 - We qualified 40 and 60 cm FPCs at CERN: identical performance
- 4 staves at LANL

sPHENIX/MVTX IB Stave Assembly Procedure at CERN by ALICE ITS Group

- 1. Prepare sensors and FPC
- 2. Glue 9 sensors to FPC
- 3. Wire bonding 9 sensors to FPC
- 4. Solder power flex PCB to FPC
- 5. Glue HIC to coldplate/carbon space frame
- 6. A stave is ready for QA
- 7. CMM

2018 Fermilab Test Beam Highlights

Sho's talk

3.5

layer

62

Demonstrated full high-speed readout chain at Fermilab test beam in Feb - Mar 2018

Sensors + RU + FELIX + RCDAQ/sPHENIX •

LANL LDRD Activity Highlights

- MAPS evaluation
- Readout integration
- 4-sensor telescope
- Test beam at Fermilab
- Mechanical & cooling

ALPIDE chip

Scintilla