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Abstract

We first re-prove with a more complete method that the the minimum standard
model, with the inclusion of the CKM-matrix, requires the T-odd/P-odd total cross
section of two spin-1/2 particles to vanish in all orders [1]. The influences of stronger
interactions to the result are studied by treating stronger interactions exactly and
weak interaction perturbatively to keep the effects of stronger interactions in control.
Then we study the contribution to T-odd/P-odd total scattering cross sections from
various channels within the Higgs sector, and optimize conditions for possible exper-
imental measurements of these effects. These studies show that such contributions
can appear at tree level, and that the spin dependent cross section asymmetry is
measurable with current technlogies and knowledge about the lightest Higgs paar-
ticle, e.g. mH = 125.35GeV , if suitable reaction channels and beam energies and
luminosities are chosen.
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1 Introduction

The minimal standard model [2] with the Cabibbo-Kobayashi-Maskawa mixing ma-
trix [3], MSMCKM, explains CP-violations in heavy quark decays. However, it
is natural to wonder if other CP-violations are possible. Various attempts to ex-
plain the baryon asymmetry of the universe require much larger CP-violation [4]
than suggested by the MSMCKM, which may indicate additional CP or T violating
mechanisms. Indeed, the possibility of CP (or T) violation due to the Higgs sector
has been independently studied by the authors in refs. [6] and [7], and models pro-
posed that introduce CP-violation through both neutral and charged Higgs-boson
exchange [8].

Recently, it was shown [1] that while the MSMCKM gives a null result to all
orders for an experimental test of time-reversal symmetry (1/2 + 1/2→ 1/2 + 1/2)
suggested by ref. [9], this is not necessarily true if the Higgs sector also contributes
to T (or CP) violation. Thus ref. [1] indicates that such a measurement is a
null test of extensions to the MSMCKM which could include CP (or T)-violation
contributed by the Higgs sector. However, for most of the choices of beams and
targets, e.g. hadrons 1 collides with hadrons 2, one would deal the situations that
there are interactions other than weak interaction in a system and the effects due
to weak interaction could be influenced or even simulated by stronger interactions,
e.g. see ref. [5]. Therefore, to carry out an accurate tests of T (or CP) violation in
1/2+1/2→ 1/2+1/2 scattering, it is very necessary to get rid of the influences due to
stronger interactions or have them under control. Furthermore, from an experimental
view point, one must know whether a test is feasible, and what precision would be
required. We would like to answer these questions in this note.

In section 2, we re-prove the theorem that the T-odd/P-odd total cross section in
the MSMCKM vanishes to all orders [1] by a different, and more complete, method.
In section 3, we study the influence to the T-dd/P-odd total cross sections due to
stronger interactions, e.g. electric and strong interactions, by treating the stronger
interactions exactly and the weak interaction purterbatively [15]. We conclude that,
while stronger interactions could influence the effect due to weak interaction for
individual channels, it would not have an effect for total cross section measurements.
In section 4, various possible channels in a model extended to include the Higgs sector
contributing to T (or CP) violation, is studied as a function of the beam energy, in
order to optimize the conditions for an experimental test. Finally, conclusions are
given in section 5.
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2 Proof of Null T-odd/P-odd Ax,y within the MSM-

CKM

This theorem was originally proven in ref. [1]. Now consider the reaction of two
spin-1/2 particles (12 + 12 → 12 + 12). The forward-scattering matrix element is
written as [9]

M(0) = a0,0 + a0,zσ0σz + az,0σzσ0 + ax,x(σxσx + σyσy) +

az,zσzσz + ax,y(σxσy − σyσx) , (1)

where σx ≡ σ · x, etc., and we have chosen a coordinate system by defining the unit
vectors;

ez = kz/kz

ey = k× k′/|k× k′|
ex = ey × ez. (2)

Here k and k′ are the incident and scattered momenta of the particles, respectively.
The conditions for parity-non-conserving (PNC) and time-reversal-volated (TRV)
amplitudes have the properties;

PNC (TRV ) if nx + nz (nx) is odd. (3)

In this equation nx(nz) is the number of x(z) subscripts. Thus the only TRV ampli-
tude in eq. (1) is axy, which is also PNC, i.e. T-odd/P-odd.

Using the optical theorem, which relates the total cross section to the imaginary
part of the forward-scattering amplitude, the total spin-correlation coefficient Ax,y
for p1 = px and p2 = ±py is given by

Ax,y = Imax,y/Ima0,0 . (4)

Therefore, this spin-correlation coefficient Ax,y is both time (T) and parity (P) odd.
A non-zero Ax,y indicates not only that the reaction violates T and P, but also the
T-odd/P-odd total cross section is not zero. This is a null test, and provides a
framework to precisely investigate TRV processes.

The above derivation is obtained from the two-component spinor description, but
the conclusions obtained using eq. (1) to eq. (4) can be applied in a four-component
relativistic description, provided the center-of-mass frame (CMS) is used. This is
because ( [10]) (1) the four-component relativistic scattering matrix can be reduced
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to the two-component formalism in the center-of-mass frame (CMS); (2) the reduced
Pauli scattering matrix has the same transformation properties as the non-relativistic
scattering matrix under spatial reflections and time reversal; and (3) the spin vector
in the non-relativistic treatment can be equated to the relativistic spin vector when
the latter is measured in the particle rest-frame related to the CMS by a Lorentz
transformation.

Ref. [1] proved that Ax,y of polarized scattering 1/2 + 1/2 → 1/2 + 1/2 in
the MSMCKM is identically zero. For a more complete proof, we note that in the
MSMCKM, CP(T)-violation is caused by mixing among the three generations of
quarks. A complex phase, δ, in the CKM-matrix provides a natural mechanism
for the small, but nonzero violation, of CP conservation. The T (or CP) violating
components of the Lagrangian are contained in the expression,

L =
g√
2

(J+
µW

+µ + J−µW
−µ) , (5)

where g is the coupling constant, W±
µ are the charged vector bosons, and J±µ are the

SU(2) fermionic currents. These have the values;

g = e sin θW , W±
µ = (A1

µ ∓ iA2
µ)/
√

2 ,

J+
µ = J1

µ + iJ2
µ =

1

2
Uγµ(1− γ5)V D , J−µ = J+†

µ . (6)

Here V is the CKM mixing matrix, θW is the Weinberg angle, and U and D are
quark triplets (u, c, t) and (d, s, b), respectively. Based on eqs. (5) and (6), only
the scatterings of quarks can possibly introduce T (or CP) vioation components.

At tree level, the Feynman Diagrams of the forward scattering amplitude which
could possibly contribute to T-odd total cross section are,
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Fig. 1: The forward scattering amplitudes M(ab −→ ab) at tree level that

could possibly contribute to T-odd total cross section.
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The forward scattering amplitude for Fig. 1(i) (M1i) and Fig. 1(ii) (M1ii) in
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Feynman-’t Hooft gauge are given by,

M1i =
−g2

8

1

k2
i −M2

W + iε
VabV

∗
ab · [ub γµ(1− γ5)ua][ua γµ(1− γ5)ub] ;

M1ii =
−g2

8

1

k2
ii −M2

W + iε
V ∗b̄aVb̄a · [ub̄ γ

µ(1− γ5)ua][ua γµ(1− γ5)ub̄] ; (7)

with k2
i = (pa − pb)2 and k2

ii = (pa + pb)
2.

From the T-even condition, MT = M†, one can obtain the T-even and T-odd
amplitudes as;

Meven
1i =

−g2

8

1

k2
a −M2

W + iε
Re(VabV

∗
ab)[ub γ

µ(1− γ5)ua][ua γµ(1− γ5)ub] ;

Meven
1ii =

−g2

8

1

k2
b −M2

W + iε
Re(V ∗b̄aVb̄a)[ub̄ γ

µ(1− γ5)ua][ua γµ(1− γ5)ub̄] ;

Modd
1i =

−g2

8

1

k2
a −M2

W + iε
iIm(VabV

∗
ab)[ub γ

µ(1− γ5)ua][ua γµ(1− γ5)ub] ;

Modd
1ii =

−g2

8

1

k2
b −M2

W + iε
iIm(V ∗b̄aVb̄a)[ub̄ γ

µ(1− γ5)ua][ua γµ(1− γ5)ub̄] .

(8)

Since Im(VabV
∗
ab) = 0 and Im(V ∗

b̄a
Vb̄a) = 0, the T-odd amplitudes are zero at tree

level.
At one-loop level, the Feynman diagrams of the forward scattering amplitudes

which could possibly contribute to T-odd total cross section are the following:
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Fig. 2: The forward scattering amplitudes M(ab −→ ab) at one-loop level that

could possibly contribute to T-odd total cross section.

Since

[(ūcγ
µ(1− γ5)ua)(ūdγ

µ(1− γ5)ub)]
T = [(ūcγ

µ(1− γ5)ua)(ūdγ
µ(1− γ5)ub)]

† (9)

the only factor that determines T-odd or T-even is the CKM-matrix elements in the
amplitudes. The possible T-odd factors in Fig. 2(ii, iii) are the same as the factors
in Fig. 1 and give zero T-odd amplitudes, i.e. the vertices that do not include CKM-
matrix elements do not introduce T-odd factors. For Fig. 2(i), the multiplication of
the matrix elements is given by

VxaV
∗
xaV

∗
byVby = |VxaVby|2 = real and therefore Im(VxaV

∗
xaV

∗
byVby) = 0 . (10)

For Fig. 2(iv), the multiplication of the matrix elements is given by

Vb̄aV
∗
ȳxVȳxV

∗
b̄a = |Vb̄aVȳx|2 = real and therefore Im(Vb̄aV

∗
ȳxVȳxV

∗
b̄a) = 0 . (11)

Therefore, at one-loop level, T-odd amplitude is zero.
For arbitrary n-th order, the forward scattering a+ b→ a+ b would go through

combinations of the following processes as shown in Figs. 3 and Fig. 4, depending
on the particles a and b. [11]
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Fig. 3: The forward elastic scattering amplitudes M(ab −→ ab) at n-th order

that could possibly contribute to T-odd total cross section.
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Fig. 4: Quark self-mass diagram.

If a and b belong to the U(D) and D(U) sectors respectively, the forward scat-
tering goes through the processes shown in Figs. 3(a) and (b), but if a and b belong
to U(D̄) and D̄(U) sectors respectively or Ū(D) and D(Ū) sectors respectively, the
forward scattering goes through the processes shown in Figs. 3(c).

We prove in the following that the multiplication of CKM matrix elements in
each diagram in Figs. 3 and 4 is real; and since an arbitrary T-odd amplitude must
be a combination of Figs. 3(i, ii, iii) and 4, the T-odd forward scattering amplitude
for an arbitrary order is zero.

Fig. 4 is T-even as is obvious since the CKM-matrix contribution VxaV
∗
xa is real.

Without losing generality, let a be in the D sector and b in the U sector. The n-th
order forward scattering amplitude could go through Figs. 3(i) if n is an odd number
and Figs. 3(ii) if n is an even number.
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The amplitude of Fig. 3(i) has the form

M3i(0) ∝ M3i,1(0)M3i,2(0) with

M3i,1(0) ∝ (Vxnbūbγ
µn+1(1− γ5)uxnW

+
µn+1

)(V ∗xnxn−1
ūxnγ

µn(1− γ5)uxn−1W
+†
µn )

(Vxn−2xn−1ūxn−1γ
µn−1(1− γ5)uxn−2W

+µn−1) · · ·
(Vx2x3ūx3γ

µ3(1− γ5)ux2W
+
µ3

)(V ∗x2x1ūx2γ
µ2(1− γ5)ux1W

+†
µ2

)

(Vax1ūx1γ
µ1(1− γ5)uaW

+
µ1

)

M3i,2(0) ∝ (V ∗aynūaγ
µn+1(1− γ5)uynW

+†
µn+1

)(Vyn−1ynūynγ
µn(1− γ5)uyn−1W

+
µn)

(Vyn−1y∗n−2
ūyn−1γ

µn−1(1− γ5)uyn−2W
+†
µn−1

) · · ·
(V ∗y3y2ūy3γ

µ3(1− γ5)uy2W
+†
µ3

)(Vy1y2ūy2γ
µ2(1− γ5)uy1W

+
µ2

)

(V ∗y1būy1γ
µ1(1− γ5)ubW

+†
µ1

) , (12)

where the repeated indices xi and yi should be summed over the particles in the
corresponding quark sectors and the corresponding momenta of the particles should
be integrated based on conservation of momenta.

Based on the MSMCKM Lagrangian, xi and yn−i+1 should be in the same quark
sector.[11] It is obvious that

M3i,1(0) =M†
3i,2(0) =M∗

3i,2(0) and M3i,1(0)M3i,2(0) = real . (13)

Therefore, the T-odd amplitude from Fig. 3(i) is zero.
The amplitude of Fig. 3(ii) has the form

M3ii(0) ∝ M3ii,1(0)M3ii,2(0) with

M3ii,1(0) ∝ (V ∗axnūaγ
µn+1(1− γ5)uxnW

+†
µn+1

)(Vxn−1xnūxnγ
µn(1− γ5)uxn−1W

+
µn)

(V ∗xn−1xn−2
ūxn−1γ

µn−1(1− γ5)uxn−2W
+†
µn−1

) · · ·
(Vx2x3ūx3γ

µ3(1− γ5)ux2W
+
µ3

)(V ∗x2x1ū2γ
µ2(1− γ5)ux1W

+†
µ2

)

(Vax1ū1γ
µ1(1− γ5)uaW

+
µ1

)

M3ii,2(0) ∝ (Vynbūbγ
µn+1(1− γ5)uynW

+
µn+1

)(V ∗ynyn−1
ūynγ

µn(1− γ5)uyn−1W
+†
µn )

(Vyn−2yn−1ūyn−1γ
µn−1(1− γ5)uyn−2W

+
µn−1

) · · ·
(V ∗y3y2ūy3γ

µ3(1− γ5)uy2W
+†
µ3

)(Vy1y2ūy2γ
µ2(1− γ5)uy1W

+
µ2

)

(V ∗y1būy1γ
µ1(1− γ5)ubW

+†
µ1

) , (14)

where the repeated indices xi and yi should be summed over the particles in the
corresponding quark sectors and the corresponding momenta of the particles should
be integrated based on conservation of momenta.
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Also, based on the MSMCKM Lagrangian, xi(yi) and xn−i+1(yn−i+1) should be
in the same quark sector[11] and one should have,

M3ii,l(0) =M†
3ii,l(0) =M∗

3ii,l(0) = real l = 1, 2 . (15)

Therefore the T-odd amplitude from Fig. 3(ii) is zero.
In Fig. 3(iii), a W+ propagator placed after the annihilation of incoming quarks

a and b could create a quark pair in U (D) and D̄ (Ū) sectors, introducing a possible
T-odd contribution. The U (D) and D̄ (Ū) pair thus created, will go through the
processes of either Fig. 3(i) or Fig. 3(ii) before the final quark pair in the process is
annihilated. This again creates a W+ propagator. [12] Therefore, Fig. 3(iii) can be
broken down to a combination of Fig. 3(i) or Fig. 3(ii), a smaller part of the form
of Fig. 3(iii), and Fig. 4. The smaller part of Fig. 3(iii) can be continuously divided
into a combination of the smaller parts of Fig. 3(i) or Fig. 3(ii), and an even smaller
part of the form of Fig. 3(iii), and Fig. 4. If this division is continued, one can
eventually break Fig. 3(iii) into a combination of several components of Fig. 3(i)
or Fig. 3(ii), Fig. 2(iv), and Fig. 4. As shown above, all these contributions from
Fig. 3(i), Fig. 3(ii), Fig. 2(iv), and Fig. 4 do not contribute to T-odd amplitudes.
Therefore, the T-odd amplitude from Fig. 3(iii) is zero.

Since an arbitrary possible T-odd forward scattering amplitude can be obtained
from combinations of Fig. 3(i) or Fig. 3(ii), Fig. 3(iii) and Fig. 4, we conclude that
T-odd forward scattering amplitude of a polarized reaction 1/2 + 1/2 → 1/2 + 1/2
within the MSMCKM is identically zero to all orders. This implies that the T-odd
total cross section of a polarized reaction 1/2 + 1/2→ 1/2 + 1/2 is zero to all orders,
by the optical theorem.

Because both T-odd/P-even and T-odd/P-odd amplitudes have the same CKM-
matrix factors, this indicates that both T-odd/P-even and T-odd/P-odd amplitudes
should vanish to all order. We also note that T-odd/P-even amplitude should be
zero based on eq. 2, and the zero T-odd/P-odd amplitude is due to the fact that the
source of T-odd amplitude in the MSMCKM is introduced by the phase in the CKM
matrix. The proof is therefore completed.

Two points need to be re-stated.
(1) The above conclusion shows that a non-zero T-odd total cross section of a

polarized reaction 1/2 + 1/2→ 1/2 + 1/2 indicates the existance of additional T (or
CP) violation source(s) besides the phase in the CKM matrix. Furthermore, it is a
null test in which a high experimental accuracy can be achieved.

(2) A zero T-odd total cross section does not indicate T (or CP) conservation in
the physical process, i.e. a T (or CP) violation in a physical process is a necessary
but not sufficient condition for an existance of a T-odd total cross section.
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Ref. [1] showed that the T-odd/P-odd total cross section of a 1/2 + 1/2 →
1/2 + 1/2 reaction could be none-zero if the Higgs sector contributes to T (or CP)
violation. Thus, a measurement of a T-odd/P-odd total cross section, proportional
to the forward scattering amplitude, would indicate an additional mechanism(s) of
T (or CP) violation. However, there could be other stronger interactions in a reac-
tion and we would like to study the effects on the T-odd/P-odd total cross section
measurement due to strong and electric interactions next.

3 The Influences to T-odd, P-odd Total Cross Sec-

tion Due to Strong and Electric Interactions

The discussion in sction 2 tells us that a non-zero tranversely polarized 1/2 + 1/2→
1/2 + 1/2 forward scattering would indicate additional mechanisms of T (or CP)
violation. Therefore, it is worthwhile to carry out this experiment in the near future.
However, for most of the choices of beams and targets, e.g. hadrons 1 collides with
hadrons 2, one would deal the situation that there are interactions other than weak
interaction in a system and the effects due to weak interaction could be influenced
or even simulated by stronger interactions, e.g. see [5]. Therefore, to carry out an
accurate tests of T (or CP) violation in 1/2+1/2→ 1/2+1/2 scattering, one should
get rid of the influences due to stronger interactions or have them under control.
We would like to investigate the possibility to get rid of the effects due to stronger
interactions or have them under control in this section.

Our followng discussion references to [15]. We will treat stronger interactions ex-
actly without worrying about the so-called perturbative or non-perturbative effects.
The weak interaction can be treated perturbatively.

For a collision between two hadrons, the interaction between two hadrons is:

Hint = Hw +Hst, (16)

where Hw is the weak interaction and Hst includes both electric and strong interac-
tions.

As we know today, hadrons are not elementary particles but are bound states of
quarks. Let the state vector before the collision is ψi and the state vector after the
collision is ψf , where ψi represents the initial bound hadron 1 and bound hadron 2,
and ψf represents the bound hadrons in the final state. ψi and ψf should satisfy the
equations

(K + Vi)|ψi〉 = Ei|ψi〉 , (K + Vf )|ψf〉 = Ef |ψf〉 , (17)
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where K may be the kinetic energy or the kinetic energy plus the potential energy
between a pair of particles, and the contributions to Vi and Vf should be from Hst

although we do not know their exact forms.
The complete state vector of the system, Ψ

(ε)
i , can be seen from the physical

boundary conditions to be the solution of the integral equation

|Ψ(ε)
i 〉 = |ψi〉+

1

Ei −K − Vi + iε
(Hw +Hst + Vf )|Ψ(ε)

i 〉 . (18)

By algebraic manipulation, (eq. 18) can be rewritten as

|Ψ(ε)
i 〉 = |ψi〉+

1

Ei −K − Vi − Vf −Hw −Hst + iε
(Hw +Hst + Vf )|ψi〉

=
1

Ei −K − Vf + iε
(Hst +Hw + Vi)|Ψ(ε)

i 〉. (19)

The rate of transition into the final state ψf is given by

Niẇfi =
∂

∂t
|〈ψf | exp [i(Ef −K − Vi − Vf −Hw −Hst)t]|Ψ(ε)〉|2, (20)

where

Ni = 〈ψi(t)|ψi(t)〉 (21)

For the transition rate we need only compute Niẇfi at t = 0. We find that

Niẇfi(t = 0) = −i〈ψf |(Vi +Hw +Hst)|Ψ(ε)〉〈ψf |Ψ(ε)〉∗ + c.c., (22)

where we have used (eq. 17).
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Using (eq. 19), one has:

〈ψf |Ψ(ε)〉

= 〈ψf |ψi〉+ 〈ψf |
1

Ei −K − Vi − Vf −Hst −Hw + iε
(Hst +Hw + Vf )|ψi〉

= 〈ψf |ψi〉+ 〈ψf |
1

Ei −K − Vf + iε
(Hst +Hw + Vf )|ψi〉+

〈ψf |
1

Ei −K − Vf + iε
(Hst +Hw + Vi)

1

Ei −K − Vi − Vf −Hst −Hw + iε
(

Hst +Hw + Vf )|ψi〉

= 〈ψf |ψi〉+
1

Ei − Ef + iε
〈ψf |(Hst +Hw + Vf )|ψi〉+

1

Ei − Ef + iε
〈ψf |(Hst +

+Hw + Vi)
1

Ei −K − Vi − Vf −Hst −Hw + iε
(Hst +Hw + Vf )|ψi〉

= 〈ψf |ψi〉+
1

Ei − Ef + iε
〈ψf |(Hst +

Hw + Vf )|ψi〉+
1

Ei − Ef + iε
〈ψf |(Hst +Hw + Vi)(|Ψ(ε)

i 〉 − |ψi〉)

= 〈ψf |ψi〉+
1

Ei − Ef + iε
〈ψf |(Vf − Vi)|ψi〉+

1

Ei − Ef + iε
〈ψf |(Hst +Hw + Vi)|Ψ(ε)

i 〉. (23)

Using (eq. 17), one has:

〈ψf |(Vf − Vi)|ψi〉 = (Ef − Ei)〈ψf |ψi〉+−(〈Kψf |ψi〉 − 〈|Kψi〉). (24)

The first term in (eq. 23) cancels out due to energy conservation and the second
term in (eq. 23) reduces to a surface integral which vanishes in the limit of infinite
quantization volume. Thus

〈ψf |Ψ(ε)
i 〉 =

1

Ei − Ef + iε
〈ψf |(Hst +Hw + Vi)|Ψ(ε)

i 〉. (25)

where we have ignored the term 〈ψf |ψi〉 = 0, which is the term without scatterings.
Substituting (eq. 25) back to (eq. 22)), we find that

Niẇfi = 2πδ(Ei − Ef )|〈ψf |(Hst +Hw + Vi)|Ψ(ε)
i 〉|2 (26)
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Let us introduce state vectors |χ(−)
f 〉 which are the solutions of |ψf〉 with Hw = 0

defined by

|χ(−)
f 〉 = |ψf〉+

1

Ef −K − Vf − iε
(Hst + Vi)|χ(−)

f 〉, (27)

i.e. |χ(−)
f 〉 is the scattering due to stronger interactions only.

With (eq. 27), one can have:

〈ψf |(Hst +Hw + Vi)|Ψ(ε)
i 〉

= 〈χ(−)
f |(Hst +Hw + Vi)|Ψ(ε)

i 〉 −

〈χ(−)
f |(Hst + Vi)

1

Ef −K − Vf + iε
(Hst +Hw + Vi)|Ψ(ε)

i 〉

= 〈χ(−)
f |(Hst +Hw + Vi)|Ψ(ε)

i 〉 − 〈χ
(−)
f |(Hst + Vi)|Ψ(ε)

i 〉

= 〈χ(−)
f |Hw|Ψ(ε)

i 〉. (28)

With (eq. 28), (eq. 26) can be written as:

Niẇfi = 2πδ(Ei − Ef )|〈χ(−)
f |Hw|Ψ(ε)

i 〉|2 (29)

If we define |χ(+)
i 〉 as

|χ(+)
i 〉 = |ψi〉+

1

Ei −K − Vi + iε
(Hst + Vf )|χ(+)

i 〉, (30)

i.e. |χ(+)
i 〉 is the scattering due to strong interactions only, one would have

|Ψ(ε)
i 〉 = |χ(+)

i 〉+
1

Ei −K −Hst − Vi − Vf + iε
Hw|Ψ(ε)

i 〉 (31)

Using the convenient Möller wave operators, Ω(±), (eq. 27) can be wriiten as

|χ(−)
f 〉 = Ω

(−)
1 (Hst, Vi, Vf )|ψf〉, (32)

with Ω−1 (Hst, Vi, Vf ) satisfies the operator integral equation

Ω
(−)
1 (Hst, Vi, Vf ) = 1 +

1

Ef −K − Vf − iε
(Hst + Vi)Ω

(−)
1 (Hst, Vi, Vf ); (33)

13



(Eq. 30) can be written as

|χ(+)
i 〉 = Ω

(+)
2 (Hst, Vi, Vf )|ψf〉 (34)

with Ω
(+)
2 (Hst, Vi, Vf )

Ω
(+)
2 (Hst, Vi, Vf ) = 1 +

1

Ei −K − Vi + iε
(Hst + Vf )Ω

(+)
2 (Hst, Vi, Vf ); (35)

and (eq. 31) can be written as

|Ψ(ε)
i 〉 = Ω(+)(Hst, Hw, Vi, Vf )|χ(+)

i 〉 (36)

with Ω(+)(Hst, Hw, Vi, Vf ) satisfies the operator integral equation

Ω(+)(Hst, Hw, Vi, Vf )

= 1 +
1

Ei −K −Hst − Vi − Vf + iε
HwΩ(+)(Hst, Hw, Vi, Vf ). (37)

Since weak interaction Hw is weak, (eq. 37) would have the iterated solution

Ω(+)(Hst, Hw, Vi, Vf ) = 1 +
1

Ei −K −Hst − Vi − Vf + iε
Hw +

1

Ei −K −Hst − Vi − Vf + iε
Hw

1

Ei −K −Hst − Vi − Vf + iε
Hw + · · · , (38)

which is the usual perturbative expansion for weak interaction.
Using the Möller wave operators, (eq. 29) can be rewritten as:

Niẇfi = 2πδ(Ei − Ef )|〈ψf |Ω(−)†
1 (Hst, Vi, Vf )HwΩ(+)(Hst, Hw, Vi, Vf )Ω

(+)
2 (

Hst, Vi, Vf )|ψi〉|2 (39)

From (eq. 39), the scattering amplitute is given by

Rfi

= 〈ψf |Ω(−)†
1 (Hst, Vi, Vf )HwΩ(+)(Hst, Hw, Vi, Vf )Ω

(+)
2 (Hst, Vi, Vf )|ψi〉

= 〈ψf |Ω(−)†
1 (Hst, Vi, Vf )HwΩ

(+)
2 (Hst, Vi, Vf )|ψi〉+

〈ψf |Ω(−)†
1 (Hst, Vi, Vf )Hw

1

Ei −K −Hst − Vi − Vf + iε
HwΩ

(+)
2 (Hst, Vi, Vf )|ψi〉+

〈ψf |Ω(−)†
1 (Hst, Vi, Vf )Hw

1

Ei −K −Hst − Vi − Vf + iε
Hw

1

Ei −K −Hst − Vi − Vf + iε
HwΩ

(+)
2 (Hst, Vi, Vf )|ψi〉+ · · · . (40)
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Expanding |ψi〉 and |ψf〉 in terms of the complete set of states |JMw〉 with total
angular momentum J , a definite z component of J , Jz = M , a definite parity w, we
obtain

|χ(−)
f 〉 = Ω

(−)
1 (Hst, Vi, Vf )|ψf〉

=
∑

Jf ,Mf ,wf

exp (−iδJfwf
)|JfMfwf〉〈JfMfwf |ψ〉

|χ(+)
i 〉 = Ω

(+)
2 (Hst, Vi, Vf )|ψi〉

=
∑

Ji,Mi,wi

exp (iδJiwi
)|JiMiwi〉〈JiMiwi|ψ〉, (41)

where we have used the equations

Ω
(−)
1 (Hst, Vi, Vf )|JfMfwf〉 = exp (−iδJfwf

)|JfMfwf〉

Ω
(+)
2 (Hst, Vi, Vf )|JiMiwi〉 = exp (−iδ′Jiwi

)|JiMiwi〉, (42)

which is a consequence of Ω
(−)
1 and Ω

(+)
2 being unitary, rotationally invariant, and J ,

M , w are good quantum numbers of stronger interactions.
We would like to point out that δJ,w and δ′J,w are different angles. However,

for elastic forward scattering, one would have Vi = Vf and Ω
(+)
1 (Hst, Vi, Vf ) =

Ω
(+)
2 (Hst, Vi, Vf ). Therefore, δJ,w = δ′J,w. Since we mainly study elastic forward

scattering here, we will not distinguish δJ,w and δ′J,w in the following.
Substituting (eq. 41) into (eq. 40), one has

Rfi =
∑

Jf ,Mf ,wf ,Ji,Mi,wi

exp [i(δJfwf
− δJiwi

)]〈ψf |JfMfwf〉〈JfMfwf |Hw(1 +

1

Ei −K −Hst − Vi − Vf + iε
+ · · · )Hw|JiMiwi〉〈JiMiwi|ψi〉. (43)

Because of the term exp [i(δJfwf
− δJiwi

)] originated from stronger interactions,
the amplitude for T-odd elastic forward scattering would consist of contributions
from cos(δJfwf

− δJiwi
)RT−odd,P−odd

ii and sin(δJfwf
− δJiwi

)RTeven,P−odd
ii , i.e. the Ax,y in

the previous section is given by

Ax,y ∝ cos(δJfwf
− δJiwi

)RT−odd,P−odd
ii + sin(δJfwf

− δJiwi
)RTeven,P−odd

ii , (44)

In doing this, we have used the fact that Vi = Vf and Ω
(−)†
1 = Ω

(+)
2 for forward

elastic scattering. However, we would like to show that, while this could be an

15



issue for reactions of individual channels, it is not a problem for total cross section
measurements.
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The optical theorm tells us that, [15]

σtot =
∑
f 6=i

σfi = −2

v
lim

ε −→ 0+

L −→∞

ImRii

= −2

v
lim

ε −→ 0+

L −→∞

L3
∑

Jf ,Mf , wf
Ji,Mi, wi

{

−i cos(δJfwf
− δJiwi

)[〈ψi|JfMfwf〉〈JfMfwf |Hw(1 +

1

Ei −K −Hst − Vi − Vf + iε
Hw · · · )|JiMiwi〉〈JiMiwi|ψi〉 −

〈ψi|JfMfwf〉〈JfMfwf |Hw(1 +

1

Ei −K −Hst − Vi − Vf − iε
Hw · · · )|JiMiwi〉〈JiMiwi|ψi〉+

sin(δJfwf
− δJiwi

)[〈ψi|JfMfwf〉〈JfMfwf |Hw(

1

Ei −K −Hst − Vi − Vf + iε
Hw + · · · )|JiMiwi〉〈JiMiwi|ψi〉+

〈ψi|JiMiwi〉〈JiMiwi|Hw(1 +
1

Ei −K −Hst − Vi − Vf − iε
Hw + · · · )|JfMfwf〉〈JfMfwf |ψi〉]}

= −2

v
lim

ε −→ 0+

L −→∞

L3
∑

Jf ,Mf , wf
Ji,Mi, wi

{

−i cos(δJfwf
− δJiwi

)[〈ψi|JfMfwf〉〈JfMfwf |Hw(1 +

1

Ei −K −Hst − Vi − Vf + iε
Hw + · · · )|JiMiwi〉〈JiMiwi|ψi〉 −

〈ψi|JfMfwf〉〈JfMfwf |Hw(1 +

1

Ei −K −Hst − Vi − Vf − iε
Hw + · · · )|JiMiwi〉〈JiMiwi|ψi〉] +

sin(δJfwf
− δJiwi

)[〈ψi|JfMfwf〉〈JfMfwf |Hw(1 +

1

Ei −K −Hst − Vi − Vf + iε
Hw + · · · )|JiMiwi〉〈JiMiwi|ψi〉 −

〈ψi|JfMfwf〉〈JfMfwf |Hw(1 +

1

Ei −K −Hst − Vi − Vf − iε
Hw + · · · )|JiMiwi〉〈JiMiwi|ψi〉]}, (45)
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where we have used the fact that Vi = Vf for forward scattering amplitude Rii.
As one can see from the above equation, both terms after cos(δJfwf

− δJiwi
) and

sin(δJfwf
− δJiwi

) are equal. This term cannot be real and imaginary at the same
time. Therefore, they cannot appear in the total cross section at the same time.

To find the spin correlation coefficient Ax,y defined in Section 2 and in ref. [1],
one has:

Ax,y =
σtot(sx, sy)− σtot(sx,−sy)
σtot(sx, sy) + σtot(sx,−sy)

∝
∑

Jf ,Mf , wf
Ji,Mi, wi

{−i cos(δJfwf
− δJiwi

)[〈ψi|JfMfwf〉〈JfMfwf |Hw(

1

Ei −K −Hst − Vi − Vf + iε
− 1

Ei −K −Hst − Vi − Vf − iε
+ · · ·

)Hw)|JiMiwi〉〈JiMiwi|ψi〉|JiMiwi〉〈JiMiwi|ψi〉]T−odd,P−odd +

sin(δJfwf
− δJiwi

)[〈ψi|JfMfwf〉〈JfMfwf |Hw(

1

Ei −K −Hst − Vi − Vf + iε
− 1

Ei −K −Hst − Vi − Vf − iε
+ · · ·

)Hw|JiMiwi〉〈JiMiwi|ψi〉|JiMiwi〉〈JiMiwi|ψi〉]Teven,R−odd}. (46)

As it has been shown in ref. [1] that the T-odd, P-odd contribution would be zero
if T-violation is only due to the phase in CMK matrix but not be zero if T-violation
is due to spontaneous symmetry breaking. Therefore, if one of the mechanisms of T-
violation is due to spontaneous symmetry breaking, the term with sin(δJfwf

− δJiwi
)

will be zero and stronger interactions will not have an effect on the measurement of
Ax,y. The Ax,y is given by

Ax,y =
σtot(sx, sy)− σtot(sx,−sy)
σtot(sx, sy) + σtot(sx,−sy)

∝
∑

Jf ,Mf , wf
Ji,Mi, wi

−i cos(δJfwf
− δJiwi

)[〈ψi|JfMfwf〉〈JfMfwf |Hw(

1

Ei −K −Hst − Vi − Vf + iε
− 1

Ei −K −Hst − Vi − Vf − iε
+ · · ·

)Hw|JiMiwi〉〈JiMiwi|ψi〉] (47)
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4 Several T-Odd/P-Odd Processes

Based on the discussions in Sections 2 and 3, the total cross section of transversally
polarized spin-1/2 particles gives a sensitive tests of mechanisms of T-violation. The
next questions are how large the signals one could expect and what the optimize
conditions for possible experimental measurements are. We would like to investigate
this in this section.

The neutral scalar-quark interactive Lagrangian is given by,

Lφ = − 1√
2|λ1|

DmDDΦ1 +
i|λ2|√

2|λ1|
√
|λ1|2 + |λ2|2

DmDγ
5DΦ3

− 1√
2|λ2|

UmUUΦ2 +
i|λ1|√

2|λ2|
√
|λ1|2 + |λ2|2

UmUγ
5UΦ3 + h.c. . (48)

At tree level, there could be three possible T-odd/P-odd forward scattering am-
plitudes for a(1/2) + b(1/2)→ a(1/2) + b(1/2), shown in Fig. 5.
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Fig. 5: The Higgs contributions to forward scattering amplitudes of a+ b→ a+ b
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Here Fig. 5(i) is for the forward scattering of two arbitrary spin-1/2 particles,
Fig. 5(ii) is the forward scattering for a spin-1/2 particle and its anti-particle, and
Fig. 5(iii) is for the forward scattering of two identical, spin-1/2 particles. Based on
the optical theorem, the T-odd/P-odd total cross sections of the processes shown in
Fig, 5 are given by

σTPt,5i = 0 ,

σTPt,5ii =
−1

vrel

m2
a|λi|vjv3

|λj|2
√
|λ1|2 + |λ2|2

paz
pa0

mHΓ

(4p2
a0 −m2

H)2 + (mHΓ)2
saxsāy ,

σTPt,5iii =
−1

vrel

m2
a|λi|vjv3

|λj|2
√
|λ1|2 + |λ2|2

paz
pa0

mHΓ

(4|~pa|2 +m2
H)2 + (mHΓ)2

saxsāy , (49)

where vrel is the relative velocity of two incoming particles, and i = 1(2), j = 2(1) if
the particle a is in the U(D) sector. The effect of scalar exchange is assumed to be
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dominated by the lightest neutral-scalar particle of mass mH , i.e.

< ΦiΦj >k '
vivj

k2 −m2
H + iε

. (50)

Note from eq. (48) that σTPt,5ii reaches its maximums at pa0 = 0.5mH , which
corresponds to the resonance region of the scattering, and that σTPt,5iii reaches its
maximums when pa0 is slightly larger than 0.[13] Since there is no resonance in Fig.
3(iii), the maximum of σTPt,5iii can be orders of magnitude smaller than the maximum
of σTPt,5ii. Obviously, it is experimentally more favorable to choose scattering channels
and incoming particle momenta which produce maximum T-odd/P-odd total cross
sections. Further investigation of the magnitude of the T-odd/P-odd total cross
sections will require knowledges of the Higgs sector and the masses of the quarks.
The following assumptions are adopted.

(1) There is no preference coupling the Higgs to quarks in the U and D sectors.
This leads to

|λ1| ∼ |λ2| ∼ (
√

2GF )−1/2 = 246GeV . (51)

(2) The order of magnitude of vavb in eqs. (48) and (49) is approximately 1.
(3) The u and d quark masses are approximately 5MeV .
Due to the small quark masses and large vacuum expectation values, the couplings

between quarks and the Higgs particle are very small, and small T-odd/P-odd total
cross sections are expected. Threfore one should attempt to find the largest open
channels. We consider several processes in the following.

4.1 pp̄ scattering

We consider several factors in the T-odd/P-odd total cross section for pp̄ [14].
(1) Since the valence quark composition of a proton is uud and the valence quark

composition of an anti-proton is ūūd̄, the dominant contributions to T-odd/P-odd
total cross section are from σTPt,5ii in eq. (17).

(2) Vallence quarks in a proton only contribute about 30% of the proton spin.
Thus it is assumed that each valence quark contributes about 10% of the total spin.

(3) Both vallence and sea quarks in a proton only contribute about 50% of the
proton total momentum. The most probable momentum for a valence quark in a
protone is about at x = 0.15.
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Then the maximum total cross section of pp̄ is roughly given by

σTPpp̄ ' (
2

10
)σTPt,5ii(uū→ uū) + (

1

10
)σTPt,5ii(dd̄→ dd̄)

= (
2

10× 10
)

1

vrel

m2
u|λ1|v2v3

|λ2|2
√
|λ1|2 + |λ2|2

puz
pu0

1

mHΓ
suxsūy

+(
1

10× 10
)

1

vrel

m2
d|λ2|v1v3

|λ1|2
√
|λ1|2 + |λ2|2

pdz
pd0

1

mHΓ
sdxsd̄y . (52)

Using mH and Γ given in ref. [16], and assuming σt,pp̄ ' 50mb, an estimate of
σTPpp̄ and Axy is given in Table 1.

Table 1

mH (GeV ) ΓH (GeV ) σTPpp̄ (mb) Axy beam energy (GeV )

125.53 4.6× 10−3 2× 10−12 4× 10−14 418

Note that the beam energy in Table 1 is collider energy. For a fixed target
experiment, the beam energy must be properly adjusted.

One can see from Table 1 that it requires high accuracy and sensitivity to mea-
sure such small cross sections.

Modern superconducting technology can measure current changes as low as 10−8 ∼
10−9A. [17] If the luminosity of the beam and target is reasonably large, the small
cross section in Table 1 should be measurable.

4.2 pp scattering

To estimate T-odd/P-odd total cross section of pp, a few factors will be considered.
[14]

(1) The sea quarks in a proton are mainly found in the small x region. Thus
the major contributions to T-odd/P-odd forward scattering would most likely occur
in valence quark collisions, i.e. σTPt,5iii, for beam energies below or around mH/2.
However, if the beam energies were much beyond mH/2, contributions from sea
quarks, i.e. σTPt,5ii, could also be important. Only beam energies below or around
mH/2 are considered. For beam energies much beyond mH/2, one should refer to
section 3.1.

(2) Parton model is assumed to be valid at these beam energies.
(3) As we only consider beam energies below or around mH/2, points 2 and 3 in

section 3.1 remain valid.
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The total cross section of pp is roughly given by

σTPpp ' (
2

10
)σTPt,5iii(uu→ uu) + (

1

10
)σTPt,5iii(dd→ dd)

' (
2

10× 10
)
−1

vrel

m2
u|λ1|v2v3

|λ2|2
√
|λ1|2 + |λ2|2

puz
pu0

mHΓ

(4|~pu|2 +m2
H)2 + (mHΓ)2

suxsūy +

(
1

10× 10
)
−1

vrel

m2
d|λ2|v1v3

|λ1|2
√
|λ1|2 + |λ2|2

pdz
pd0

mHΓ

(4|~pd|2 +m2
H)2 + (mHΓ)2

sdxsd̄y .(53)

Considering mH = 125.35GeV and Γ = 4.6× 10−3GeV [16] and assuming σpp '
50mb, the estimated values of σTPpp and Axy are given in Table 2.

Table 2: pp̄ scattering vs beam energies for mH = 125.35GeV

beam energy (GeV ) σTPpp (mb) Axy
5 2× 10−20 4× 10−22

10 2× 10−20 4× 10−22

50 8× 10−21 2× 10−23

100 2× 10−21 4× 10−23

Note that the beam energies in Table 2 are also collider energies.
As one can see from the results in Table 2, the T-odd/P-odd total cross sec-

tions for pp are much smalller than for pp̄. This is understandable as there are no
resonances in this channel.

One aslo notices that the variations of σTPpp and Axy versus beam energies are
small. This is due to the large mass of the Higgs particle, as compared to the
incoming particle energies.

In general, although both σTPpp̄ and σTPpp are very small, σTPpp̄ should be measurable
with current technologies. However, as the above estimates are based on a neutral
scalar boson, other possible source(s) of T (or CP) violation could be larger than
these estimates. A careful comparisons between pp and pp̄ T-odd/P-odd total cross
sections could provide us more information of T (or CP) violation mechanisms.

4.3 ll̄ and ll scatterings

If the coupling between the lepton sectors and the Higgs sector is similar to the
coupling between quark sectors and the Higgs sector, polarized ll̄ and ll scatterings
can also have T-odd/P-odd total cross sections. We consider the following points.
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(1) Leptons are elementary particles and one does not need to consider the unpo-
larized and polarized structure fountions. Therefore, one can directly uses the result
in eq. (17) for the ll̄ and ll T-odd/P-odd total cross sections.

(2) The total cross sections for ll̄ and ll should be significantly smaller than the
pp̄ and pp cross sections since only electro-weak interactions are involved. For beam
energies which are not in the Z resonance region, σll̄ ∼ σll ∼ 10µb is assumed for
simplicity [18]

The estimated σll̄(σll) and Axy are given in Tables 3-6.

Table 3: Maximum σeē for ma = 125.35GeV H

mH (GeV ) ΓH (GeV ) σTPeē (mb) Axy beam energy (GeV )
125.35 4.6× 10−3 1× 10−12 1× 10−10 63

Table 4: ee scattering vs beam energies for mH = 125.35GeV

beam energy (GeV ) σTPee (mb) Axy
0.5 7× 10−21 7× 10−19

1.0 7× 10−21 7× 10−19

10.0 7× 10−21 7× 10−19

100.0 6× 10−22 6× 10−20

Table 5: Maximum σTPµµ̄ for mH = 125.35GeV

mH (GeV ) ΓH (GeV ) σTPµµ̄ (mb) Axy beam energy (GeV )

125.35 4.6× 10−3 1× 10−8 6× 10−6 63

Table 6: µµ scattering vs beam energies for mH = 125.35GeV

beam energy (GeV ) σTPµµ (mb) Axy
0.5 8× 10−17 8× 10−15

1.0 8× 10−17 8× 10−15

10.0 7× 10−17 7× 10−15

100.0 6× 10−18 6× 10−16

Similar to the results of baryon collisions, ll̄ collisions have larger T-odd/P-odd
total cross sections if the Higgs sector is one of the T-violation sources and if the
coupling between the lepton sectors and the Higgs sector is similar to the one be-
tween the quark sectors and the Higgs sector. Especially for the µµ̄ channel, its
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T-odd/P-odd total cross section is orders of magnitude larger than the correspond-
ing pp̄ channel due to the larger masses of µ and µ̄. If high energy polarized µ and
µ̄ beams were available, the measurements of T-odd/P-odd total cross sections of µ
and µ̄ collisions would provide a sensitive test.

On the other hand, the T-odd/P-odd total cross section of ll collisions is an
order(s) of magnitude smaller than the corresponding ll̄ total cross section. These
estimates are based on the assumption that the neutral Higgs particle contributes to
T (or CP) violation. If a small T-odd/P-odd cross section of ll collisions is measured,
a careful comparison between ll and the corresponding ll̄ T-odd/P-odd total cross
sections would provide us additional information of T (or CP) violation.

5 Summary and Future Prospect

This note addresses the possibilities of seaching for additional sources of T (or
CP) violation through T-odd/P-odd total cross section measurements. It shows
the following. (1) A non-zero T-odd/P-odd total cross section in the null test
1/2 + 1/2 → 1/2 + 1/2 will indicate that there is(are) additional source(s) of T
(or CP) violation besides the phase in CKM matrix. (2) Stronger interactions would
not interfere with the total cross section measurements contributed from weak in-
teraction. (3) The contributions to T-odd/P-odd total cross section from the Higgs
sector can appear at tree level if the Higgs sector contribute to T (or CP) violation,
and the channels with resonance can be measurable with modern technology if the
lightest Higgs mass is 125.35GeV , as we know today, and beam luminosities are rea-
sonably large. (3) If the Higgs coupling to the leptons is similar to the coupling to
quarks, Axy in ll̄ is larger than the one for pp̄ due to the smaller ll̄ total cross section
and simpler structures of lepton, and µµ̄ provides the most sensitive channel due to
the larger muon mass. (4) The present study only considers the coupling of neutral
Higgs particle as the additional source of T (or CP) violation. Actual measurements
could be larger if other mechnisms of T (or CP) violation occur. A careful compari-
son between channels with and without resonance could reveal mechanisms of T (or
CP) violation beyond current ideas. (5) Measurement of A(x, y) in the total cross
section is a null test and as such has the possibility to give very accurate results.
(6) The proposed measurements can provide information on possible extentions of
MSMCKM and the properties of vacuum.
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