Dark Photon Detector Status and Plan

Ming Liu, LANL E1039 Collaboration Meeting 07/15-16, 2019, Fermilab

Dart Photon Detectors — Introduction

Displaced Vertex Trigger

- Two stations of fine-grained scintillator hodoscopes measure track
- FPGA trigger extrapolates tracks to the beam plane (and H4Y hodoscopes) and fires on pairs of tracks with matching Z

Basic Design - Hardware

- Constructed in quadrants (4 × 4 ft boxes, light-tight); quadrants are bolted together using 1.5" 80-20 hardware and supported by I-beams
- Coverage: both stations are dead |y| < 7.5 cm
 - St-1: |x| < 80 cm, |y| < 80 cm
 - ► St-2: |x| < 100 cm, |y| < 100 cm

ST-1 Quadrant

ST-2 Quadrant

Basic Detector Design Parameters

- Extruded scintillator bars with wavelength-shifting fiber+SiPM readout
 - ► St-1: 1 × 1 cm bars, 80 bars/quadrant
 - St-2: 2 x 2 cm bars, 50 bars/quadrant
- Preamps push analog signals out over coax to LeCroy 4413/4416 discriminators, same as other hodoscopes

Trigger Logic – Can also help DY & J/Psi from Upstream Target

- Two levels: identify displaced tracks, trigger on pairs
- L1: three-way coincidence within each quadrant
 - Identify displaced tracks (z₀ ∈ [400, 650] cm) in each quadrant using roads
- L2: two-out-of-four coincidence between opposite-sign quadrants
- In 2017, we wired this to NIM2

Readout Status – 11/2018 (from Sho)

- Tested and installed LeCroy 4413 discriminators from SeaQuest spares
 - Need six more discriminators to finish instrumenting DP1; we have seven believed-good 4413/4416 between LANL and SeaQuest
 - Each quadrant has 130 bars and 9 discriminators (144 channels), so we can use discriminators with bad channels if necessary
- Discriminators are cabled to V1495s
- LED pulsers are cabled, pulse input from patch panel
- V1495s are programmed for 160-ch readout and cosmic trigger
- Dark photon DAQ is set up as it was last year: standalone CODA and single ROC

DP Detector Status

• All broken channels fixed in Nov, 2018, by Sho, Hubert, Kun et al. https://seaquest-docdb.fnal.gov/cgi-bin/private/ShowDocument?docid=4615

- This summer work in progress, July September, 2019
 - Reconfigure the readout/power cables route
 - Relocate racks for readout and PS, to break the ground loop
 - TDC crates, DAQ integration

DP Trigger New Layout (5/28/2019) beam - Run all cables under Possible extended SMA-Lemo, ~5' (NOT needed! 7/2019); the KMag, with cable tray cable tray RACK-4 (exists) VME/TDC (6) **KMAG** VME/TDC (6) Signal cables (40'), under kMag RACK-1 DC-2 **Existing cable** tray Rack-3/DP Trigger DC-2 (L2 rack) RACK-3 (exists) RACK-2 -VME: DP/V1495 4xV1495 New Rack-2, SMA-Lemo unchanged, cable tray, new power to Rack-2 L1 trigger (4 Qs) Rack-1/ST-1: 4x 80 ch Rack-2/ST-2: 4x 50ch L2 rack/V1495 (Rack-3) -CAMAC (10 x LeCroy 4413) -CAMAC (8 x LeCroy 4413) -CAMAC (10 x LeCroy 4413) DP trig(OR) -CAMAC (8 x LeCroy 4413) DY trig(AND FPGA trig's) -NIM/BlueLogic trigger -NIM

Calibration

SiPM PS

-SiPM PS

Work in Progress – Summer 2019

All cables are pull off and ready for reconnection in the new locations,

Thanks Marshall, Kun, Mindy et al

Dark Photon Detector Plan

Test Plan: Aug. – Sept. 2019

- LED pulser: each LED is connected to 19 bars through a splitter
 - The splitters were not designed for perfect uniformity, but we see similar amplitudes between bars pulsed from a single splitter; we see large variations between different splitters
 - With oscilloscope, this tells us when the detector response changes as we tweak the optical coupling
- Cosmics: use V1495 trigger+readout to measure efficiency as a function of bias or threshold (as seen on right)
 - Final test of detector efficiency and signal margin

Target/Dump Simulation Study - Work in Progress

Thanks Haiwang Yu's help for setting up the simulation framework for DP, Also Kenichi, Kun and Mindy et al.

Simulation To-Do's

- Generate MC samples at
 - target (Z = -300cm)
 - beam dump ($Z = 0^{50}$ cm)
- Physics signal samples
 - J/Psi
 - Drell-Yan, M= 4-8GeV
 - Single muons (pi/K/Charm)
- Trigger lookup tables
 - Beam-Dump separation
 - FPGA

To be ready for Day-1 Physics

- 1. J/Psi A N
- 2. Dark Photon search
- 3. Single Muons A N
- 4. Drell-Yan A_N

Summary

- Dark Photon Detector re-configuration in progress
 - Re-cabling
 - Install TDCs,
 - Trigger & DAQ integration
 - Test run w/ calib system
 - Cosmic run, including other DCs, in Aug/Sept. 2019
- Dark photon trigger optimization for target
 - Signal simulations: J/Psi, DY, single muons
 - Dark photon and alikes
 - Update FPGA lookup table

To be ready for beam in mid October, 2019

People involved -Sho, Kun, Mindy, Marshall, Huizi, Zongze, Hubert, Ming Haiwang Kenichi

Haiwang, Kenichi,

Noah, Minjung,

Dylan, Cristina, Nhan et al (HEP groups)

Welcome to join us!

