

Ming Liu LANL 3/07/2019 E1039 Collaboration Meeting

Outline

- Recent highlights
 - RHIC, COMPASS et al
- E1039 opportunities
 - Sea quark Sivers at high-x
 - ubar & dbar
 - Gluon Sivers at high-x
 - Other topics
 - Transversity distributions ...
- Trigger optimization
 - J/Psi
 - Open charm

Large TSSA Challenge: TMD Physics

Large Transverse Single Spin Asymmetry (TSSA) in forward hadron production persists up to top RHIC energy.

Probe the Underlying Physics via Hard Scatterings TMD vs Collinear Twist-3 Factorizations

(i) Sivers mechanism:

correlation proton spin & parton k_T

(ii) Collins mechanism:

Transversity × spin-dep fragmentation

Collinear Twist-3 (RHIC, Fermilab):

quark-gluon/gluon-gluon correlation

for hadron production @E1039

TMD: f(x, k_T) Sivers functions, quark transversity etc.

E1039 Dimuon Acceptance

Sivers: Global Fits w/ TMD Evolution

Sivers Functions from Global Fits – Quarks

• Sea Quark Sivers poorly constrained, but small

1612.06413, M. Anselmino et al

E1039 DY A_N Sensitivity

E1039 Polarized Targets and TSSA

Material	Dens.	Dilution Factor	Packing Frac	<pol></pol>	Inter. Length
NH ₃	$.867 \text{ g/cm}^{3}$.176	.60	80%	5.3~%
ND_3	1.007 g/cm^3	.3	.60	32%	5.7%

 Table 1: Parameters for the polarized target

x_2 bin	$< x_2 > -$	$\mathrm{NH}_3\ (p^{\uparrow})$		$ND_3 (d^{\uparrow})$		n^{\uparrow}
		N	$\Delta A~(\%)$	N	$\Delta A \ (\%)$	$\Delta A(\%)$
0.10 - 0.16	0.139	5.0×10^4	3.2	5.8×10^{4}	4.3	5.4
0.16 - 0.19	0.175	4.5×10^4	3.3	5.2×10^4	4.6	5.7
0.19 - 0.24	0.213	$5.7 imes 10^4$	2.9	6.6×10^4	4.1	5.0
0.24 - 0.60	0.295	$5.5 imes 10^4$	3.0	6.4×10^{4}	4.1	5.1

Table 4: Event yield and statistical precision of the A_N measurement in each of the x_2 bins for the NH₃ (p^{\uparrow}) and ND₃ (d^{\uparrow}) targets, and the deduced A_N measurement precision for polarized n.

Sea Quarks Probed at RHIC 500GeV p+p

 $q(x_1) + \bar{q'}(x_2) \to W^{\pm} \to e^{\pm} + \nu(\bar{\nu})$

$$\begin{array}{ll} \mathsf{A}_{\mathsf{N}}(\mathsf{W}^{\scriptscriptstyle +}) \simeq & \left(\Delta^{N} f_{u/p^{\uparrow}} \otimes f_{\bar{d}/p} + \Delta^{N} f_{\bar{d}/p^{\uparrow}} \otimes f_{u/p} \right) \\ \\ \mathsf{A}_{\mathsf{N}}(\mathsf{W}^{\scriptscriptstyle -}) \simeq & \left(\Delta^{N} f_{\bar{u}/p^{\uparrow}} \otimes f_{d/p} + \Delta^{N} f_{d/p^{\uparrow}} \otimes f_{\bar{u}/p} \right) \end{array}$$

Sensitive to flavor identified (sea)quarks' Sivers functions

RHIC W^{+/-} TSSA: Sea Quark Sivers

Sea Quark Sivers Effects: RHIC W^{+/-} A_N

Favors non-zero d-bar Sivers: ~ pion cloud picture

F. Tian et al. / Nuclear Physics A 968 (2017) 379–390

Slightly prefer to have good d-bar data (ND₃) from E1039 first

3/7/19

Ming Liu, E1039 Collab. Mtg

13

SeaQuest/E1039 Projected Drell-Yan A_N

Non-Vanishing Sea Quark Sivers Distribution ?

Study Gluon Sivers at high-x - a lot of gluons but poorly known!

Open Charm Production in p+p at LO - access gluon distribution

Open charm total X-seciton (ub) vs sqrt(s)

Gluon Sivers from a Model Fit

1611.00125 Z. Lu & B.Q. Ma

3/7/19

Open Charm TSSA in Twist-3 Approach

Factorized formula for D-meson production

Qiu, 2010

Same factorized formula for both subprocesses:

$$\begin{split} E_{P_h} \frac{d\Delta\sigma}{d^3 P_h} \Big|_{q\bar{q}\to c\bar{c}} &= \left. \frac{\alpha_s^2}{S} \sum_q \int \frac{dz}{z^2} D_{c\to h}(z) \int \frac{dx'}{x'} \phi_{\bar{q}/B}(x') \int \frac{dx}{x} \sqrt{4\pi\alpha_s} \left(\frac{\epsilon^{P_h s_T n\bar{n}}}{z\tilde{u}} \right) \delta\left(\tilde{s} + \tilde{t} + \tilde{u} \right) \\ &\times \left[\left[\left(T_{q,F}(x,x) - x \frac{d}{dx} T_{q,F}(x,x) \right) H_{q\bar{q}\to c}(\tilde{s},\tilde{t},\tilde{u}) + T_{q,F}(x,x) \mathcal{H}_{q\bar{q}\to c}(\tilde{s},\tilde{t},\tilde{u}) \right], \\ E_{P_h} \frac{d\Delta\sigma}{d^3 P_h} \Big|_{gg\to c\bar{c}} &= \left. \frac{\alpha_s^2}{S} \sum_{i=f,d} \int \frac{dz}{z^2} D_{c\to h}(z) \int \frac{dx'}{x'} \phi_{g/B}(x') \int \frac{dx}{x} \sqrt{4\pi\alpha_s} \left(\frac{\epsilon^{P_h s_T n\bar{n}}}{z\tilde{u}} \right) \delta\left(\tilde{s} + \tilde{t} + \tilde{u} \right) \\ &\times \left[\left[\left(T_G^{(i)}(x,x) - x \frac{d}{dx} T_G^{(i)}(x,x) \right) H_{gg\to c}^{(i)}(\tilde{s},\tilde{t},\tilde{u}) + T_G^{(i)}(x,x) \mathcal{H}_{gg\to c}^{(i)}(\tilde{s},\tilde{t},\tilde{u}) \right], \end{split} \right] \end{split}$$

Hard parts:

$$H_{q\bar{q}\to c} = H^{I}_{q\bar{q}\to c} + H^{F}_{q\bar{q}\to c} \left(1 + \frac{\tilde{u}}{\tilde{t}}\right) \qquad H^{(i)}_{gg\to c} = H^{I(i)}_{gg\to c} + H^{F(i)}_{gg\to c} \left(1 + \frac{\tilde{u}}{\tilde{t}}\right)$$

All $\mathcal{H}_{q\bar{q}\to c}$ and $\mathcal{H}_{gg\to c}^{I(i)}$ and $\mathcal{H}_{gg\to c}^{F(i)}$ vanish as $m_c^2 \to 0$

 $\mathcal{H}_{aq \to \bar{c}}^{(f)} = \mathcal{H}_{aq \to c}^{(f)}, \qquad \mathcal{H}_{aq \to \bar{c}}^{(d)} = -\mathcal{H}_{aq \to c}^{(d)}.$

☐ Hard parts change sign for $T_G^{(d)}(x,x)$ when $c \rightarrow \overline{c}$ $H_{ag \rightarrow \overline{c}}^{(f)} = H_{ag \rightarrow c}^{(f)}, \qquad H_{ag \rightarrow \overline{c}}^{(d)} = -H_{ag \rightarrow c}^{(d)},$

Twist-3

19

Heavy Quark TSSA @Fermilab Twist-3 quark-gluon correlation functions

• Different color factors for charm and anti-charm A_N

$$q + \overline{q} \to C\overline{C}$$

F. Yuan and J. Zhou PLB 668 (2008) 216-220

Open Charm TSSA at Low Energy $A_N: q + \overline{q} \rightarrow c(\overline{c}) + X$

GSI: p+pbar. (similar energy of E1039)

$J/\psi A_N$

 $\Box J/\psi A_N$ is sensitive to the production mechanisms

• Assuming a non-zero gluon Sivers function, in pp scattering, $J/\psi A_N$ vanishes if the pair are produced in a color-octet model but survives in the color-singlet model

Single & Dimuon Triggers: Target-Dump Separation with DP trigger detectors? (dZ~30cm)

- 1. Tag: single muons from pi/K decays
 - from target and beam dump
- 2. Trigger: single muons
 - high statistic single muons to provide positive A_{N} signals

- Low pZ events preferred (more "valence origin" hadrons), trigger optimization required;

- High pZ events are more sensitive to gluon and sea-quark Sivers

Summary

- Sea quark Sivers
 - D-bar (ND3)
 - Ubar (NH3)
- Gluon Sivers
 - Open charm
 - J/Psi
- Triggers optimization
 - Target and dump separation

Expected TSSA small -- > a lot of statistics required, important to trigger on signals from the target

Backup slides

Target and Beam Dump Event Separation target at upstream: Z=-3.5m

COMPASS Drell-Yan Run 2015 Results

Verification of the sign change by reducing of the error by a factor of ~1.5.

Drell-Yan Sivers Asymmetries

Kang et al, 1401.5078

Open Charm via high pT Single muons?

- Open charm cross section
 - Test NLO pQCD framework
- Open charm TSSA
 - test pQCD twist-3 framework
- High pT single muon trigger
- Target and dump separation

TSSA in Heavy Quark Production in p+p

Kang, Qiu, Vogelsang, Yuan, PRD 2008

More on Open Charm Production

Fixed targets vs NLO

Collider mode @RHIC

PRL 95, 122001 (2005) M. Cacciari, P. Nason, R. Vogt

12.5

18.5

15

15

SeaQuest Dimuons: Improve acceptance for low mass dimuons

Open up dimuon acceptance at trigger level:

- Possible with the dark photon triggers
- Improved DAQ
- Better background determination

PHENIX dimuons

First Precision Open HF A_N from PHENIX

Phys.Rev. D95, 112001 (2017)

3/7/19