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We study hidden-sector particles at past (CERN-Hamburg-Amsterdam-Rome-MoscowCollaboration and
NuCal), present (NA62, SeaQuest, and DarkQuest), and future (LongQuest) experiments at the high-energy
intensity frontier. We focus on exploring the minimal vector portal and the next-to-minimal models in which
the productions and decays are decoupled. These next-to-minimal models have mostly been devised to
explain experimental anomalies while avoiding existing constraints.We demonstrate that proton fixed-target
experiments provide one of the most powerful probes for the MeV to few GeV mass range of these models,
using inelastic dark matter (iDM) as an example. We consider an iDMmodel with a small mass splitting that
yields the observed dark matter relic abundance, and a scenario with a sizable mass splitting that can also
explain the muon g − 2 anomaly. We set strong limits based on the CERN-Hamburg-Amsterdam-Rome-
Moscow Collaboration and NuCal experiments, which come close to excluding iDM as a full-abundance
thermal dark matter candidate in the MeV to GeV mass range. We also make projections based on NA62,
SeaQuest, and DarkQuest and update the constraints of the minimal dark photon parameter space. We find
that NuCal sets the only existing constraint in ϵ ∼ 10−8–10−4 regime, reaching ∼800 MeV in dark photon
mass due to the resonant enhancement of proton bremsstrahlung production. These studies also motivate
LongQuest, a three-stage retooling of the SeaQuest experimentwith short (≲5 m),medium (∼5 m), and long
(≳35 m) baseline tracking stations and detectors as a multipurpose machine to explore new physics.
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Introduction.—Given the nonobservation of new physics
at the TeV scale and the ever-stronger constraints on
weakly interacting massive particle dark matter (DM)
[1], many physicists have shifted their attention to the
study of dark-sector particles with sub-GeV to few GeV
masses. This regime is also of great interest due to a number
of experimental anomalies, including the muon g − 2
anomaly [2,3] and the Land Scintillator Neutrino
Detector and Mini Booster Neutrino Experiment excesses
[4,5].
Proton fixed-target machines are among the most power-

ful and robust probes of dark-sector and long-lived particles
in the MeV to ∼10 GeV regime (e.g., [6–18]). First, the
searches benefit from the combination of high energy and
high intensity that the proton beams provide. Second, these
accelerator-based probes do not depend on DM abundance,
velocity distribution, or cosmic history. The constraints

and sensitivity reach also do not depend on complicated
astrophysics or rare events. As our theoretical understand-
ing of the dark sector advances, it is crucial to look back at
the highest-energy experiments of the intensity frontier.
These include past experiments like the CERN-Hamburg-
Amsterdam-Rome-Moscow Collaboration (CHARM)
and NuCal (ν-Cal I) and ongoing experiments like
NA62, SeaQuest, and SpinQuest and their beam-dump
and upgrade proposals (the NA62 beam-dump run and the
DarkQuest proposal [19]). It is also important to look
closely at the existing facilities to see if low-cost repurpos-
ing or upgrades can help further explore beyond-the-
standard-model physics [20,21].
To demonstrate the strength of proton fixed-target experi-

ments, we first revisit several of the existing constraints of
the vector portal [8,11,22–81], fill in the missing relevant
production channels, and conduct a robust reanalysis based
on the available data. Furthermore, we study a next-to-
minimal class of models considered to have a certain range
of lifetimes or decay lengths to avoid experimental or
observational bounds while explaining specific anomalies.
One of the best examples of this class of models is the
inelastic dark matter (iDM) model [10,82–87]. In the case
of iDM, the production of the dark-sector particles is
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predominantly through small standard model (SM) cou-
pling, but the decay length of the dark-sector particles in the
search is also determined by the mass splitting of nearly
degenerate dark particle states. iDM provides one of the few
viable GeVand sub-GeV thermal DM scenarios that freezes
out to the right relic abundance, also called “thermal targets”
(thermal DM that can be probed in near-future experiments)
[88–103]. iDM was also studied as one of the last viable
vector-portal explanations of the muon g − 2 anomaly
[2,86,104].
We set strong new constraints on iDM model parameters

in the MeV to GeV regime, based on CHARM and NuCal
beam-dump experiments, for both small and sizable iDM
mass splitting, ruling out a large portion of the parameter
space for iDM to account for the total DM abundance. We
also revisit and improve theminimal dark photon bounds set
by the pioneering analyses [51,53,54]. In addition, we
perform the first dark photon and iDM sensitivity projec-
tions based on the NA62 beam-dump run. NA62 can further
extend the sensitivity of the two scenarios and help to close
the window of parameter space for which iDM models can
explain themuon g − 2 anomaly. Finally, we conduct a study
of iDM in the muon g − 2 regime based on the DarkQuest
upgrade of the SeaQuest experiment [8,13,105]. We dem-
onstrate a general point that high-energy proton fixed-target
machines provide strong probes of models that would
otherwise escape the bounds from other experiments.
Inspired by the studies of SeaQuest and DarkQuest

(SQ-DQ), we consider a complete retooling of the
SeaQuest and SpinQuest experiments as a dedicated and
multipurpose experiment to conduct dark-sector searches
with short (≲5 m), medium (∼5–12 m), and long (≳35 m)
baseline detectors. We designate all these new installations
as “LongQuest” and discuss the three-stage retooling in the
Supplemental Material [106].
Models and signatures.—Dark photon from kinetic

mixing: A minimal model of a visibly decaying dark
photon through the kinetic mixing between SM Uð1ÞY
and a dark Uð1Þ gauge field is given by

Lkinmix ¼
ϵ

2 cos θW
A0
μνBμν; ð1Þ

where θW is the Weinberg angle. The crucial interaction
term between dark photon and SM particles can be
expressed as

Lint ⊃ ϵeA0
μJ

μ
EM; ð2Þ

where J μ
EM is the SM electromagnetic current. We consider

the case of a massive A0 where the mass mA0 can be
generated through the Higgs or Stueckelberg mechanisms.
There are three main production channels considered in

the literature for kinetically mixed dark photons: meson
decays, proton bremsstrahlung, and Drell-Yan and QCD
processes. Each of these processes dominates dark photon
production for different dark photon masses. Among these,

the Drell-Yan and QCD productions suffer large uncer-
tainties in the sub-GeVenergy regime given the uncertainty
in the parton distribution functions [77,107] and thus were
not included in our analysis. All the other relevant
production processes were considered in our analysis.
Inelastic DM: Here, we study iDM composed of a Dirac

pair of two-component Weyl spinors, η and ξ, charged
under a new Uð1ÞD gauge symmetry. We include the DM
interaction term as

Lint ⊃ ϵeA0
μJ

μ
EM þ gDA0

μJ
μ
D: ð3Þ

J μ
D is the dark-sector current to which the dark photon A0

couples. We express gD ≡ ffiffiffiffiffiffiffiffiffiffiffi

4παD
p

. This dark-sector current
consists of a four-component fermionic state Ψ ¼ ðηξ†Þ
with two-component Weyl spinors η and ξ. Again, A0 is
massive and Uð1ÞD is broken, and one can write down the
Majorana and Dirac mass terms as

L ⊃ −mDηξ −
1

2
δηη

2 −
1

2
δξξ

2 þ H:c: ð4Þ

δη, δξ ≪ mD are technically natural because they break the
Uð1Þ symmetry explicitly. After the mass diagonalization
m12 ≃mD ∓ 1

2
ðδη þ δξÞ, we have χ1 ≃ iðη − ξÞ= ffiffiffi

2
p

; χ2 ≃
ðηþ ξÞ= ffiffiffi

2
p

.
The relevant parts of the Lagrangian in terms of the mass

eigenstates χ1 and χ2 are

L ⊃
X

i¼1;2

χ̄iði∂ −mχiÞχi − ðgDA0
μχ̄1γ

μχ2 þ H:c:Þ: ð5Þ

The elastic interactions are suppressed by a factor of δ=mD.
δ ≪ mD is again technically natural because the Uð1Þ
explicit breaking would be restored when δ → 0. Note that
the elastic interaction vanishes as δη ¼ δξ.
The particle χ1, which we take to be lighter than χ2, can

account for the current-day DM abundance. The mass
splitting is defined as

Δ≡m2 −m1

m1

: ð6Þ

An approximate analytical expression for the A0 domi-
nantly decays to χ1χ2 when the mass splitting Δ and the
elastic coupling terms are small is

ΓðA0 → χ1χ2Þ ≃
αDmA0

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
4m2

1

m2
A0

s

�

1þ 2m2
1

m2
A0

�

: ð7Þ

An approximation for the width of the χ2 decay also
exists in the small Δ limit when mA0 ≫ m1 ≫ ml:
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Γðχ2 → χ1lþl−Þ ≃
4ϵ2αemαDΔ5m5

1

15πm4
A0

: ð8Þ

We would like to emphasize that, in our analysis, we
simulated the three-body decay χ2 → eþe−χ1 by sampling
the full decay width, calculated in the Supplemental
Material [106], rather than using the approximations here.
The dark photon has been proposed as an explanation of

the muon g − 2 anomaly [2,104,108–117]. The minimal
models assume that the dark photon either decays com-
pletely visibly [30,39–41,56,62] or invisibly toDMparticles
[88,108] and are excluded by various experiments when
they assume large enough kinetic mixing to account for the
muon g − 2 anomaly [62,118,119]. These constraints can be
weakened if the dark photon is allowed to decay semivisibly,
as is possible in iDM models [86]. If Δ is sufficiently large,
the χ2 will decay inside the detector and thus avoid the
invisible decay bounds on elastic DM [118–120].
iDM thermal target and muon g − 2window: The search

strategy in this Letter is to look for the decay of the
dark photon through A0 → lþl− or the three-body semi-
visible decay χ2 → χ1lþl−, described in detail in the
Supplemental Material [106]. The decay signature is a
lepton-antilepton pair, and the best probes are “decay
detectors” in a fixed-target setup. In this addition, we
discuss each of the experiments considered in detail—
including CHARM, NA62, NuCal and U70, and SeaQuest
and DarkQuest—in the Supplemental Material [106] and
summarize some useful experimental information for
comparison in Table I of the Supplemental Material [106].
One of the main goals of this Letter is to provide

constraints on the canonical iDMwith a smallmass splitting:
Δ ≪ 1. We consider fermionic iDM and fix the mediator to
DMmass ratio to bemA0 ¼ 3m1. In the small mass-splitting
regime, we consider fractional mass differences Δ ¼ 0.1
with αD ¼ 0.1 and Δ ¼ 0.05 with αD ¼ 0.5 as examples.
Also, we fix the value of the kinetic mixing ϵ, while varying
αD such that the model produces the observed relic abun-
dance. We show the new constraints and projections for the
small mass splitting, for Δ ¼ 0.1 with αD ¼ 0.1 iDM
parameter space, in Fig. 2 and the results of other choices
of parameters in the Supplemental Material [106].
In addition, we present a detailed discussion of the

sensitivity of proton-beam fixed-target facilities to study
iDM with Δ≳ 0.4 comprising a parameter regime that
could explain the muon g − 2 anomaly and avoid other
experimental constraints. The existing data from CHARM
and NuCal are considered, and we also include studies
based on the NA62 beam-dump mode as well as the SQ-
DQ configuration. We consider iDM with a sizable mass-
splitting regime, Δ ¼ 0.4, and coupling αD ¼ 0.1. Then,
we fix the ϵ to the value that gives the correct muon g − 2
value while varying αD to compare the current constraints
and future sensitivity reach. The results are shown in Fig. 3.
Although strong constraints can be set, the muon g − 2

target regime cannot be excluded because the distances
between the targets and the decay regions are too large, and
χ2 decays before reaching the fiducial detector region. This
provides a motivation to consider the LongQuest upgrade
of SQ-DQ to probe this regime.
Results and discussions.—Minimal dark photon: We

update the dark photon bounds from CHARM and

(a) 

(b)

FIG. 1. We show updates on the kinetically mixed visibly
decaying dark photon constraints and projections. In (a), gray
contours are the previous bounds set based on analyses of the
NuCal [51,54] and CHARM [53] experiments. In (b), projections
for future experiments are shown in dot-dashed curves with color
and also labeled in the plot. In both (a) and (b), our updated
bounds on CHARM (purple) and NuCal (blue) and our new
projections of NA62 (red) and LongQuest-I (black) are shown.
(a) Updates on dark photon bounds and the NA62 projection.
(b) Compilation of projections and constraints on dark photon.
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NuCal in Fig. 1(a), taking into account additional relevant
production channels (production of dark photons from η
meson decays for NuCal and proton bremsstrahlung for
CHARM). Interestingly, the bound does not get stronger
for most parameter spaces in our consideration, except for
the high mass regime, even though we take into account
new relevant production channels. This is because the
strength of the bounds in the meson-decay dominated
regime (mA0 ≪ mη) are highly dependent on the estimate
of the overall meson production rate, and ours are
conservative (see Ref. [121] for comparisons between
different methods of estimating π0 production).
At large masses, there is an improvement from our

handling of the proton bremsstrahlung, which considers a
timelike form factor [9,131] with resonant enhancement
from mixing with the ρ and ω mesons, visible in the
constraint plots as a sharp peak. The NuCal contour is also
the first constraint of this kind with a dark photon mass
reach close to 1 GeV, as shown in Fig. 1. CHARM’s
production is not enhanced to the same extent due in part to
its off-axis position and the highly collimated nature of
bremsstrahlung. We also studied NA62’s projected sensi-
tivity in its proposed beam-dump mode based on [121] and
found that it could explore stronger couplings due in large
part to the higher energy beam and that the same ρ peak
exhibited by NuCal appears at larger masses.
Finally, we make projections for the sensitivity of

SQ-DQ and LongQuest-I with a simplified detector sim-
ulation. The short baseline relative to the length of the
decay volume renders the detector particularly sensitive to
the lifetime of the dark photon, which combined with the
SeaqQuest detector simulation resulted in some statistical
noise in the sensitivity. In Fig. 1(b), we show the sensitivity

projections of the 1020 protons on target (POT) runs for
SQ-DQ and LongQuest-I. We demonstrate the potential
advantage of such an improved decay detector and the
reduction of background rate to a 10% level by comparing
the SQ-DQ and LongQuest-I curves.

FIG. 2. We show new constraints on iDM based on the data of
CHARM (purple) and NuCal (blue), and the projected sensitivity
of the NA62 beam-dump run (red). The gray shaded regions are
previously existing constraints (see Sec. I B). We also include the
potential E137 decay constraint [10,13,40] along with future
projections [10,13,32,73,76,77,85,122–130]. One can see the
E137, Mini Booster Neutrino Experiment, and Beam Dump
Experiment (BDX) projections are already covered by CHARM
and NuCal. (a) Compilation of constraints and sensitivity
projections for iDM with mA0 ¼ 3m1, αD ¼ 0.1, and Δ ¼ 0.1.

(a)

(b)

FIG. 3. These plots show constraints and sensitivity projections
for iDM within the muon g − 2 motivated regime. Here we
consider mA0 ¼ 3m1 for demonstration. The muon g − 2 favored
regime is the light-green band in (a), while the thick-black curves
are again the parameter contour yielding the correct DM relic
abundance. We considered the bounds from CHARM (purple)
and NuCal (blue) and projections from NA62 [1018 POT (red),
1.3 × 1016 POT (magenta)], SQ-DQ [1020 POT (dashed-cyan),
1.4 × 1018 POT (dashed-pine green), and LongQuest-I (3-GeV
cut: darker green; no-cut: black)]. In (b), we only plot the
LongQuest-I no cut curve because it is basically identical to
the 3-GeV cut result. The gray region denotes the previously
existing constraints. (a) iDM: Δ ¼ 0.4, αD ¼ 0.1. With muon
g − 2 and DM regimes. (b) iDM Muon g − 2 Target: Δ ¼ 0.5,
ϵ ¼ ϵðg−2Þμ .
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iDM thermal and ðg − 2Þμ targets: The constraints and
sensitivity projections for iDM with Δ ¼ 0.1, α ¼ 0.1 are
shown in Fig. 2 and the parameter space to explain the
muon g − 2 anomaly in Fig. 3. Other iDM constraints and
projections are plotted in Fig. 6 of the Supplemental
Material [106]. All previously considered experimental
constraints in this parameter space are included and labeled
in the plots [6,13,40,73,119,132–137], with the exception
of the potential constraints from the recast of the E137
analysis [40], discussed in the Supplemental Material
[106]. Below 10 MeV, the iDM model is subject to bounds
on Neff [138,139], and the proton fixed-target probes
become suppressed by the limited phase space available
to the χ1lþl− states. We therefore choose to focus on iDM
masses larger than 10 MeV.
As shown in Fig. 2, CHARM and NuCal provide strong

constraints on iDM with small mass splittings, excluding
almost all of the regimes that predict the correct DM relic
abundance. NA62 can further improve the exploration
of these iDM scenarios. Other future probes of iDM
[10,13,32,73,76,77,85,122–130] relevant for the regime
of interest are also included in Fig. 2. The benchmark
thermal relic curve we consider in Fig. 2 of relic iDM is
already ruled out by previous experiments. In the
Supplemental Material [106], we show that there is still
a small region of parameter space when the kinetic mixing
and masses are small in the small mass-splitting case (e.g.,
δ ¼ 0.05 is picked to demonstrate that), in when that the
relic abundance line survives current constraints.
For the large mass-splitting iDM parameter space moti-

vated by the muon g − 2 anomaly, proton fixed-target
experiments provide strong new constraints, as shown in
Fig. 3. However, in order to resolve the muon g − 2
discrepancy, there must be large kinetic mixing between
the dark and SM photons, and the dark photon must have a
mass ≳300 MeV to escape existing constraints. The
CHARM and NuCal analyses poorly constrain the open
muon g − 2 favored parameter space because the large mass
and strong coupling to the SM leads the χ2 particles to
decay before they reach the decay regions.
In Fig. 3, we also show the first study of the iDM muon

g − 2 regime in SQ-DQ assuming a sizable mass splitting:
Δ ¼ 0.4. We place a contour on more than ten events for
the sensitivity of SQ-DQ 1018 POT run. For the SQ-DQ
1020 POT run, we assume 103 background events (a rough
estimation from long-lived kaon decays) to set a sensitivity
projection. One can see that SQ-DQ does improve the
sensitivity to smaller couplings with a 1020 POT run.
However, as can be seen in this figure, the sensitivity to
iDM in the ðg − 2Þμ valid regime is not improved by SQ-
DQ phase I and II.
In principle, SQ-DQ should provide the best sensitivity

probes in this regime, given that it has the shortest distance
between the target and the fiducial decay region among all
the experiments we consider. However, we found that the

sensitivity to this regime is only comparable to that of
CHARM and NuCal because the strong magnetic field in
the KMAG suppresses new physics events by kicking
the visible charged products out of the decay volume [13].
This effect is particularly significant for iDM because the
lepton pairs from χ2 decays are soft, given that the χ1 takes
a large fraction of the χ2 energy. The signal suppression
from the KMAG effectively cancels out the benefit of a
shorter baseline of SQ-DQ.
Finally, we show that the proposedLongQuest-I upgrades

with reduced background and no KMAG magnetic field
would help explore the iDMmuon g-2 regime in Fig. 3. For
the LongQuest-I analysis, we assume the background is
reduced to 10% of the SQ-DQ background. Given the
removal of KMAG and the potential soft SM background,
we consider the sensitivity of a 3-GeV energy threshold
cut and a projection with no energy threshold cut.
Further discussions can be found in the Supplemental
Material [106], which also includes Refs. [6–9,11,12,14,
17–20,40,43,44,51,53,54,71,80,86,105,109,121,122,137,
140–161]. A realistic analysis may need to apply an energy
cut between these choices.
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