New Theory Curves and η Asymmetry with New p_T Bins

Nicole Lewis

University of Michigan

8/5/20

Theory Curves for $A_{N}^{\pi^{0}}$

- Updated from Daniel Pitonyak, things that changed:
 - Used a more up-to-date extraction of the Sivers function from https://arxiv.org/pdf/2002.08384.pdf
 - Added the soft fermion pole (SFP) term from the polarized proton
- The new qgq contribution calculation shows that the midrapidity direct photon A_N is more cleanly sensitive to the trigluon correlation function than previously thought

 A''_N : New p_T bins

PPG135 p_T Bins [GeV]	<pre>p_T Bins From Preliminary [GeV]</pre>	New p_T Bins [GeV]
2 – 3	2 – 3	2 – 3
3 – 4	3 – 4	3 – 4
4 – 5	4 – 5	4 – 5
5 – 6	5 – 6	5 – 6
6 – 7	6 – 8	6 – 7
7 – 8	8 – 15	7 – 8
8 – ??		8-10
		10 – 20

- After reviewing this result, I realized I was using wider p_T bins than PPG 135
- Able to use finer p_T by combining data from two fills together to calculate the asymmetry rather than calculating the asymmetry fill by fill
 - Same method used for π^0 and direct photon asymmetries

Also Eliminated Fills with Problematic GL1P Scalers

Sum of GL1P Scalers for All Xings

Runs with GL1P Scalers that are ~2 orders of magnitude larger than the rest:

431831, 431833, 431834, 431835, 431836, 431837, 431839, 431840, 431844, 431845, 431846, 431859, 431860, 431886, 431888

Correspond to three fills, which are eliminated from the π^0 , η and direct photon analyses

Data Cuts

- Using ERT data
- $|z_{vtx}| < 30 \text{ cm}$
- Cuts for all photon clusters:
 - $0.5 \leq \text{Energy} \leq 20 \text{ GeV}$
 - prob_photon > 0.02
 - χ^2 cut
 - Eliminate dead and warn map clusters
 - Edge tower cut
 - Hot tower cut (fixed bug)
 - $| \text{TOF} | \leq 5 \text{ ns}$
 - Charged Track Veto Cut

- Photon pair cuts
 - same arm
 - cluster distance greater than 8 cm
 - Energy asymmetry $\alpha = \frac{|E_1 E_2|}{|E_1 + |E_2|} < 0.8$
 - Used the same invariant mass ranges as PPG135:

Signal: $480 < M_{\gamma\gamma} < 620$ MeV Background: $300 < M_{\gamma\gamma} < 400$ MeV or $700 < M_{\gamma\gamma} < 800$ MeV

- Cuts for the higher energy trigger
 photon
 - ERT check
 - Highest energy photon in the event to avoid random benefit (not used for preliminary)
 - $p_T \ge 1.5 \text{ GeV}$ (previously $p_T \ge 1.0 \text{ GeV}$)

 η Asymmetry Before the Background Correction

η Asymmetry Before the Background Correction

Background Fraction

Fit a "Gaus+pol3" function to $0.4 < M_{\gamma\gamma} < 0.7~{\rm GeV}$

	$p_T[\text{GeV}]$	West Arm	East Arm	Both Arms
$r = \frac{1}{S+B}$ calculated using the	2 - 3	0.715	0.712	0.714
signal region:	3 - 4	0.606	0.601	0.604
$0.480 < M_{\gamma\gamma} < 0.620~{ m GeV}$	4 - 5	0.554	0.552	0.553
 B is calculated by integrating 	5 - 6	0.52	0.519	0.519
the "pol3" part of the fit	6 - 7	0.501	0.497	0.499
• $S + B$ is calculated by	7 - 8	0.483	0.502	0.492
summing histogram counts	8 - 10	0.466	0.482	0.474
Same method as π^0 analysis	10 - 20	0.452	0.487	0.469

Background Asymmetry

Background Asymmetry

Background Corrected η Asymmetry

Background Corrected η Asymmetry

Background Corrected η Asymmetry

Background Corrected Beam Averaged Asymmetry

$\sin\phi$ Modulation

 ϕ_s is the angle from the spin up direction (y = 0 in PHENIX coordinates) and increases to the left of the polarized beam going direction

$$\frac{1}{P}\epsilon_{N}(\phi_{s}) = \frac{1}{P}\frac{N^{\uparrow}(\phi_{s}) - RN^{\downarrow}(\phi_{s})}{N^{\uparrow}(\phi_{s}) + RN^{\downarrow}(\phi_{s})} = A_{N}\sin\phi_{s}$$
$$A_{N}\sin\phi_{s} \text{ fit plots in Back Up}$$

 A_N^{η} , not corrected for background

Bunch Shuffling

• Randomized each bunch spin combo for every fill 10,000 times

Spin Combo	Blue Beam	Yellow Beam
0	\downarrow	\downarrow
1	\downarrow	↑
2	1	\downarrow
3	1	ſ

- Used the square root formula to avoid having to recalculate the relative luminosity
 - Shuffled asymmetries are calculated exactly the same way as the central asymmetry value
 - Divided this number by the statistical error of the square root formula for that $p_{T} \, {\rm bin}$

Bunch Shuffling Summary

- The widths of the Gaussian fits are consistent with 1, except for the lowest p_T bin
- Extra systematic error from for that bin

$$1.056 \cdot \sigma_{stat} = \sqrt{\left(\sigma_{syst}\right)^2 + (\sigma_{stat})^2}$$

$$\sigma_{syst} = \sqrt{(1.056)^2 - 1} \cdot \sigma_{stat}$$

$$\sigma_{syst} = 0.000620$$

Same formula as π^0 asymmetry

Uncertainty on the Background Fraction

Tried fitting ranges $0.3 < M_{\gamma\gamma} < 0.7 \text{ GeV and}$ $0.4 < M_{\gamma\gamma} < 0.8 \text{ GeV}$ To see how much *r* changed when compared to the central fit range: $0.4 < M_{\gamma\gamma} < 0.7 \text{ GeV}$

Propagated r_{range} through the background subtraction formula to assign a systematic error on the η asymmetry

$p_T[\text{GeV}]$	r range
2 - 3	0.0050
3 - 4	0.0058
4 - 5	0.0049
5 - 6	0.0066
6 - 7	0.0075
7 - 8	0.0066
8 - 10	0.0068
10 - 20	0.0086

					Sys. unc.	
			Sys. unc.	Sys. unc.	(from	
p_T	η	Statistical	(rel lumi	(from bg	bunch	Sys unc.
(GeV/c)	Asymmetry	uncertainty	vs. $sqrt$)	fraction)	shuffling)	(total)
2.39	0.00244	0.00183	0.000518	4.58e-05	0.000620	0.000809
3.53	-0.00199	0.00159	8.36e-05	3.31e-05	0	8.99e-05
4.39	-0.00331	0.00248	0.000144	4.55e-05	0	0.000151
5.40	-0.00139	0.00421	0.000241	3.59e-05	0	0.000244
6.41	0.00222	0.00709	0.00112	6.35e-06	0	0.00112
7.42	0.0103	0.0115	0.000703	0.000160	0	0.000720
8.75	0.00790	0.0137	0.00124	0.000188	0	0.00125
11.76	0.0168	0.0219	0.00425	0.000370	0	0.00426

Reminder - extra systematic error from bunch shuffling: (because of a greater than one bunch shuffling width)

$$1.056 \cdot \sigma_{stat} = \sqrt{\left(\sigma_{syst}\right)^2 + \left(\sigma_{stat}\right)^2}$$
$$\sigma_{syst} = \sqrt{(1.056)^2 - 1} \cdot \sigma_{stat}$$

Nicole Lewis, University of Michigan

Consistent with preliminary values

Things that changed since preliminary:

- Fixed bug in hot tower cut
- Higher energy photon $p_T > 1.5$ GeV (1.0 GeV used for preliminary)
- Require higher energy photon to be the highest energy photon in the event <0.02
- Removed 3 fills
- Changed method of calculating the background fraction
- Different formula for assigning the systematic error from bunch shuffling All consistent with π^0 analysis

8/5/2020

Nicole Lewis, University of Michigan

Back Up

Photon Pair Counts

U - spin up, D - spin down, L - left, R - right, Y - yellow beam asymmetry, B - blue beam asymmetry

DIV

TIDY

DDV

TIT D

TTT XZ

T 7

	$p_T[\text{Gev}]$	ULY		URI	DRI	ULD	DLD	URD	DUD
	2 - 3	1944849	1945879	2741977	2748194	2743831	2746340	1943899	1946829
	3 - 4	1400540	1402581	1764747	1764456	1764524	1764679	1402402	1400719
Signal	4 - 5	471452	471371	566300	566053	565022	567331	471426	471397
$480 < M_{\gamma\gamma} < 620 \text{ MeV}$	5 - 6	142937	142838	165844	165955	165869	165930	143112	142663
	6 - 7	46754	46805	53151	53767	53562	53356	46935	46624
	7 - 8	17674	17723	19617	19699	19811	19505	17686	17711
	8 - 10	10736	10743	11924	11957	11949	11932	10733	10746
	10 - 20	3697	3683	3802	3787	3793	3796	3631	3749
				•	•	•			
	$p_T[\text{GeV}]$	ULY	DLY	URY	DRY	ULB	DLB	URB	DRB
	$\frac{p_T[\text{GeV}]}{2-3}$	ULY 2001232	DLY 2001647	URY 2710144	DRY 2710917	ULB 2708566	DLB 2712495	URB 2000623	DRB 2002256
Daalaanaanala	$\begin{array}{c} p_T[\text{GeV}] \\ \hline 2 - 3 \\ \hline 3 - 4 \end{array}$	ULY 2001232 1225706	DLY 2001647 1226586	URY 2710144 1529674	DRY 2710917 1531373	ULB 2708566 1529071	DLB 2712495 1531976	URB 2000623 1224677	DRB 2002256 1227615
Background:	$\begin{array}{c} p_T[\text{GeV}] \\ 2 - 3 \\ 3 - 4 \\ 4 - 5 \end{array}$	ULY 2001232 1225706 369856	DLY 2001647 1226586 368856	URY 2710144 1529674 444255	DRY 2710917 1531373 444633	ULB 2708566 1529071 444180	DLB 2712495 1531976 444708	URB 2000623 1224677 369206	DRB 2002256 1227615 369506
Background: $300 < M_{yy} < 400 \text{ MeV}$	$\begin{array}{c} p_T[\text{GeV}] \\ 2 - 3 \\ 3 - 4 \\ 4 - 5 \\ 5 - 6 \end{array}$	ULY 2001232 1225706 369856 104169	DLY 2001647 1226586 368856 103361	URY 2710144 1529674 444255 120831	DRY 2710917 1531373 444633 121044	ULB 2708566 1529071 444180 120993	DLB 2712495 1531976 444708 120882	URB 2000623 1224677 369206 104026	DRB 2002256 1227615 369506 103504
Background: $300 < M_{\gamma\gamma} < 400 \text{ MeV}$	$\begin{array}{c} p_T[\text{GeV}] \\ 2 - 3 \\ 3 - 4 \\ 4 - 5 \\ 5 - 6 \\ 6 - 7 \end{array}$	ULY 2001232 1225706 369856 104169 32475	DLY 2001647 1226586 368856 103361 32458	URY 2710144 1529674 444255 120831 36914	DRY 2710917 1531373 444633 121044 36757	ULB 2708566 1529071 444180 120993 37091	DLB 2712495 1531976 444708 120882 36580	URB 2000623 1224677 369206 104026 32531	DRB 2002256 1227615 369506 103504 32402
Background: $300 < M_{\gamma\gamma} < 400$ MeV $700 < M_{\gamma\gamma} < 800$ MeV	$p_T[\text{GeV}] \\ 2 - 3 \\ 3 - 4 \\ 4 - 5 \\ 5 - 6 \\ 6 - 7 \\ 7 - 8$	ULY 2001232 1225706 369856 104169 32475 11757	DLY 2001647 1226586 368856 103361 32458 11682	URY 2710144 1529674 444255 120831 36914 13055	DRY 2710917 1531373 444633 121044 36757 12777	ULB 2708566 1529071 444180 120993 37091 13053	DLB 2712495 1531976 444708 120882 36580 12779	URB 2000623 1224677 369206 104026 32531 11797	DRB 2002256 1227615 369506 103504 32402 11642
Background: $300 < M_{\gamma\gamma} < 400$ MeV $700 < M_{\gamma\gamma} < 800$ MeV	$p_T[\text{GeV}] \\ 2 - 3 \\ 3 - 4 \\ 4 - 5 \\ 5 - 6 \\ 6 - 7 \\ 7 - 8 \\ 8 - 10 \\ \end{cases}$	ULY 2001232 1225706 369856 104169 32475 11757 7136	DLY 2001647 1226586 368856 103361 32458 11682 6938	URY 2710144 1529674 444255 120831 36914 13055 7638	DRY 2710917 1531373 444633 121044 36757 12777 7596	ULB 2708566 1529071 444180 120993 37091 13053 7553	DLB 2712495 1531976 444708 120882 36580 12779 7681	URB 2000623 1224677 369206 104026 32531 11797 7031	DRB 2002256 1227615 369506 103504 32402 11642 7043

TIDD

DID

Cross Check - Splitting the Background Asymmetry By Invariant Mass Region Yellow Yellow East Arm - Left Asymmetry East Arm - Left Asymmetry 0.04 0.04 West Arm - Right Asymmetry Beam est Arm - Right Asymmetry Beam **Relative Luminosity** 0.02 0.02 Formula **Yellow Beam** -0.02-0.02**Cross Check** -0.04-0.04 $300 < M_{\gamma\gamma} < 400 \text{ MeV}$ $700 < M_{\gamma\gamma} < 800 \text{ MeV}$ -0.06 16 18 20 p_ [GeV] 20 p_ [GeV] 12 $T(p_T) = \frac{A_N^{left} - A_N^{right}}{\sqrt{(\sigma^{left})^2 + (\sigma^{right})^2}}$ 8/5/2020 p_[GeV] p_[GeV]

Asymmetry Values From Fits

Asymmetry Values From Integrating Over Arms

Nicole Lewis, University of Michigan