# Transverse Single Spin Asymmetry in Open Heavy Flavor Production in Run12 Polarized p+p Collisions at $\sqrt{s} = 200 \text{ GeV}$

Jeongsu Bok<sup>1</sup>, Xiaorong Wang<sup>1</sup>, Stephen Pate<sup>1</sup>, Vassili Papavassiliou<sup>1</sup>, Haiwang Yu<sup>1</sup>, Chen Xu<sup>1</sup>, Sanghoon Lim<sup>2</sup>, Ming Liu<sup>2</sup>, Jin Huang<sup>3</sup>

(1) New Mexico State University

(2) Los Alamos National Laboratory

(3) Brookhaven National Laboratory

January 14, 2017

## Contents

| 1        | Introduction                                                                                                                                                           | <b>2</b>      |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| <b>2</b> | Run selection                                                                                                                                                          | <b>2</b>      |
| 3        | Event and track selection                                                                                                                                              | 3             |
| 4        | Relative Luminosity                                                                                                                                                    | 4             |
| <b>5</b> | Single muon measurements                                                                                                                                               | 4             |
| 6        | Transverse single spin asymmetry         6.1       Maximum Likelihood Method         6.2       Inclusion and herborrow descent structure                               | <b>5</b><br>5 |
|          | 6.2 Inclusive and background asymmetry estimations $\dots \dots \dots$ | 0<br>8        |
|          | $6.3.1  (-) \text{ charge } \dots $                              | 11            |
|          | $6.3.2  (+) \text{ charge } \ldots $            | 15            |
|          | 6.4 $A_N$ vs. $x_F$                                                                                                                                                    | 19            |

|   |                                                                                                                                                                                                                     | 6.4.1                                                 | $(-) charge \ldots \ldots$ | 19                                             |  |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|--|
|   |                                                                                                                                                                                                                     | 6.4.2                                                 | $(+) charge \ldots \ldots$ | 22                                             |  |  |  |
|   | 6.5                                                                                                                                                                                                                 | System                                                | natic uncertainty                                                                                                                                 | 25                                             |  |  |  |
|   |                                                                                                                                                                                                                     | 6.5.1                                                 | $\delta f_h$ Fraction of light hadron background $\ldots \ldots \ldots \ldots \ldots$                                                             | 25                                             |  |  |  |
|   |                                                                                                                                                                                                                     | 6.5.2                                                 | $\delta A_N^{h \to \mu}$ Difference in Gap3, Gap4 background asymmetry                                                                            | 25                                             |  |  |  |
|   |                                                                                                                                                                                                                     | 6.5.3                                                 | $\delta A_N^{J/\psi \to \mu}$ , Uncertainty in $A_N^{J/\psi \to \mu}$                                                                             | 27                                             |  |  |  |
|   |                                                                                                                                                                                                                     | 6.5.4                                                 | $\delta A_N^{method}$ , comparison with cosine fit method                                                                                         | 28                                             |  |  |  |
|   | ' Simulation to convert theory calculation for $A_N$ of D meson into $A_N$ of muon       33         7.1       converting theory for $A_N$ of D meson into $A_N$ of muon in the kinematic region of this measurement |                                                       |                                                                                                                                                   |                                                |  |  |  |
| 7 | Sim<br>of n<br>7.1<br>7.2                                                                                                                                                                                           | ulation<br>nuon<br>conver<br>region<br>Additi         | ting theory for $A_N$ of D meson into $A_N$ of muon in the kinematic<br>of this measurement                                                       | <b>35</b><br>35<br>40                          |  |  |  |
| 8 | Sim<br>of n<br>7.1<br>7.2<br>resu                                                                                                                                                                                   | ulation<br>nuon<br>conver<br>region<br>Additi<br>nlts | ting theory for $A_N$ of D meson into $A_N$ of muon in the kinematic<br>of this measurement                                                       | <ul> <li>35</li> <li>40</li> <li>41</li> </ul> |  |  |  |

#### Abstract

The transverse single spin asymmetries of single muons from open heavy flavor production in polarized p+p collisions at  $\sqrt{s} = 200$  GeV has been analyzed by using run12 data. The run12 recorded luminosity is 9.2 pb<sup>-1</sup> with average beam polarization about 60%.

## 1 Introduction

The measurement of transverse single spin asymmetries  $(A_N)$  gives us an opportunity to probe the quark and gluon structure of transversely polarized nucleons. Large transverse single spin asymmetries of up to 20% - 40% were discovered for pions produced at large  $x_F$  at  $\sqrt{s} = 20$  GeV [1, 2] and have been found to persist at RHIC energy  $\sqrt{s} = 200$  GeV by the STAR [3] and BRAHMS experiments [4].

At RHIC energy, it is expected that heavy flavor production is dominated by gluon-gluon interaction. Any large transverse single spin asymmetry observed in heavy flavor production cannot originate from the Collins effect because the gluon's transversity is zero. Therefore, the production of heavy flavor particles in transversely polarized p+p collisions at the PHENIX experiment offers a good opportunity to gain information on the gluon's Sivers-type effect. Furthermore, it was shown by M. Anselmino et al. that the single spin asymmetry in open charm production may be significant at forward rapidity which is well covered by the PHENIX muon detectors [5]. So any sizable contributions of  $A_N$  in  $J/\Psi$  and open charm production can give a direct measurement of the gluon Sivers-type function.

This analysis has been studied and have a preliminary result of  $\mu^-$  in Sep 2014[6] with very large(20%) uncertainty in background fraction from AN1174[8]. In 2015, background fraction is finalized by Sanghoon Lim[9], so that we revisited analysis with new background fraction as well as corresponding new cuts.

## 2 Run selection

In this analysis, the following runs are excluded:

- Spin information are missing in Spin Database [10]
   358661 358663 358665 358667 359060 359061 359062 359064 362260
- The spin-pattern polarity swapped midway through the fill [10] 360473 360474 360475
- Remove the fills whose polarization for blue beam is not available [10] 16456
- Remove the fills whose polarization for yellow beam is not available [10] 16347 16357 16387 16481 16525 16541

2

- Remove runs due to bad mutr QA 363219 363220
- Remove low statistics fill 16423 358924

After all of above QA, 27 runs are excluded, then 340 good runs in 51 fills are used for this analysis. The corresponding effective luminosity can be calculated by

$$\pounds = N/\sigma_{BBC},\tag{1}$$

where  $\sigma_{BBC} \sim 23$  mb, and  $N = N_{EVT-MB} \times \frac{BBCLL1\_live/BBCLL1\_scaled}{MuID1D\_live/MuID1D\_scaled}$ 

## **3** Event and track selection

Analysis cuts are placed on a track by track basis. The definition of analysis cuts are studied and described as run12 single muon cross section analysis in analysis note 1250 [9]. And this analysis is using the exactly same cuts with those analysis note 1250 used for inclusive single muon candidates. The details are shown below:

- Rapidity cut:  $1.4 < |\eta| < 2.0$ .
- BBC Vertex Z cut: -25 < |BBCZ| < 25cm.
- $p_T$  range cut:  $1.25 < |p_T| < 5 \text{GeV/c}.$
- Number of MuTR hits cut:  $nMutrHits \ge 13$ .
- MuTR fitting  $\chi^2 > 10$  for MUID last gap 2 and 3 , and  $\chi^2 > 8$  for last gap 4.

Other cuts :

The DG0, DDG0, VtxRad, VtxChi2, gap0 slope and  $|\bar{p} \cdot \delta\theta|$  cuts are used well-studied and fine-tuned transverse momentum dependent cuts from run12 single muon cross section analysis, the cut details are in analysis note 1250[9]. However, we did not apply fiducial 2-D cut in MUTR since this indicates mismatch between simulation and data, while background fraction does not change.

Other cuts used for hadron background (MuID Gap3 tracks): Minimum  $p_z$  cut  $p_z > 3.4$ was used for removing muons in hadron background.



Figure 1: Fill by fill relative luminosity measured by BBCLL1 scaler counts.

## 4 Relative Luminosity

To obtain the single spin asymmetry, it is essential to know the relative luminosity. In this analysis, we obtained the BBCLL1 counts bunch by bunch from the scaler board called GL1p. Relative luminosity can be calculated by Eq. 2.

$$R_L = \frac{\sum_{bunch} L^{\uparrow}(bunch)}{\sum_{bunch} L^{\downarrow}(bunch)}$$
(2)

The fill by fill BBCLL1 relative luminosity for Run12 is shown in Figure 1.

## 5 Single muon measurements

Besides muons from heavy flavor decays, other light hadrons also have finite probability to penetrate the muon spectrometers and be misidentified as a muons. Even worse, since there are no experimental measurements of light hadron yields in the PHENIX muon spectrometers acceptance range, the sources of backgrounds are not well constrained. The dominant sources of backgrounds are: (1) muons from light hadorn decays. Due to the finite distance (40cm) from the collision vertex to the muon spectrometers steel absorber, about 1% of light hadrons decay before they reach the absorber (some of them decay inside the absorber). These decay muons are then measured by the muon spectrometers.

(2) punch-through light hadrons. High momentum light hadrons have finite probability (about < 1%) to reach the last MuID panel and be mis-tagged as muons.

The Run12 single muon cross section analysis has studied the above effects very well, which developed cuts to control the quality of single muon signal and estimated the hadron background fraction. For details about the study, please see AN1250. We applied the identical event and track quality cuts as used in the Run12 single muon cross section analysis for inclusive muons.

## 6 Transverse single spin asymmetry

The transverse single spin asymmetry  $A_N$  is obtained for the blue and yellow beam separately by considering the polarization of only one beam and summing up the polarization of the other beam.

#### 6.1 Maximum Likelihood Method

A detailed discussion on the maximum likelihood method has been made on AN1038. Here, we just simply explain it.

For this measurement, the likelihood is:

$$\zeta = \prod f \cdot (1 \pm R_L \cdot P \cdot A_N \cos(\phi_i)) \tag{3}$$

where f is any correction factor,  $\pm$  depends on the spin direction,  $R_L = \frac{L^{\uparrow}}{L^{\downarrow}}$  is the relative luminosity measured with BBCLL1, P is polarization,  $\phi_i$  is the azimuthal angle for each track. We just look for  $A_N$  which would made log  $\zeta$  to reach maximum. Then this  $A_N$  will be our result. For some mathematical calculation purpose, the likelihood function is usually written into lg format as:

$$\log \zeta = \sum \log(1 \pm R_L \cdot P \cdot A_N \cos(\phi_i)) + \log f \tag{4}$$

when log f is independent of  $A_N$ , it wouldn't affect the final  $A_N$  finding and can be ignored. And if azimuthal angle  $\phi$  distribution didn't have any cos() modulation,  $R_L$  can be ignored too (set to be 1).

The statistical uncertainty can be derived by:

$$\sigma(A_N) = \left(-\frac{\partial^2 \zeta}{\partial A_N^2}\right)^{-1} \tag{5}$$

Since maximum likelihood method doesn't need binning, it is much more reliable than square root formula in low statistics situation.

Because the beam polarization varies fill by fill, the asymmetry is determined fill by fill, then fit to a polynomial of degree 0 across all fills for maximum likelihood method.

#### 6.2 Inclusive and background asymmetry estimations

Tracks at the last MuID gap (Gap4) consist of heavy-flavor muons, punch-through hadrons, muons from light hadrons, and muons from  $J/\psi$ . The contribution from other sources is negligible as discussed in the previous section. In order to obtain the asymmetry of heavy-flavor muons  $(A_N^{HF})$ , the asymmetry of background from light hadrons  $(A_N^h)$  and muons from  $J/\psi$   $(A_N^{J/\psi \to \mu})$  should be subtracted from the asymmetry of inclusive muon candidates  $(A_N^{incl})$ . Since hadron tracks can be selected with the  $p_z$  cut, the  $A_N^h$  is obtained from the asymmetry of stopped hadrons at MuID Gap3. The possible difference between the  $A_N$  of the stopped hadron at MuID Gap3 and the mixture of decay muons and punch-through hadrons at MuID Gap4 is studied with the hadron cocktail simulation. The details are described in the following section.

For estimation coefficient and a spectral time details are described in the following section. For estimation of  $A_N^{J/\psi \to \mu}$ , a previous PHENIX  $A_N^{J/\psi}$  measurement [14] is used. The asymmetry of single muons from  $J/\psi$  decay  $(A_N^{J/\psi \to \mu})$  is estimated from decay simulation [15] with the initial  $A_N^{J/\psi}$  in [14]  $(A_N^{J/\psi} = -0.002 \pm 0.026$  in  $x_F < 0$ , and  $-0.026 \pm 0.026$  in  $x_F > 0$ ). The initial  $p_T$  and rapidity distributions of  $J/\psi$ are from [15]. The obtained  $A_N^{J/\psi \to \mu}$  is  $-0.002^{+0.018}_{-0.022}$  in  $x_F < 0$  and  $-0.019^{+0.019}_{-0.025}$  in  $x_F > 0$ . Details are in systematic uncertainty section. Once the asymmetries of light hadron background  $(A_N^h)$  and muons from  $J/\psi$   $(A_N^{J/\psi \to \mu})$  are determined, the  $A_N$  of heavy-flavor muons and its uncertainty can be obtained as

$$A_N^{HF} = \frac{A_N^{incl} - f_h \cdot A_N^h - f_{J/\psi} \cdot A_N^{J/\psi \to \mu}}{1 - f_h - f_{J/\psi}},$$
(6)

$$\delta A_N^{HF} = \frac{\sqrt{(\delta A_N^{incl})^2 + f_h^2 \cdot (\delta A_N^h)^2 + f_{J/\psi}^2 \cdot (\delta A_N^{J/\psi \to \mu})^2}}{1 - f_h - f_{J/\psi}},\tag{7}$$

where  $f_h = (N_{DM} + N_{PH})/N_{incl}$  is the fraction of light hadron background, and  $f_{J/\psi} = N_{J/\psi\to\mu}/N_{incl}$  is the fraction of muons from  $J/\psi$ . Both fractions  $(f_h$  and  $f_{J/\psi})$  are determined from the background estimation.  $\delta A_N^{J/\psi\to\mu}$  estimated with the previous PHENIX measurement is included only in systematic uncertainty.

| $p_T$         | South Arm |                     |                     | North Arm |                     |                     |
|---------------|-----------|---------------------|---------------------|-----------|---------------------|---------------------|
| ${\rm GeV/c}$ | $f_h$     | $\delta f_h^{syst}$ | $\delta f_h^{stat}$ | $f_h$     | $\delta f_h^{syst}$ | $\delta f_h^{stat}$ |
| (1.25, 1.50)  | 78.15%    | 10.52%              | 0.41%               | 78.62%    | 9.35%               | 0.41%               |
| (1.50, 2.00)  | 76.88%    | 10.28%              | 0.40%               | 75.06%    | 8.72%               | 0.37%               |
| (2.00, 2.50)  | 70.36%    | 9.41%               | 0.66%               | 72.65%    | 8.36%               | 0.62%               |
| (2.50, 3.00)  | 59.10%    | 7.78%               | 0.96%               | 59.98%    | 6.80%               | 0.89%               |
| (3.00, 3.50)  | 50.06%    | 6.89%               | 1.39%               | 52.09%    | 5.17%               | 1.51%               |
| (3.50, 5.00)  | 46.11%    | 7.38%               | 1.67%               | 46.16%    | 6.03%               | 1.51%               |

Table 1: The light hadron background fraction  $(f_h)$  in  $p_T$  bins, (-)charge

Table 2: The background fraction  $(f_h)$  in  $x_F$  bins, (-)charge

|              | South Arm |                     |                     | North Arm |                     |                     |
|--------------|-----------|---------------------|---------------------|-----------|---------------------|---------------------|
| $ x_F $      | $f_h$     | $\delta f_h^{syst}$ | $\delta f_h^{stat}$ | $f_h$     | $\delta f_h^{syst}$ | $\delta f_h^{stat}$ |
| (0.00, 0.05) | 77.74%    | 10.46%              | 0.31%               | 77.78%    | 9.25%               | 0.30%               |
| (0.05, 0.20) | 70.84%    | 9.47%               | 0.49%               | 69.23%    | 7.97%               | 0.44%               |

Table 1, 2, 3, and 4 list the light hadron background fraction we calculate from the signal to (light hadron) background ratio from Run12 p+p single muon cross section analysis [9]. We will use these ratios to calculate our physics asymmetries. Systematic Uncertainty of light hadron background fraction was used as a source of systematic uncertainty. Table 5,jpsi-fraction-pt-plus,jpsi-fraction-xf represent the  $J/\psi$  fraction. It was calculated in PHENIX analysis note [15].  $N_{HF+J/\psi}$  means the number of heavy flavor including  $J/\psi$ , only light hadron background is subtracted from inclusive tracks

| $p_T$        | South Arm |                     |                     | North Arm |                     |                     |
|--------------|-----------|---------------------|---------------------|-----------|---------------------|---------------------|
| GeV/c        | $f_h$     | $\delta f_h^{syst}$ | $\delta f_h^{stat}$ | $f_h$     | $\delta f_h^{syst}$ | $\delta f_h^{stat}$ |
| (1.25, 1.50) | 78.17%    | 10.69%              | 0.41%               | 83.49%    | 10.60%              | 0.46%               |
| (1.50, 2.00) | 73.03%    | 9.76%               | 0.37%               | 77.65%    | 9.15%               | 0.37%               |
| (2.00, 2.50) | 70.97%    | 9.30%               | 0.60%               | 72.71%    | 8.14%               | 0.58%               |
| (2.50, 3.00) | 64.97%    | 8.46%               | 0.93%               | 64.07%    | 7.07%               | 0.90%               |
| (3.00, 3.50) | 59.21%    | 9.58%               | 1.40%               | 57.89%    | 6.78%               | 1.29%               |
| (3.50, 5.00) | 60.23%    | 8.84%               | 1.80%               | 55.26%    | 6.27%               | 1.56%               |

Table 3: The background fraction (r) in  $p_T$  bins, (+)charge

Table 4: The background fraction (r) in  $x_F$  bins, (+)charge

|              | South Arm |                     |                     | North Arm |                     |                     |
|--------------|-----------|---------------------|---------------------|-----------|---------------------|---------------------|
| $ x_F $      | $f_h$     | $\delta f_h^{syst}$ | $\delta f_h^{stat}$ | $f_h$     | $\delta f_h^{syst}$ | $\delta f_h^{stat}$ |
| (0.00, 0.05) | 76.57%    | 10.47%              | 0.30%               | 81.57%    | 10.36%              | 0.33%               |
| (0.05, 0.20) | 70.18%    | 9.20%               | 0.44%               | 72.06%    | 8.06%               | 0.45%               |

Table 5:  $J/\psi$  fraction in  $p_T$  bins, (-)charge

| $p_T$        | South                      | Arm                           | Nor                 | th Arm                        |
|--------------|----------------------------|-------------------------------|---------------------|-------------------------------|
| GeV/c        | $N_{J/\psi}/N_{HF+J/\psi}$ | $f_{J/\psi}(\text{absolute})$ | $N_{J/\psi}/N_{HF}$ | $f_{J/\psi}(\text{absolute})$ |
| (1.25, 1.50) | 1.83%                      | 0.40%                         | 2.13%               | 0.46%                         |
| (1.50, 2.00) | 4.76%                      | 1.10%                         | 4.90%               | 1.22%                         |
| (2.00, 2.50) | 11.15%                     | 3.30%                         | 13.25%              | 3.62%                         |
| (2.50, 3.00) | 14.64%                     | 5.99%                         | 16.11%              | 6.45%                         |
| (3.00, 3.50) | 16.75%                     | 8.36%                         | 18.58%              | 8.90%                         |
| (3.50, 5.00) | 20.36%                     | 10.97%                        | 22.30%              | 12.01%                        |

## **6.3** $A_N$ vs. $p_T$

The transverse single spin asymmetry in  $\mu^-$  and  $\mu^+$  production have been studied in six  $p_T(1.25 < p_T < 5 \text{ GeV/c})$  bins for forward and backward rapidity separately.

| $p_T$        | South Arm           |                                             | North Arm |                               |
|--------------|---------------------|---------------------------------------------|-----------|-------------------------------|
| GeV/c        | $N_{J/\psi}/N_{HF}$ | $N_{J/\psi}/N_{HF}$ $f_{J/\psi}$ (absolute) |           | $f_{J/\psi}(\text{absolute})$ |
| (1.25, 1.50) | 1.49%               | 0.32%                                       | 2.30%     | 0.38%                         |
| (1.50, 2.00) | 3.30%               | 0.89%                                       | 4.51%     | 1.01%                         |
| (2.00, 2.50) | 9.00%               | 2.61%                                       | 10.44%    | 2.85%                         |
| (2.50, 3.00) | 13.00%              | 4.55%                                       | 13.50%    | 4.85%                         |
| (3.00, 3.50) | 14.62%              | 5.96%                                       | 15.72%    | 6.62%                         |
| (3.50, 5.00) | 18.34%              | 7.29%                                       | 18.46%    | 8.26%                         |

Table 6:  $J/\psi$  fraction in  $p_T$  bins, (+)charge

Table 7:  $J/\psi$  fraction in  $x_F$  bins, (-)charge

| $ x_F $      | South Arm                  |                               | North Arm                  |                               |
|--------------|----------------------------|-------------------------------|----------------------------|-------------------------------|
|              | $N_{J/\psi}/N_{HF+J/\psi}$ | $f_{J/\psi}(\text{absolute})$ | $N_{J/\psi}/N_{HF+J/\psi}$ | $f_{J/\psi}(\text{absolute})$ |
| (0.00, 0.05) | 5.11%                      | 1.14%                         | 5.69%                      | 1.26%                         |
| (0.05, 0.20) | 16.74%                     | 4.88%                         | 18.51%                     | 5.69%                         |

Table 8:  $J/\psi$  fraction in  $x_F$  bins, (+)charge

| $ x_F $      | South                      | Arm                           | North Arm                  |                               |
|--------------|----------------------------|-------------------------------|----------------------------|-------------------------------|
|              | $N_{J/\psi}/N_{HF+J/\psi}$ | $f_{J/\psi}(\text{absolute})$ | $N_{J/\psi}/N_{HF+J/\psi}$ | $f_{J/\psi}(\text{absolute})$ |
| (0.00, 0.05) | 3.88%                      | 0.91%                         | 5.00%                      | 0.92%                         |
| (0.05, 0.20) | 14.79%                     | 4.41%                         | 15.36%                     | 4.29%                         |

To have a rough idea of the statistics, the tracks for inclusive muons (Gap4) and hadron background(Gap3) after all the quality cuts is listed in table 9,10.

| $p_T$       | N(South, Gap3) | N(South, Gap4) | N(North, Gap3) | N(North, Gap4) |
|-------------|----------------|----------------|----------------|----------------|
| (1.25, 5.0) | 32476          | 588964         | 30545          | 624773         |
| (1.25, 1.5) | 7750           | 274922         | 6697           | 264517         |
| (1.5, 2.0)  | 13295          | 234272         | 12511          | 267715         |
| (2.0, 2.5)  | 6332           | 55908          | 6238           | 65152          |
| (2.5, 3.0)  | 2858           | 16181          | 2802           | 18444          |
| (3.0, 3.5)  | 1241           | 4819           | 1273           | 5958           |
| (3.5, 5.0)  | 1000           | 2862           | 1024           | 2987           |

Table 9: Number of (-)tracks in different Gaps after all the track quality cuts.

Table 10: Number of (+)tracks in different Gaps after all the track quality cuts.

| $p_T$       | N(South, Gap3) | N(South, Gap4) | N(North, Gap3) | N(North, Gap4) |
|-------------|----------------|----------------|----------------|----------------|
| (1.25, 5.0) | 75195          | 682849         | 71610          | 298184         |
| (1.25, 1.5) | 18365          | 314778         | 15106          | 298184         |
| (1.5, 2.0)  | 30942          | 270782         | 29372          | 304978         |
| (2.0, 2.5)  | 14555          | 66768          | 15046          | 78534          |
| (2.5, 3.0)  | 6431           | 20116          | 6788           | 23509          |
| (3.0, 3.5)  | 2695           | 6285           | 2988           | 8026           |
| (3.5, 5.0)  | 2207           | 4120           | 2399           | 4312           |

#### **6.3.1** (-) charge

Figure 2, 3 and 4 show the  $p_T$  dependence of asymmetries in single track production at Gap4 (inclusive asymmetries), Gap3 (background asymmetries) and physics asymmetries respectively. Since our  $p_T$  range of single muons is from  $1.25 < p_T < 5 \text{GeV/c}$ , within the limits of errors, the asymmetry for Gap3 muons (mainly from light hadron) are consistent with zero for all  $p_T$  bins as expected from the previous experimental results. The asymmetries (blue beam, yellow beam and combined) at forward rapidity for Gap3 (background) and Gap4 (inclusive) are listed in table 11.



Figure 2:  $p_T$  dependence of asymmetries for inclusive muons (Gap4) in the forward (left) and backward (right) rapidity. (–)charge



Figure 3:  $p_T$  dependence of asymmetries for hadrons background (Gap3) in the forward (left) and backward (right) rapidity. (-)charge



Figure 4:  $p_T$  dependence of physics asymmetries in the forward (left) and backward (right) rapidity, which were obtained by using formula (6) and (7) with  $A_N$ (Inclusive)=  $A_N$ (Gap4) and  $A_N$ (Background)= $A_N$ (Gap3). (-)charge

| $p_T$        | Gap4 $(10^{-2})$ |                  |                  | Gap3 $(10^{-2})$ |                   |                  |
|--------------|------------------|------------------|------------------|------------------|-------------------|------------------|
| (GeV)        | $A_N^B$          | $A_N^Y$          | $A_N$            | $A_N^B$          | $A_N^Y$           | $A_N$            |
| (1.25, 1.50) | $-1.05 \pm 0.49$ | $-0.81 \pm 0.54$ | $-0.94 \pm 0.36$ | $-1.13 \pm 3.23$ | $4.33 \pm 3.34$   | $1.51{\pm}2.32$  |
| (1.50, 2.00) | $-0.31 \pm 0.48$ | $-0.55 \pm 0.58$ | $-0.41 \pm 0.37$ | $-0.77 \pm 2.34$ | $0.09 {\pm} 2.62$ | $-0.39 \pm 1.75$ |
| (2.00, 2.50) | $1.39{\pm}0.98$  | $0.07 \pm 1.19$  | $0.86{\pm}0.76$  | $-2.63 \pm 3.26$ | $2.29 \pm 3.78$   | $-0.53 \pm 2.47$ |
| (2.50, 3.00) | $-1.15 \pm 1.83$ | $0.05 \pm 2.21$  | $-0.66 \pm 1.41$ | $5.01 \pm 4.88$  | $-10.65 \pm 5.63$ | $-1.70 \pm 3.69$ |
| (3.00, 3.50) | $-6.21 \pm 3.21$ | $1.07 \pm 4.00$  | $-3.35 \pm 2.50$ | $2.05 \pm 7.21$  | $-5.59 \pm 8.42$  | $-1.18 \pm 5.48$ |
| (3.50, 5.00) | $4.41 \pm 4.47$  | $-0.63 \pm 5.28$ | $2.31 \pm 3.41$  | $-2.47 \pm 7.84$ | $-2.73 \pm 9.33$  | $-2.58 \pm 6.00$ |

Table 11:  $p_T$  dependence of  $A_N^B$  (Blue Beam),  $A_N^Y$  (Yellow Beam) and  $A_N$  (Combined) in forward rapidity. (-)charge

Table 12:  $p_T$  dependence of  $A_N^B$  (Blue Beam),  $A_N^Y$  (Yellow Beam) and  $A_N$  (Combined) in backward rapidity. (–)charge

| $p_T$        | Gap4 $(10^{-2})$  |                   |                   | Gap3 $(10^{-2})$ |                  |                  |
|--------------|-------------------|-------------------|-------------------|------------------|------------------|------------------|
| (GeV)        | $A_N^B$           | $A_N^Y$           | $A_N$             | $A_N^B$          | $A_N^Y$          | $A_N$            |
| (1.25, 1.50) | $-0.37 \pm 0.49$  | $-0.33 \pm 0.55$  | $-0.35 \pm 0.36$  | $4.51 \pm 2.97$  | $1.45 \pm 3.61$  | $3.27 \pm 2.29$  |
| (1.50, 2.00) | $0.37{\pm}0.52$   | $0.15 {\pm} 0.53$ | $0.26 {\pm} 0.37$ | $-4.91 \pm 2.29$ | $-0.63 \pm 2.64$ | $-3.07 \pm 1.73$ |
| (2.00, 2.50) | $0.67{\pm}1.06$   | $-0.19 \pm 1.08$  | $0.25 {\pm} 0.76$ | $-1.99 \pm 3.31$ | $8.79 \pm 3.67$  | $2.85 \pm 2.46$  |
| (2.50, 3.00) | $0.77 \pm 1.98$   | $-1.73 \pm 2.02$  | $-0.46 \pm 1.41$  | $-2.49 \pm 4.88$ | $-1.01 \pm 5.52$ | $-1.84 \pm 3.66$ |
| (3.00, 3.50) | $1.53 \pm 3.58$   | $-0.51 \pm 3.56$  | $0.50{\pm}2.52$   | $-2.17 \pm 7.29$ | $5.65 \pm 8.13$  | $1.32 \pm 5.43$  |
| (3.50, 5.00) | $3.47 {\pm} 4.76$ | $-3.15 \pm 4.91$  | $0.27 \pm 3.42$   | $-5.47 \pm 8.17$ | $4.47 \pm 8.85$  | $-0.89 \pm 6.00$ |

Table 13:  $p_T$  dependence of physics  $A_N^B$ (Blue Beam),  $A_N^Y$ (Yellow Beam) and  $A_N$ (Combined). The physics asymmetries were obtained by using formula (6) and (7) with  $A_N$ (Inclusive)=  $A_N$ (Gap4) and  $A_N$ (Background)= $A_N$ (Gap3). (–)charge

| $p_T$        | Forward $(10^{-2})$ |                    |                   | Backward $(10^{-2})$ |                    |                    |  |
|--------------|---------------------|--------------------|-------------------|----------------------|--------------------|--------------------|--|
| (GeV)        | $A_N^B$             | $A_N^Y$            | $A_N$             | $A_N^B$              | $A_N^Y$            | $A_N$              |  |
| (1.25, 1.50) | $-0.73 \pm 12.36$   | $-19.51 \pm 12.43$ | $-10.07 \pm 8.76$ | $-18.15 \pm 11.05$   | $-7.02 \pm 13.80$  | $-13.80 \pm 8.63$  |  |
| (1.50, 2.00) | $1.23 \pm 7.69$     | $-2.72 \pm 9.52$   | $-0.33 \pm 5.98$  | $18.83 \pm 8.35$     | $2.64{\pm}8.64$    | $11.01 {\pm} 6.01$ |  |
| (2.00, 2.50) | $14.20{\pm}10.80$   | $-5.61 \pm 11.07$  | $4.54{\pm}7.73$   | $7.88 {\pm} 9.72$    | $-27.68 \pm 12.12$ | $-6.05 \pm 7.58$   |  |
| (2.50, 3.00) | $-12.01 \pm 10.28$  | $18.50 \pm 11.46$  | $1.60{\pm}7.65$   | $6.45{\pm}10.03$     | $-3.32 \pm 11.54$  | $2.25 \pm 7.57$    |  |
| (3.00, 3.50) | $-18.22 \pm 12.67$  | $9.69{\pm}13.97$   | $-5.63 \pm 9.38$  | $6.33{\pm}12.31$     | $-8.81{\pm}14.18$  | $-0.18 \pm 9.29$   |  |
| (3.50, 5.00) | $13.81 \pm 13.74$   | $1.95{\pm}15.86$   | $8.73 \pm 10.39$  | $14.01{\pm}14.14$    | $-12.41 \pm 15.27$ | $1.81{\pm}10.38$   |  |

#### **6.3.2** (+) charge

The asymmetries (blue beam, yellow beam and combined) at backward rapidity for Gap3 (background) and Gap4 (inclusive) are listed in table 15. And the physics asymmetries listed in the table 16 were calculated by using the formula (6), (7) and table 3. The asymmetries (blue beam, yellow beam and combined) at forward rapidity for Gap3 (background) and Gap4 (inclusive) are listed in table 11.



Figure 5:  $p_T$  dependence of asymmetries for inclusive muons (Gap4) in the forward (left) and backward (right) rapidity. (+)charge



Figure 6:  $p_T$  dependence of asymmetries for hadrons background (Gap3) in the forward (left) and backward (right) rapidity. (+)charge



Figure 7:  $p_T$  dependence of physics asymmetries in the forward (left) and backward (right) rapidity, which were obtained by using formula (6) and (7) with  $A_N$ (Inclusive)=  $A_N$ (Gap4) and  $A_N$ (Background)= $A_N$ (Gap3). (+)charge

| $p_T$        | Gap4 $(10^{-2})$ |                  |                   | Gap3 $(10^{-2})$ |                  |                  |
|--------------|------------------|------------------|-------------------|------------------|------------------|------------------|
| (GeV)        | $A_N^B$          | $A_N^Y$          | $A_N$             | $A_N^B$          | $A_N^Y$          | $A_N$            |
| (1.25, 1.50) | $0.57 \pm 0.47$  | $0.91{\pm}0.53$  | $0.72 {\pm} 0.35$ | $-2.37 \pm 2.11$ | $2.49{\pm}2.32$  | $-0.17 \pm 1.56$ |
| (1.50, 2.00) | $-0.17 \pm 0.46$ | $0.49{\pm}0.56$  | $0.09 {\pm} 0.35$ | $1.53 \pm 1.52$  | $-0.61 \pm 1.80$ | $0.64{\pm}1.16$  |
| (2.00, 2.50) | $2.11 \pm 0.90$  | $2.53{\pm}1.12$  | $2.27 \pm 0.70$   | $-0.05 \pm 2.14$ | $1.79{\pm}2.60$  | $0.69{\pm}1.65$  |
| (2.50, 3.00) | $0.87 \pm 1.64$  | $-0.17 \pm 2.03$ | $0.46{\pm}1.27$   | $-2.39 \pm 3.15$ | $-0.91 \pm 3.80$ | $-1.79 \pm 2.43$ |
| (3.00, 3.50) | $3.47{\pm}2.81$  | $5.37 \pm 3.64$  | $4.18 \pm 2.22$   | $-1.63 \pm 4.69$ | $-1.33 \pm 5.84$ | $-1.51 \pm 3.66$ |
| (3.50, 5.00) | $0.37 \pm 3.90$  | $1.55 \pm 4.45$  | $0.88 {\pm} 2.93$ | $9.11 \pm 5.31$  | $6.47 \pm 6.43$  | $8.04{\pm}4.10$  |

Table 14:  $p_T$  dependence of  $A_N^B$  (Blue Beam),  $A_N^Y$  (Yellow Beam) and  $A_N$  (Combined) in forward rapidity. (+)charge

Table 15:  $p_T$  dependence of  $A_N^B$  (Blue Beam),  $A_N^Y$  (Yellow Beam) and  $A_N$  (Combined) in backward rapidity. (+)charge

| $p_T$        | Gap4 $(10^{-2})$ |                  |                  | Gap3 $(10^{-2})$ |                  |                  |
|--------------|------------------|------------------|------------------|------------------|------------------|------------------|
| (GeV)        | $A_N^B$          | $A_N^Y$          | $A_N$            | $A_N^B$          | $A_N^Y$          | $A_N$            |
| (1.25, 1.50) | $-0.07 \pm 0.48$ | $-0.45 \pm 0.51$ | $-0.25 \pm 0.35$ | $-0.09 \pm 2.06$ | $-0.29 \pm 2.36$ | $-0.18 \pm 1.55$ |
| (1.50, 2.00) | $-1.23 \pm 0.50$ | $-0.21 \pm 0.50$ | $-0.72 \pm 0.36$ | $-0.35 \pm 1.58$ | $-1.39 \pm 1.71$ | $-0.83 \pm 1.16$ |
| (2.00, 2.50) | $-0.97 \pm 1.00$ | $-0.53 \pm 0.99$ | $-0.75 \pm 0.70$ | $-3.91{\pm}2.28$ | $3.91{\pm}2.40$  | $-0.21 \pm 1.65$ |
| (2.50, 3.00) | $-1.05 \pm 1.82$ | $-3.57 \pm 1.81$ | $-2.32 \pm 1.28$ | $2.47 \pm 3.33$  | $2.61 \pm 3.57$  | $2.53{\pm}2.43$  |
| (3.00, 3.50) | $-2.87 \pm 3.25$ | $-5.07 \pm 3.09$ | $-4.03 \pm 2.24$ | $0.27 \pm 5.14$  | $2.69{\pm}5.28$  | $1.45 \pm 3.68$  |
| (3.50, 5.00) | $-2.71 \pm 4.00$ | $-3.55 \pm 4.28$ | $-3.10{\pm}2.92$ | $0.01 \pm 5.63$  | $-4.47 \pm 5.97$ | $-2.10 \pm 4.10$ |

Table 16:  $p_T$  dependence of physics  $A_N^B$ (Blue Beam),  $A_N^Y$ (Yellow Beam) and  $A_N$ (Combined). The physics asymmetries were obtained by using formula (6) and (7) with  $A_N$ (Inclusive)=  $A_N$ (Gap4) and  $A_N$ (Background)= $A_N$ (Gap3). (+)charge

| $p_T$        | Forward $(10^{-2})$ |                   |                    | Backward $(10^{-2})$ |                    |                   |   |
|--------------|---------------------|-------------------|--------------------|----------------------|--------------------|-------------------|---|
| (GeV)        | $A_N^B$             | $A_N^Y$           | $A_N$              | $A_N^B$              | $A_N^Y$            | $A_N$             | ĺ |
| (1.25, 1.50) | $15.84{\pm}11.29$   | $-4.79 \pm 8.78$  | $2.99{\pm}6.93$    | $0.00 \pm 7.80$      | $-1.28 \pm 12.61$  | $-0.35 \pm 6.63$  |   |
| (1.50, 2.00) | $-6.28 \pm 5.94$    | $3.65 \pm 5.49$   | $-0.92 \pm 4.03$   | $-3.73 \pm 4.84$     | $4.08 {\pm} 6.65$  | $-1.03 \pm 3.91$  |   |
| (2.00, 2.50) | $9.00 \pm 7.34$     | $4.96 \pm 8.17$   | $7.20{\pm}5.46$    | $6.85 \pm 7.20$      | $-13.78 \pm 8.22$  | $-2.10\pm5.41$    |   |
| (2.50, 3.00) | $8.02 \pm 8.36$     | $1.67 \pm 10.49$  | $5.55 {\pm} 6.54$  | $-8.69 \pm 9.27$     | $-16.84 \pm 9.39$  | $-12.71 \pm 6.60$ |   |
| (3.00, 3.50) | $12.79 \pm 11.00$   | $18.01 \pm 14.41$ | $14.71 \pm 8.74$   | $-8.67 \pm 12.79$    | $-18.64 \pm 12.25$ | $-13.87 \pm 8.85$ |   |
| (3.50, 5.00) | $-12.36 \pm 13.38$  | $-6.80 \pm 18.17$ | $-10.40 \pm 10.77$ | $-8.32 \pm 16.15$    | $-2.92{\pm}14.82$  | $-5.39{\pm}10.92$ |   |

### **6.4** $A_N$ vs. $x_F$

The single spin asymmetry has also been studied in four  $x_F(-0.2 < x_F < 0.2)$  bins. Figure 8, 9 and 10(for (–)charge), Figure 11, 12 and 13(for (+)charge), shows the  $x_F$  dependence of asymmetries at Gap4(inclusive asymmetries), Gap3(background asymmetries) and physics asymmetries respectively. The physics asymmetries listed in table 17((–)charge) and 19((+)charge) were calculated by using the formula (6), (7) and table 2.



#### **6.4.1** (-) charge

Figure 8:  $x_F$  dependence of asymmetries for inclusive muons (Gap4). (-)charge



Figure 9:  $x_F$  dependence of asymmetries for hadron background (Gap3). (-)charge



Figure 10:  $x_F$  dependence of physics asymmetries, which were obtained by using formula (6) and (7) with  $A_N$ (Inclusive)=  $A_N$ (Gap4) and  $A_N$ (Background)= $A_N$ (Gap23). (-)charge

|               | Gap4 $(10^{-2})$  |                   |                   | Gap3 $(10^{-2})$ |                  |                  |
|---------------|-------------------|-------------------|-------------------|------------------|------------------|------------------|
| $x_F$         | $A_N^B$           | $A_N^Y$           | $A_N$             | $A_N^B$          | $A_N^Y$          | $A_N$            |
| (-0.20,-0.05) | $1.71 {\pm} 0.72$ | $-1.89 \pm 0.72$  | $-0.08 \pm 0.51$  | $-3.35{\pm}2.05$ | $3.41{\pm}2.23$  | $-0.25 \pm 1.51$ |
| (-0.05, 0.00) | $-0.35 \pm 0.37$  | $0.37 {\pm} 0.40$ | $-0.02 \pm 0.27$  | $-0.15 \pm 2.08$ | $0.63 \pm 2.54$  | $0.16{\pm}1.61$  |
| (0.00, 0.05)  | $-0.81 \pm 0.36$  | $-0.63 \pm 0.41$  | $-0.73 \pm 0.27$  | $-2.65 \pm 2.27$ | $2.61{\pm}2.34$  | $-0.10 \pm 1.63$ |
| (0.05, 0.20)  | $0.53 {\pm} 0.65$ | $-0.37 \pm 0.80$  | $0.17 {\pm} 0.51$ | $0.87 \pm 1.98$  | $-1.99 \pm 2.36$ | $-0.31 \pm 1.51$ |

Table 17:  $x_F$  dependence of  $A_N^B$  (Blue Beam),  $A_N^Y$  (Yellow Beam) and  $A_N$  (Combined). (-)charge

Table 18:  $x_F$  dependence of Physics  $A_N^B$  (Blue Beam),  $A_N^Y$  (Yellow Beam) and  $A_N$  (Combined). The physics asymmetries were obtained by using formula (6) and (7) with  $A_N$  (Inclusive) =  $A_N$  (Gap4) and  $A_N$  (Background) =  $A_N$  (Gap3). (-)charge

| $x_F$         | $A_N^B(10^{-2})$   | $A_N^Y(10^{-2})$  | $A_N(10^{-2})$    |
|---------------|--------------------|-------------------|-------------------|
| (-0.20,-0.05) | $16.83 {\pm} 6.66$ | $-16.88 \pm 6.78$ | $0.27 {\pm} 4.75$ |
| (-0.05,0.00)  | $-1.02 \pm 7.02$   | $-0.65 \pm 10.55$ | $-0.91 \pm 5.84$  |
| (0.00, 0.05)  | $6.74 {\pm} 9.43$  | $-11.22 \pm 7.92$ | $-3.79 \pm 6.06$  |
| (0.05, 0.20)  | $0.15 {\pm} 6.03$  | $4.66 \pm 7.61$   | $1.89 {\pm} 4.73$ |





Figure 11:  $x_F$  dependence of asymmetries for inclusive muons (Gap4). (+)charge



Figure 12:  $x_F$  dependence of asymmetries for hadron background (Gap3). (+)charge



Figure 13:  $x_F$  dependence of physics asymmetries, which were obtained by using formula (6) and (7) with  $A_N(\text{Inclusive}) = A_N(\text{Gap4})$  and  $A_N(\text{Background}) = A_N(\text{Gap3})$ . (+)charge

|               | Gap4 $(10^{-2})$  |                   |                  | Gap3 $(10^{-2})$ |                  |                   |
|---------------|-------------------|-------------------|------------------|------------------|------------------|-------------------|
| $x_F$         | $A_N^B$           | $A_N^Y$           | $A_N$            | $A_N^B$          | $A_N^Y$          | $A_N$             |
| (-0.20,-0.05) | $-0.57 \pm 0.66$  | $-1.53 \pm 0.65$  | $-1.06 \pm 0.46$ | $-1.37 \pm 1.42$ | $0.71{\pm}1.44$  | $-0.35 \pm 1.01$  |
| (-0.05, 0.00) | $-0.75 \pm 0.36$  | $-0.19 \pm 0.38$  | $-0.48 \pm 0.26$ | $0.01{\pm}1.43$  | $-0.05 \pm 1.67$ | $-0.02 \pm 1.09$  |
| (0.00, 0.05)  | $0.13 {\pm} 0.35$ | $0.75 {\pm} 0.40$ | $0.39{\pm}0.26$  | $0.21{\pm}1.49$  | $1.17 \pm 1.62$  | $0.65 {\pm} 1.10$ |
| (0.05, 0.20)  | $1.45 {\pm} 0.59$ | $1.51{\pm}0.74$   | $1.47{\pm}0.46$  | $0.05 \pm 1.28$  | $0.39{\pm}1.62$  | $0.18{\pm}1.01$   |

Table 19:  $x_F$  dependence of  $A_N^B$  (Blue Beam),  $A_N^Y$  (Yellow Beam) and  $A_N$  (Combined). (+)charge

Table 20:  $x_F$  dependence of Physics  $A_N^B$  (Blue Beam),  $A_N^Y$  (Yellow Beam) and  $A_N$  (Combined). The physics asymmetries were obtained by using formula (6) and (7) with  $A_N$  (Inclusive) =  $A_N$  (Gap4) and  $A_N$  (Background) =  $A_N$  (Gap3). (+)charge

| $x_F$         | $A_N^B(10^{-2})$  | $A_N^Y(10^{-2})$ | $A_N(10^{-2})$   |
|---------------|-------------------|------------------|------------------|
| (-0.20,-0.05) | $1.57{\pm}4.70$   | $-8.59 \pm 5.18$ | $-3.02 \pm 3.48$ |
| (-0.05,0.00)  | $-3.62 \pm 5.64$  | $-0.94 \pm 9.27$ | $-2.90 \pm 4.82$ |
| (0.00, 0.05)  | $-0.19 \pm 8.28$  | $-0.72 \pm 6.36$ | $-0.52 \pm 5.05$ |
| (0.05, 0.20)  | $6.32 {\pm} 4.63$ | $5.19 \pm 5.34$  | $5.83 \pm 3.50$  |

#### 6.5 Systematic uncertainty

Systematic uncertainty is determined from variation of  $A_N^{HF}$  corresponding to upper and lower limit of each background source. Additional systematic uncertainty is from the comparison between two  $A_N^{HF}$  calculation methods. The final systematic uncertainty is calculated as a quadratic sum of all systematic uncertainties. The systematic bias has been checked with bunch shuffling technique already in previous analysis note [6]. The sources of systematic uncertainty are listed below, details and tables are listed in Table 21, 22, 23, 24.

#### $\delta f_h$ Fraction of light hadron background

 $\delta A_N^{h\to\mu}$  Difference of  $A_N^h$  between Gap3 and Gap4

 $\delta A_N^{J/\psi \to \mu}$  Uncertainty in  $A_N^{J/\psi \to \mu}$ 

 $\delta A_N^{method}$  Comparison with cosine fit method

#### 6.5.1 $\delta f_h$ Fraction of light hadron background

Systematic uncertainty on the fraction of light hadron background  $(\delta f_h)$  is an important source of systematic uncertainty on the  $A_N^{HF}$ . The upper and lower limits of  $A_N^{HF}$  are calculated by 6 with the upper and lower limits of the fraction of light hadron background  $(f_h \pm \delta f_h)$ .

## 6.5.2 $\delta A_N^{h \to \mu}$ Difference in Gap3, Gap4 background asymmetry

The asymmetry of light hadron background at MuID Gap4  $(A_N^h)$  is estimated by using stopped hadrons at MuID Gap3. Since the background tracks at MuID Gap4 include decay muons and punch-through hadrons, the  $A_N$  of stopped hadrons can be different from the  $A_N$  of decay muons due to decay kinematics. In order to quantify the difference between  $A_N$  of tracks at MuID Gap3 and Gap4, a toy simulation using the hadron cocktail simulation and an input truth asymmetry  $(A_N^{true})$  is performed. The  $A_N^{true}$  is assumed as  $0.02 \times p_T$  at  $p_T < 5 \text{ GeV}/c$  and 0.1 at  $p_T > 5 \text{ GeV}/c$  based on the most extreme case of  $A_N^h$  measured at MuID Gap3 among Figure 3, 6. By comparing the mean value of gap4 and gap3 reconstructed asymmetries in Figure 14, The detailed procedure is following:

1. Generate random spin direction  $(\uparrow,\downarrow)$  for all tracks.

- 2. Apply a weight  $(1 \pm A_N^{true} \cdot \cos(\phi_0))$  for each track based on the manually assigned initial asymmetry  $(A_N^{true})$ . The sign is determined with the random spin direction in the step 1, and  $\phi_0$  is the azimuthal angle of track at the generation level.
- 3. Extract  $A_N^{reco}$  of the tracks at MuID Gap3 and Gap4 with the azimuthal angle and momentum information at the reconstruction level.
- 4. Repeat 10000 times from the step 1 to 3 to obtain smooth distributions of  $A_N^{reco}$ .

The largest difference between  $A_N^{reco}$  at MuID Gap3 and Gap4 is 0.008 in the entire  $p_T$ , so  $\pm 0.008$  is assigned to the systematic uncertainty. In case of  $A_N^h$  in the  $x_F$  binning, the difference of  $A_N^{reco}$  at MuID Gap3 and Gap4 is quite small, because only 2 bins are used in  $x_F$ . Therefore, the uncertainty on  $A_N^h(x_F)$  is negligible.



Figure 14: The single Monte Carlo simulation test with  $MCp_T \times 2\%(p_T < 5 \text{ GeV}/c)$ , 10% for  $MCp_T > 5 \text{GeV}/c$  for injected (open circles) and reconstructed (filled circles) asymmetries of gap4(blue) and gap3(red).

6.5.3  $\delta A_N^{J/\psi \to \mu}$ , Uncertainty in  $A_N^{J/\psi \to \mu}$ 

This has been described in Section 6.2. The systematic uncertainty from  $A_N^{J/\psi \to \mu}$  is determined from  $J/\psi \to \mu$  simulation with the upper and lower limits of  $A_N^{J/\psi}$  in [14]. Similar procedure for  $\delta A_N^{h\to\mu}$  was used with Dimuon simulation, while  $\delta A_N^{h\to\mu}$  was made with hadron simulation,  $A_N^{J/\psi}(A_N^{\mu})$  corresponds to  $A_N^{true}(A_N^{reco})$ .  $A_N^{J/\psi}$  in [14]  $(A_N^{J/\psi} = -0.002 \pm 0.026$  in  $x_F < 0$ , and  $-0.026 \pm 0.026$  in  $x_F > 0$ ). The upper and lower limits of  $A_N^{HF}$  are calculated by 6 with the upper and lower limits of the  $A_N^{J/\psi\to\mu}$ . The initial  $p_T$  and rapidity distributions of  $J/\psi$  are from [15]. The obtained  $A_N^{J/\psi\to\mu}$ is  $-0.002^{+0.018}_{-0.022}$  in  $x_F < 0$  and  $-0.019^{+0.019}_{-0.025}$  in  $x_F > 0$ . Figure 15 shows an example of fit of cosine modulation generated by  $A_N^{J/\psi}$ . Lower side of Figure 16 represents  $A_N^{J/\psi\to\mu}$  distribution by 1000 times of simulation from 6 input  $A_N^{J/\psi}$ ; (upper side).



Figure 15: example of fit of cosine modulation induced by  $A_N^{J/\psi}$ , left is input  $J/\psi$ , fit result shows good agreement with input value(-0.026), justifies the procedure and fit. Right side is output muon, different from input  $A_N^{J/\psi}$ .



Figure 16:  $A_N^{J/\psi \to \mu}$  distribution(lower side) by 1000 times of simulation from 6 input  $A_N^{J/\psi}$  (upper side).

#### 6.5.4 $\delta A_N^{method}$ , comparison with cosine fit method

The  $A_N^{incl}$  results with maximum likelihood method are compared with another method described below. The systematic uncertainty on  $A_N^{HF}$  is evaluated by propagating variations of  $A_N^{incl}$  and  $A_N^h$  between two methods. Since tracks at MuID Gap3 for  $A_N^h$  are suffered from large statistical fluctuations, the difference of two methods with inclusive tracks at MuID Gap4 is used for both  $A_N^{incl}$  and  $A_N^h$  variations.  $A_N(\phi)$  of inclusive tracks for each  $p_T$  or  $x_F$  bin is calculated as,

$$A_{N}(\phi) = \frac{\sigma^{\uparrow\uparrow}(\phi) + \sigma^{\uparrow\downarrow}(\phi) - \sigma^{\downarrow\uparrow}(\phi) - \sigma^{\downarrow\downarrow}(\phi)}{\sigma^{\uparrow\uparrow}(\phi) + \sigma^{\uparrow\downarrow}(\phi) + \sigma^{\downarrow\uparrow}(\phi) + \sigma^{\downarrow\downarrow}(\phi)}$$

$$= \frac{1}{P} \cdot \frac{N^{\uparrow\uparrow}(\phi) + R_{1} \cdot N^{\uparrow\downarrow}(\phi) - R_{2} \cdot N^{\downarrow\uparrow} - R_{3} \cdot N^{\downarrow\downarrow}}{N^{\uparrow\uparrow}(\phi) + R_{1} \cdot N^{\uparrow\downarrow}(\phi) + R_{2} \cdot N^{\downarrow\uparrow} + R_{3} \cdot N^{\downarrow\downarrow}},$$
(8)

where P is the average beam polarization,  $\sigma^{\uparrow\uparrow}$ ,  $\sigma^{\downarrow\downarrow}$ ,  $\sigma^{\downarrow\uparrow}$ , and  $\sigma^{\downarrow\downarrow}$  are cross section in each polarization combination of two beams,  $L^{\uparrow\uparrow}$ ,  $L^{\uparrow\downarrow}$ ,  $L^{\downarrow\uparrow}$ , and  $L^{\downarrow\downarrow}$  are relative luminosity for each polarization combination, and  $R_1 = L^{\uparrow\uparrow}/L^{\uparrow\downarrow}$ ,  $R_2 = L^{\uparrow\uparrow}/L^{\downarrow\uparrow}$ ,  $R_3$  $= L^{\uparrow\uparrow}/L^{\downarrow\downarrow}$ .  $A_N^{incl}$  is calculated by fitting  $A_N(\phi)$  distribution with a function formed  $\pm A_N \cdot \cos(\phi)$ , where  $\pm$  depends on beam direction. Figure 17, 18, 19, 20 represents cosine fit of Gap4 inclusive tracks. Fit results are compared with Maximum Likelihood method in Figure 21, 22, 23, 24 with  $\chi^2/ndf$  from the fit results, smaller than 2.



Figure 17: cosine fit result of Gap4 inclusive tracks for 6  $p_T$  bins, (-) charge



Figure 18: cosine fit result of Gap4 inclusive tracks for 6  $p_T$  bins, (+) charge



Figure 19: cosine fit result of Gap4 inclusive tracks for 2  $p_z$  bins (4  $x_F$  bins), (-) charge



Figure 20: cosine fit result of Gap4 inclusive tracks for 2  $p_z$  bins (4  $x_F$  bins), (+) charge



Figure 21: comparison between cosine fit result(blue) and likelihood result (red) of Gap4 inclusive tracks for 6  $p_T$  bins, (-) charge. Lower side represents  $\chi^2/ndf$  in cosine fit, smaller than 2



Figure 22: comparison between cosine fit result(blue) and likelihood result (red) of Gap4 inclusive tracks for 6  $p_T$  bins, (+) charge. Lower side represents  $\chi^2/ndf$  in cosine fit, smaller than 2



Figure 23: comparison between cosine fit result(blue) and likelihood result (red) of Gap4 inclusive tracks for  $4 x_F$  bins, (-) charge. Lower side represents  $\chi^2/ndf$  in cosine fit, smaller than 2



Figure 24: comparison between cosine fit result(blue) and likelihood result (red) of Gap4 inclusive tracks for 4  $x_F$  bins, (+) charge. Lower side represents  $\chi^2/ndf$  in cosine fit, smaller than 2

| $p_T$ bin       | $\delta f_h$                  | $\delta A_N^{n \to \mu}$ | $\delta A_N^{\sigma/\psi}$ | $\delta A_N^{methoa}$ |
|-----------------|-------------------------------|--------------------------|----------------------------|-----------------------|
| $\delta A^{2}$  | $N^{syst.}(10^{-1})$          | <sup>-2</sup> ) Forwa    | rd $(x_F > 0$              | )                     |
| (1.25.1.50)     | +3.56                         | +2.96                    | +0.05                      | +0.81                 |
| (1.50, 2.00)    | -8.96 + 0.29                  | $^{-2.96}_{+2.64}$       | $^{-0.04}_{+0.13}$         | $^{-0.81}_{+0.37}$    |
| (1.30, 2.00)    | -0.06                         | -2.64                    | -0.10                      | -0.37                 |
| (2.00, 2.50)    | +2.57<br>-1.20                | $^{+2.30}_{-2.30}$       | +0.35<br>-0.26             | +0.59<br>-0.59        |
| (2.50,3.00)     | +0.43                         | +1.40                    | +0.46                      | +0.69                 |
| (2.00, 0.00)    | $-0.40 \\ +0.75$              | $^{-1.40}_{+1.02}$       | $-0.35 \\ +0.54$           | $-0.69 \\ +0.05$      |
| (3.00, 3.50)    | -1.06                         | -1.02                    | -0.41                      | -0.05                 |
| (3.50, 5.00)    | +1.78                         | +0.87                    | +0.68                      | +1.85                 |
| $\delta A^{st}$ | $\frac{-1.50}{yst.}(10^{-3})$ | $\frac{-0.07}{2}$ Backw  | $rac{-0.52}{r_{T}}$        | <u></u>               |
| (1 05 1 50)     | +5.37                         | $\pm 2.95$               | $\pm 0.04$                 | $\pm 0.32$            |
| (1.25, 1.50)    | -14.27                        | -2.95                    | -0.04                      | -0.32                 |
| (1.50.2.00)     | +7.92                         | +2.67                    | +0.11                      | +0.69                 |
| (2.00, 2.00)    | $^{-3.82}_{+2.24}$            | $^{-2.67}_{+2.26}$       | $^{-0.11}_{+0.30}$         | $^{-0.69}_{+1.04}$    |
| (2.00, 2.30)    | -4.44                         | -2.26                    | -0.30                      | -1.04                 |
| (2.50, 3.00)    | +0.87<br>-0.62                | $^{+1.39}_{-1.39}$       | +0.40<br>-0.39             | +1.00<br>-1.00        |
| (3.00350)       | +0.28                         | +1.01                    | +0.47                      | +0.76                 |
| (0.00, 0.00)    | -0.43<br>+0.13                | $^{-1.01}_{+0.87}$       | $-0.46 \\ +0.60$           | $-0.76 \\ +0.74$      |
| (3.50, 5.00)    | -0.18                         | -0.87                    | -0.59                      | -0.74                 |

Table 21: Sources of  $\delta A_N^{syst.}$  for  $\mu^-$  as a function of  $p_T$ .  $p_T$  bin  $\delta f_h = \delta A_N^{h \to \mu} = \delta A_N^{J/\psi \to \mu} = \delta A_N^{method}$ 

| $p_T$ bin                                         | $\delta f_h$       | $\delta A_N^{n \to \mu}$ | $\delta A_N^{J/\psi \to \mu}$ | $\delta A_N^{method}$ |  |  |
|---------------------------------------------------|--------------------|--------------------------|-------------------------------|-----------------------|--|--|
| $\delta A_N^{syst.}(10^{-2})$ Forward $(x_F > 0)$ |                    |                          |                               |                       |  |  |
| $(1\ 25\ 1\ 50)^{-1}$                             | +0.71              | +3.37                    | +0.05                         | +0.70                 |  |  |
| (1.20, 1.00)                                      | -0.85              | -3.37                    | -0.03                         | -0.70                 |  |  |
| (1.50, 2.00)                                      | -0.59              | -2.55                    | -0.08                         | -0.11                 |  |  |
| (200250)                                          | +2.81              | +2.28                    | +0.27                         | +0.26                 |  |  |
| (2.00, 2.30)                                      | -1.47              | -2.28                    | -0.21                         | -0.26                 |  |  |
| (2.50.3.00)                                       | +2.13              | +1.67                    | +0.38                         | +0.57                 |  |  |
| (2.00, 0.00)                                      | -1.30<br>+3.49     | -1.67<br>+1.33           | $-0.29 \\ +0.45$              | -0.57<br>+0.69        |  |  |
| (3.00, 3.50)                                      | -2.47              | -1.33                    | -0.34                         | -0.69                 |  |  |
| (350500)                                          | +3.11              | +1.31                    | +0.56                         | +0.79                 |  |  |
| (0.00,0.00)                                       | -4.33              | -1.31                    | -0.43                         | -0.79                 |  |  |
| $\delta A_N^{sy}$                                 | $^{st.}(10^{-}$    | <sup>2</sup> ) Backw     | vard $(x_F <$                 | 0)                    |  |  |
| $(1.25.1.50)^{1}$                                 | +0.05              | +3.25                    | +0.04                         | +0.13                 |  |  |
| (1.20, 1.00)                                      | -0.06              | -3.25                    | -0.04                         | -0.13                 |  |  |
| (1.50.2.00)                                       | +0.09              | +2.47                    | +0.09                         | +0.27                 |  |  |
| $(0,00,0,\mathbf{r}_0)$                           | $^{-0.34}_{+0.47}$ | $^{-2.47}_{+2.25}$       | -0.08 + 0.24                  | -0.27<br>+1.06        |  |  |
| (2.00, 2.50)                                      | -1.07              | -2.25                    | -0.23                         | -1.06                 |  |  |
| (250300)                                          | +2.91              | +1.68                    | +0.34                         | +0.59                 |  |  |
| (2.00,0.00)                                       | -4.57              | -1.68                    | -0.33                         | -0.59                 |  |  |
| (3.00, 3.50)                                      | $^{+2.74}_{-4.13}$ | $^{\pm 1.33}$            | +0.40<br>-0.39                | $^{+1.10}_{-1.18}$    |  |  |
|                                                   | +0.37              | +1.34                    | +0.50                         | +0.52                 |  |  |
| (5.50, 5.00)                                      | -0.39              | -1.34                    | -0.49                         | -0.52                 |  |  |

Table 22: Sources of  $\delta A_N^{syst.}$  for  $\mu^+$  as a function of  $p_T$ .

Table 23: Sources of  $\delta A_N^{syst.}$  for  $\mu^-$  as a function of  $x_F$ .

| $x_F$ bin      | $\delta f_h$                      | $\delta A_N^{J/\psi \to \mu}$     | $\delta A_N^{method}$             |
|----------------|-----------------------------------|-----------------------------------|-----------------------------------|
| (-0.20, -0.05) | $^{+0.32}_{-1.21} \times 10^{-2}$ | $^{+0.48}_{-0.46} \times 10^{-2}$ | $^{+0.30}_{-0.30} \times 10^{-2}$ |
| (-0.05, 0.00)  | $^{+0.31}_{-0.83} \times 10^{-2}$ | $^{+0.13}_{-0.12} \times 10^{-2}$ | $^{+0.45}_{-0.45} \times 10^{-2}$ |
| (0.00, 0.05)   | $^{+0.77}_{-1.33} \times 10^{-2}$ | $^{+0.14}_{-0.11} \times 10^{-2}$ | $^{+0.68}_{-0.68} \times 10^{-2}$ |
| (0.05, 0.20)   | $^{+0.54}_{-0.38} \times 10^{-2}$ | $^{+0.54}_{-0.41} \times 10^{-2}$ | $^{+0.48}_{-0.48} \times 10^{-2}$ |

Table 24: Sources of  $\delta A_N^{syst.}$  for  $\mu^+$  as a function of  $x_F$ .

| $x_F$ bin      | $\delta f_h$                      | $\delta A_N^{J/\psi \to \mu}$     | $\delta A_N^{method}$             |
|----------------|-----------------------------------|-----------------------------------|-----------------------------------|
| (-0.20, -0.05) | $^{+0.64}_{-1.26} \times 10^{-2}$ | $^{+0.40}_{-0.38} \times 10^{-2}$ | $^{+0.57}_{-0.57} \times 10^{-2}$ |
| (-0.05, 0.00)  | $^{+0.88}_{-2.59} \times 10^{-2}$ | $^{+0.10}_{-0.10} \times 10^{-2}$ | $^{+0.17}_{-0.17} \times 10^{-2}$ |
| (0.00, 0.05)   | $^{+0.42}_{-1.29} \times 10^{-2}$ | $^{+0.11}_{-0.09} \times 10^{-2}$ | $^{+0.29}_{-0.29} \times 10^{-2}$ |
| (0.05, 0.20)   | $^{+2.25}_{-1.21} \times 10^{-2}$ | $^{+0.45}_{-0.34} \times 10^{-2}$ | $^{+0.46}_{-0.46} \times 10^{-2}$ |

## 7 Simulation to convert theory calculation for $A_N$ of D meson into $A_N$ of muon

## 7.1 Simulation to convert theory curve for $A_N$ of D meson into $A_N$ of muon in the kinematic region of this measurement

A recent theory incorporating collinear factorization framework shows  $A_N$  of D meson  $(A_N^D)$ , produced from  $gg \to c\bar{c}$  process, which is sensitive to the three-gluon correlation function depending on momentum fraction of gluon (x) [16]. Two models including x or  $\sqrt{x}$  dependence in the three-gluon correlation function are introduced to compare their behaviors in small-x region, and the overall  $A_N^D$  scale is determined by assuming  $|A_N^D| \leq 0.05$  in  $|x_F| < 0.1$ .

In order to compare with our results  $(A_N^{\mu})$ , the decay kinematics and cross section of  $D \to \mu$  from PYTHIA [17] has been used to convert  $A_N^D$  into  $A_N^{\mu}$ . Theory calculations of  $x_F$  and  $p_T$  dependent  $A_N$  for  $D^0$ ,  $\bar{D^0}$ ,  $D^+$ , and  $D^-$  in  $-0.6 < x_F^D < 0.6(25)$ values; 0.05 interval) and  $1 < p_T^D < 10 \text{ GeV}/c$  (10 values; 1,2,3,4,5,6,7,8,9,10) are used as input  $A_N^D$ , in Figure 26. After getting smooth curve for 10  $p_T$  values for whole  $x_F$ range,  $A_N(p_T^D, x_F^D)$  are extrapolated linearly in adjacent  $p_T$  values, looked reasonable for all  $p_T$  and  $x_F$  bins in the region of  $|x_F|_i 0.2$ . A similar procedure described in the systematic uncertainty evaluation for  $\delta A_N^{h \to \mu}$  is used, but the simulation does not have to be multiple times because PYTHIA simulation has enough statistics while hadron simulation is statistically limited. A weight  $(1 \pm A_N^D(p_T^D, x_F^D) \cdot \cos(\phi^D))$  is applied for each muon from D meson, and the sign is determined with a random polarization direction  $(\uparrow,\downarrow)$ . Then,  $A_N^{\mu}$  is extracted by fitting asymmetry of two polarization cases with  $A_N^{\mu} \cdot \cos(\phi^{\mu})$  in  $p_T^{\mu}$  and  $x_F^{\mu}$  regions. 9 bins in  $0.02 < |x_F^{\mu}| < 0.1$ , 12 bins in  $1.0 < p_T^{\mu} < 5.0$  are used to get smooth curve.  $A_N(p_T^{\mu}, x_F^{\mu})$  is rounded to the three decimal and fit error is about 0.001, negligible. Results from the simulation are listed on Table 25,26,27.

Figure 25 shows  $p_T$  and  $|x_F|$  distributions of D mesons which decay into muons in the kinematic range of this measurement  $(1.25 < p_T^{\mu} < 5.0 \text{ GeV}/c, 0.0 < |x_F^{\mu}| < 0.2,$ and  $1.4 < |y^{\mu}| < 2.0$ ), and accepted charm hadrons are composed of  $D^0(18.7\%)$ ,  $\bar{D}^0(20.3\%)$ ,  $D^+(24.2\%)$ ,  $D^-(26.1\%)$ , and others  $(D_s^+, D_s^-, \text{ and baryons})$ . Since  $A_N^{D^0}$ and  $A_N^{D^+}$   $(A_N^{\bar{D}^0}$  and  $A_N^{D^-})$  are very close in both models, the effect of different abundance of D mesons between data and PYTHIA is negligible. In addition, the modification of  $A_N$  due to decay kinematics smearing is quite small (< 5% relative difference between  $A_N^D$  and  $A_N^{\mu}$ ). One notes that muons from charm and bottom are combined in the data, and the contribution from bottom is about 2% (55%) at  $p_T = 1 \text{ GeV}/c$ (5 GeV/c) according to the FONLL calculation [9]. Therefore, charm contribution is expect to be dominant except for the last  $p_T$  bin of  $A_N^{\mu}$  (3.5 <  $p_T$  < 5 GeV/c). The converted  $A_N^{\mu}$  are shown in Fig. 28, 29, and 30, and both calculations are agreed with the data within the statistical uncertainties. The difference between two models becomes larger as increasing  $|x_F|$ , but it is hard to distinguish a favored model with the current results in  $|x_F| < 0.1$ .



Figure 25:  $p_T$  (top) and  $|x_F|$  (bottom) distributions of D mesons ( $D^0$ ,  $\bar{D^0}$ ,  $D^+$ , and  $D^-$ ) decayed into  $\mu^{\pm}$  in 1.25  $< p_T^{\mu} < 5.0 \text{ GeV/c}$ ,  $|x_F^{\mu}| < 0.2$  and 1.4  $< |y^{\mu}| < 2.0$  from PYTHIA. Each distribution is normalized to unity.



Figure 26: Theory calculation for  $A_N^{D^0}$  and  $A_N^{D^+} A_N^{\overline{D}^0}$  and  $A_N^{D^-}$  as a function of  $x_F(-0.6 < x_F^D < 0.6 25 x_F$  values; 0.05 interval) for  $p_T = 1,2,3,4,5,6,7,8,9,10$  GeV/c [16]

|              | Forward      | $(x_F > 0)$  | Backward $(x_F < 0)$ |              |
|--------------|--------------|--------------|----------------------|--------------|
| $p_T$ bin    | $A_N \mod 1$ | $A_N \mod 2$ | $A_N \mod 1$         | $A_N \mod 2$ |
| (1.00, 1.25) | -0.020       | -0.020       | -0.017               | -0.041       |
| (1.25, 1.50) | -0.022       | -0.021       | -0.017               | -0.040       |
| (1.50, 1.75) | -0.019       | -0.018       | -0.015               | -0.038       |
| (1.75, 2.00) | -0.022       | -0.017       | -0.016               | -0.035       |
| (2.00, 2.25) | -0.022       | -0.015       | -0.012               | -0.035       |
| (2.25, 2.50) | -0.022       | -0.015       | -0.009               | -0.029       |
| (2.50, 2.75) | -0.018       | -0.013       | -0.011               | -0.025       |
| (2.75, 3.00) | -0.019       | -0.013       | -0.009               | -0.023       |
| (3.00, 3.25) | -0.017       | -0.011       | -0.010               | -0.022       |
| (3.25, 3.50) | -0.017       | -0.011       | -0.009               | -0.019       |
| (3.50, 4.00) | -0.017       | -0.012       | -0.008               | -0.015       |
| (4.00, 5.00) | -0.016       | -0.007       | -0.008               | -0.011       |

Table 25: Simulation result of  $A_N$  of  $\mu^-(|x_F| < 0.2)$  as a function of  $p_T$  from theory input for D mesons  $(\bar{D}^0, D^- \to \mu^-)$ .

Table 26: Simulation result of  $A_N$  of  $\mu^+(|x_F| < 0.2)$  as a function of  $p_T$  from theory input for D mesons  $(D^0, D^+ \to \mu^+)$ .

|              | Forward $(x_F > 0)$ |              | Backward $(x_F < 0)$ |               |
|--------------|---------------------|--------------|----------------------|---------------|
| $p_T$ bin    | $A_N \mod 1$        | $A_N \mod 2$ | $A_N \mod 1$         | $A_N$ model 2 |
| (1.00, 1.25) | 0.010               | 0.033        | -0.023               | -0.010        |
| (1.25, 1.50) | 0.015               | 0.032        | -0.030               | -0.017        |
| (1.50, 1.75) | 0.020               | 0.032        | -0.032               | -0.025        |
| (1.75, 2.00) | 0.024               | 0.033        | -0.035               | -0.032        |
| (2.00, 2.25) | 0.027               | 0.032        | -0.038               | -0.038        |
| (2.25, 2.50) | 0.028               | 0.032        | -0.040               | -0.045        |
| (2.50, 2.75) | 0.029               | 0.031        | -0.039               | -0.043        |
| (2.75, 3.00) | 0.035               | 0.031        | -0.041               | -0.046        |
| (3.00, 3.25) | 0.033               | 0.027        | -0.042               | -0.045        |
| (3.25, 3.50) | 0.034               | 0.025        | -0.041               | -0.042        |
| (3.50, 4.00) | 0.035               | 0.026        | -0.039               | -0.044        |
| (4.00, 5.00) | 0.033               | 0.022        | -0.039               | -0.041        |

|                | $A_N(\overline{D}^0, I)$ | $D^- \to \mu^-)$ | $A_N(D^0, I)$ | $D^- \to \mu^+)$ |
|----------------|--------------------------|------------------|---------------|------------------|
| $x_F$ bin      | model 1                  | model 2          | model 1       | model 2          |
| (-0.10, -0.80) | -0.010                   | -0.022           | -0.044        | -0.058           |
| (-0.80, -0.60) | -0.013                   | -0.031           | -0.042        | -0.051           |
| (-0.60, -0.50) | -0.014                   | -0.037           | -0.037        | -0.042           |
| (-0.50, -0.40) | -0.015                   | -0.039           | -0.034        | -0.028           |
| (-0.40, -0.30) | -0.016                   | -0.040           | -0.029        | -0.016           |
| (-0.30, -0.20) | -0.017                   | -0.036           | -0.025        | -0.007           |
| (0.20, 0.30)   | -0.021                   | -0.021           | 0.011         | 0.032            |
| (0.30, 0.40)   | -0.019                   | -0.020           | 0.016         | 0.032            |
| (0.40, 0.50)   | -0.021                   | -0.019           | 0.021         | 0.032            |
| (0.50, 0.60)   | -0.023                   | -0.016           | 0.026         | 0.034            |
| (0.60, 0.80)   | -0.022                   | -0.018           | 0.034         | 0.033            |
| (0.80, 1.00)   | -0.019                   | -0.013           | 0.039         | 0.031            |

Table 27: Simulation result of  $A_N$  of  $\mu^-(\mu^+)$  in  $1.25 < p_T < 5.0 \text{ GeV}/c$  as a function of  $x_F$  from theory input for D mesons  $(\overline{D^0}, D^- \to \mu^- \text{ or } D^0, D^+ \to \mu^+)$ .

#### 7.2 Additional test with flat $A_N$ input

There are two possible explanations for the difference between  $A_N(D \to \mu)$  and  $A_N(D)$ . First of all,  $p_T$  of D and  $\mu$  are different, as Figure 25 shows. The asymmetry of muon can be affected by parent D meson. On the other hand, change in azimuthal angle ( $\phi$ ) by  $D \to \mu + X$  decay may have an effect on  $A_N$ , and there may be more effect as momentum of muon gets lower. Therefore, the flat input  $A_N(D)=0.1$  are tested in wide  $p_T$  ranges. For  $p_T > 1.25 \text{ GeV}/c$ , output  $A_N(D \to \mu)$  are almost same as  $A_N(D \to \mu)$  for input  $A_N(D \to \mu) = 0.10$ . However,  $A_N(D \to \mu)$  is diluted for low  $p_T$  ( $p_T < 1.0$ ) in Table 28, Figure 27.  $A_N(\mu)$  is smaller for lower  $p_T(\mu)$  even though input  $A_N(D)$  is fixed as 0.10.



Figure 27: Simulation of  $A_N(D \to \mu)$  from  $A_N(D)=0.1$  for low  $p_T$  muons (6 bins for  $p_T < 1.0$ ). Upper side is fit result of  $A_N(D)$  input and Lower side is fit result of  $A_N(D \to \mu)$ .

Table 28: Fit result of cosine modulation for simulation  $A_N(D \to \mu)$  from  $A_N(D)=0.1$  for low  $p_T$  muons ( $p_T < 1.0 \text{ GeV}/c$ ).

| muon $p_T (\text{GeV}/c)$ | $A_N(D)$ input | fit result $A_N(D)$ | fit result $A_N(\mu)$ |
|---------------------------|----------------|---------------------|-----------------------|
| (0.0, 0.2)                | 0.10           | $0.0928 \pm 0.0029$ | $0.0016 \pm 0.0014$   |
| (0.2, 0.3)                | 0.10           | $0.0967 \pm 0.0026$ | $0.0088 \pm 0.0015$   |
| (0.3, 0.4)                | 0.10           | $0.0989 \pm 0.0022$ | $0.0127 \pm 0.0015$   |
| (0.4, 0.5)                | 0.10           | $0.0987 \pm 0.0020$ | $0.0288 \pm 0.0016$   |
| (0.5, 0.7)                | 0.10           | $0.1020 \pm 0.0010$ | $0.0528 \pm 0.0015$   |
| (0.7, 1.0)                | 0.10           | $0.1002 \pm 0.0009$ | $0.0798 \pm 0.0022$   |

## 8 results

Figure 28, 29, 30 and Table 29, 30, 31, 32 represent the result  $A_N^{HF \to \mu}$  with systematic uncertainty and simulation result from theory  $(D \to \mu)$ .



Figure 28:  $A_N$  of negatively-charged, heavy-flavor muons as a function of  $p_T$  in the backward ( $x_F < 0$ , left) and forward ( $x_F > 0$ , right) regions. Vertical bars (boxes) represent statistical (systematic) uncertainties. Solid and dashed lines represent twist-3 model calculations [16].



Figure 29:  $A_N$  of positively-charged, heavy-flavor muons as a function of  $p_T$  in the backward ( $x_F < 0$ , left) and forward ( $x_F > 0$ , right) regions. Vertical bars (boxes) represent statistical (systematic) uncertainties. Solid and dashed lines represent twist-3 model calculations [16].



Figure 30:  $A_N$  of negatively-charged (top) and positively-charged (bottom), heavyflavor muons as a function of  $x_F$ , where  $+x_F$  is along the direction of the polarized proton. Vertical bars (boxes) represent statistical (systematic) uncertainties. Solid and dashed lines represent twist-3 model calculations [16].

| $p_T \operatorname{bin} (\mathrm{GeV/c})$ | $A_N$                   | $\delta A_N^{stat.}$       | $\delta A_N^{syst.}$                                |
|-------------------------------------------|-------------------------|----------------------------|-----------------------------------------------------|
|                                           | Forward                 | $(x_F > 0)$                |                                                     |
| (1.25, 1.50)                              | $-10.07 \times 10^{-2}$ | $\pm 8.76 \times 10^{-2}$  | $^{+4.49}_{-7.89} \times 10^{-2}$                   |
| (1.50, 2.00)                              | $-0.33 \times 10^{-2}$  | $\pm 5.98 \times 10^{-2}$  | $^{+2.68}_{-2.66} \times 10^{-2}$                   |
| (2.00, 2.50)                              | $4.54 \times 10^{-2}$   | $\pm 7.73 \times 10^{-2}$  | $^{+3.22}_{-2.65} \times 10^{-2}$                   |
| (2.50, 3.00)                              | $1.60 \times 10^{-2}$   | $\pm 7.65\times 10^{-2}$   | $^{+1.65}_{-1.63} \times 10^{-2}$                   |
| (3.00, 3.50)                              | $-5.63 \times 10^{-2}$  | $\pm 9.38 \times 10^{-2}$  | $^{+1.39}_{-1.52} \times 10^{-2}$                   |
| (3.50, 5.00)                              | $8.73 \times 10^{-2}$   | $\pm 10.39 \times 10^{-2}$ | $^{+2.70}_{-2.48} \times 10^{-2}$                   |
|                                           | Backward                | $(x_F < 0)$                |                                                     |
| (1.25, 1.50)                              | $-13.80 \times 10^{-2}$ | $\pm 8.63 \times 10^{-2}$  | $^{+5.80}_{-12.15} \times 10^{-2}$                  |
| (1.50, 2.00)                              | $11.01 \times 10^{-2}$  | $\pm 6.01 \times 10^{-2}$  | $^{+7.13}_{-4.45} \times 10^{-2}$                   |
| (2.00, 2.50)                              | $-6.05 \times 10^{-2}$  | $\pm 7.58 \times 10^{-2}$  | $^{+3.29}_{-4.73} \times 10^{-2}$                   |
| (2.50, 3.00)                              | $2.25 \times 10^{-2}$   | $\pm 7.57 \times 10^{-2}$  | $^{+1.90}_{-1.83} \times 10^{-2}$                   |
| (3.00, 3.50)                              | $-0.18 \times 10^{-2}$  | $\pm 9.29 \times 10^{-2}$  | $^{+\bar{1}.\bar{3}\bar{8}}_{-1.41} \times 10^{-2}$ |
| (3.50, 5.00)                              | $1.81 \times 10^{-2}$   | $\pm 10.38 \times 10^{-2}$ | $^{+1.30}_{-1.29} \times 10^{-2}$                   |

Table 29: Data table for  $A_N$  of heavy-flavor  $\mu^-$  as a function of  $p_T$ .

| $p_T \operatorname{bin} (\mathrm{GeV/c})$ | $A_N$                   | $\delta A_N^{stat.}$       | $\delta A_N^{syst.}$              |
|-------------------------------------------|-------------------------|----------------------------|-----------------------------------|
|                                           | Forward (               | $(x_F > 0)$                |                                   |
| (1.25, 1.50)                              | $2.99 \times 10^{-2}$   | $\pm 6.93 \times 10^{-2}$  | $^{+3.45}_{-3.51} \times 10^{-2}$ |
| (1.50, 2.00)                              | $-0.92 \times 10^{-2}$  | $\pm 4.03 \times 10^{-2}$  | $^{+2.58}_{-2.64} \times 10^{-2}$ |
| (2.00, 2.50)                              | $7.20 \times 10^{-2}$   | $\pm 5.46\times 10^{-2}$   | $^{+3.33}_{-2.67} \times 10^{-2}$ |
| $(2.50, \ 3.00)$                          | $5.55 \times 10^{-2}$   | $\pm 6.54 \times 10^{-2}$  | $^{+2.57}_{-2.17} \times 10^{-2}$ |
| (3.00,  3.50)                             | $14.71 \times 10^{-2}$  | $\pm 8.74 \times 10^{-2}$  | $^{+3.39}_{-2.71} \times 10^{-2}$ |
| (3.50, 5.00)                              | $-10.40 \times 10^{-2}$ | $\pm 10.77\times 10^{-2}$  | $^{+3.21}_{-3.99} \times 10^{-2}$ |
|                                           | Backward                | $(x_F < 0)$                |                                   |
| (1.25, 1.50)                              | $-0.35 \times 10^{-2}$  | $\pm 6.63 \times 10^{-2}$  | $^{+3.25}_{-3.25} \times 10^{-2}$ |
| (1.50, 2.00)                              | $-1.03 \times 10^{-2}$  | $\pm 3.91 \times 10^{-2}$  | $^{+2.49}_{-2.50} \times 10^{-2}$ |
| (2.00, 2.50)                              | $-2.10 \times 10^{-2}$  | $\pm 5.41 \times 10^{-2}$  | $^{+2.54}_{-2.70} \times 10^{-2}$ |
| (2.50, 3.00)                              | $-12.71 \times 10^{-2}$ | $\pm 6.60\times 10^{-2}$   | $^{+3.21}_{-4.33} \times 10^{-2}$ |
| (3.00, 3.50)                              | $-13.87 \times 10^{-2}$ | $\pm 8.85\times 10^{-2}$   | $^{+3.14}_{-4.12} \times 10^{-2}$ |
| (3.50, 5.00)                              | $-5.39 \times 10^{-2}$  | $\pm 10.92 \times 10^{-2}$ | $^{+1.55}_{-1.55} \times 10^{-2}$ |

Table 30: Data table for  $A_N$  of heavy-flavor  $\mu^+$  as a function of  $p_T$ .

Table 31: Data table for  $A_N$  of heavy-flavor  $\mu^-$  as a function of  $x_F$ .

| $x_F$ bin      | $\langle x_F \rangle$ | $A_N$                  | $\delta A_N^{stat.}$      | $\delta A_N^{syst.}$              |
|----------------|-----------------------|------------------------|---------------------------|-----------------------------------|
| (-0.20, -0.05) | -0.07                 | $0.27 \times 10^{-2}$  | $\pm 4.75 \times 10^{-2}$ | $^{+0.68}_{-1.32} \times 10^{-2}$ |
| (-0.05, 0.00)  | -0.04                 | $-0.91 \times 10^{-2}$ | $\pm 5.84 \times 10^{-2}$ | $^{+0.55}_{-0.81} \times 10^{-2}$ |
| (0.00, 0.05)   | 0.04                  | $-3.79 \times 10^{-2}$ | $\pm 6.06\times 10^{-2}$  | $^{+1.34}_{-2.89} \times 10^{-2}$ |
| (0.05, 0.20)   | 0.07                  | $1.89 \times 10^{-2}$  | $\pm 4.73 \times 10^{-2}$ | $^{+0.85}_{-0.71} \times 10^{-2}$ |

Table 32: Data table for  $A_N$  of heavy-flavor  $\mu^+$  as a function of  $x_F$ .

| $x_F$ bin      | $\langle x_F \rangle$ | $A_N$                  | $\delta A_N^{stat.}$      | $\delta A_N^{syst.}$                                    |
|----------------|-----------------------|------------------------|---------------------------|---------------------------------------------------------|
| (-0.20, -0.05) | -0.07                 | $-3.02 \times 10^{-2}$ | $\pm 3.48 \times 10^{-2}$ | $^{+0.92}_{-1.32} \times 10^{-2}$                       |
| (-0.05, 0.00)  | -0.04                 | $-2.90 \times 10^{-2}$ | $\pm 4.82 \times 10^{-2}$ | $^{+1.00}_{-2.93} \times 10^{-2}$                       |
| (0.00, 0.05)   | 0.04                  | $-0.52 \times 10^{-2}$ | $\pm 5.05\times 10^{-2}$  | $^{+0.58}_{-1.50} \times 10^{-2}$                       |
| (0.05, 0.20)   | 0.07                  | $5.83 \times 10^{-2}$  | $\pm 3.50 \times 10^{-2}$ | $^{+\bar{2}.\check{0}\check{1}}_{-1.25} \times 10^{-2}$ |

## 9 Summary

The transverse single spin asymmetries  $A_N$  in prompt muons productions (mostly from open heavy flavor decays) are measured as a function of  $x_F$  and  $p_T$  by using Run12 data.  $\mu^-$  is studied as well as  $\mu^+$  with new background fraction and smaller systematic uncertainty from cross section analysis[9]. There is no clear indication of a non-zero asymmetry in the results, which have relatively large statistical uncertainties. Theoretical calculations of  $A_N$  for D-meson production which take into account multigluon correlations are converted into  $A_N$  for muons with the help of PYTHIA in order to compare with the data directly. The calculations are in agreement with the data within experimental uncertainties. Future studies with improved statistics, using data taken with the PHENIX detector at RHIC in 2015, could provide constraints on Sivers-like, three-gluon correlation functions.

## References

- [1] D.L. Adams et al., Z. Phys. C 56 (1992) 181.
- [2] A. Bravar et al., Phys. Rev. Lett. 77 (1996) 2626.
- [3] J. Adams et al., Phys. Rev. Lett. 92 (2004)171801.
- [4] DIS2006 conference, Brahms preliminary.
- [5] M. Anselmino et al., Phys. Rev. D 70 (2004) 074025.
- [6] PHENIX analysis note 1188.
- [7] PHENIX analysis note 1098.
- [8] PHENIX analysis note 1174.
- [9] PHENIX analysis note 1250.
- [10] PHENIX analysis note 1096.
- [11] PHENIX analysis note 833.
- [12] PHENIX analysis note 696.
- [13] PHENIX analysis note 1073.

- [14] A. Adare et al. (PHENIX Collaboration) Phys. Rev. D 82, 112008 (2010)]
- [15] PHENIX analysis note 1098
- [16] Yuji Koike and Shinsuke Yoshida, Probing the three-gluon correlation functions by the single spin asymmetry in  $p^{\uparrow} + p \rightarrow D + X$  Phys. Rev. D84, 014026 (2011).
- [17] Torbjrn Sjstrand et al. An Introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159-177 (2015).

# Appendix

Good run list: Good for both north and south arms: 358710 358711 358717 358720 358722 358724 358725 358740 358742 358743  $358749\ 358750\ 358751\ 358752\ 358754\ 358758\ 358759\ 358767\ 358768\ 358771$ 358772 358773 358776 358777 358778 358779 358780 358782 358783 358985  $358986\ 358988\ 358991\ 358992\ 358996\ 358997\ 359293\ 359294\ 359313\ 359314$ 359316 359317 359319 359320 359321 359322 359323 359516 359518 359519359520 359522 359523 359533 359534 359535 359551 359554 359556 359570 359574 359575 359696 359697 359699 359703 359704 359705 359706 359707 359708 359746 359760 359762 359763 359764 359791 359793 359794 359795359796 359797 359798 359799 359800 359801 359803 359804 359912 359913 359916 359917 359918 359921 359923 359924 359926 359927 359934 359936 359939 359940 359945 359946 359948 359954 359989 359990 359991 359993 359995 359996 359997 359999 360000 360003 360075 360076 360077 360079 360081 360082 360083 360088 360089 360125 360126 360128 360132 360135 360136 360138 360139 360140 360141 360297 360299 360300 360301 360302 360303 360304 360311 360312 360370 360371 360372 360379 360381 360382  $360383\ 360384\ 360385\ 360386\ 360440\ 360442\ 360443\ 360445\ 360446\ 360447$  $360448\ 360450\ 360457\ 360458\ 360460\ 360502\ 360510\ 360512\ 360513\ 360514$  $360516\ 360517\ 360518\ 360519\ 360521\ 360639\ 360640\ 360645\ 360646\ 360647$  $360649\ 360650\ 360653\ 360654\ 360656\ 360658\ 360816\ 360818\ 360819\ 360848$  $360849\ 360852\ 360853\ 360854\ 360855\ 360856\ 360857\ 360861\ 360921\ 360922$ 360924 360925 360926 360928 360929 360930 360934 360999 361000 361002361003 361004 361008 361010 361076 361077 361078 361079 361080 361081361082 361083 361084 361085 361086 361088 361195 361196 361199 361201  $361202\ 361203\ 361207\ 361239\ 361240\ 361244\ 361563\ 361564\ 361565\ 361569$  $361570\ 361640\ 361641\ 361644\ 361645\ 361646\ 361647\ 361648\ 361650\ 361741$  $361742\ 361743\ 361753\ 361756\ 361757\ 361758\ 361759\ 361760\ 361762\ 361764$ 361770 361772 361906 361909 361910 361914 361918 361919 361921 361922  $361923\ 361924\ 361944\ 361945\ 361946\ 361964\ 361965\ 361967\ 361969\ 361970$  $361971\ 362050\ 362052\ 362053\ 362082\ 362083\ 362085\ 362142\ 362149\ 362152$  $362153\ 362154\ 362155\ 362157\ 362158\ 362159\ 362212\ 362213\ 362214\ 362215$ 362217 362220 362222 362224 362225 362226 362227 362297 362301 362302 362303 362304 362305 362306 362307 362308 362309 362310 362400 362402  $362405\ 362406\ 362407\ 362409\ 362410\ 362486\ 362489\ 362503\ 362504\ 362508$  $362688\ 362690\ 362694\ 362695\ 362696\ 362697\ 362699\ 362700\ 362703\ 362951$