# $J/\psi$ as a function of $p_T$ , y and centrality in small systems with Yue Hang Leung's Correlated Background: Run15pp and Run15pAu, Run15pAl, Run14 $^3$ HeAu Centrality

AN 1240, AN 1354, AN 1391 and AN 1418 also pertain to this analysis

Matt Durham<sup>1</sup>, Anthony Frawley<sup>2</sup>, Sanghoon Lim<sup>3</sup> and Krista Smith<sup>2</sup>

<sup>1</sup>Los Alamos National Lab
 <sup>2</sup>Florida State University
 <sup>3</sup>Pusan National University

October 28, 2020

# **Contents**

| 1  | Data   | a and Preservation                          | 5  |
|----|--------|---------------------------------------------|----|
|    | 1.1    | picoDST Files                               | 5  |
|    | 1.2    | HPSS Snapshot                               | 5  |
|    | 1.3    | GitHub Repository                           | 5  |
|    | 1.4    | HEPData                                     | 5  |
|    | 1.5    | Data Set, Detailed                          | 6  |
| Co | orrect | tion to Preliminary Plots                   | 7  |
| 2  | Intr   | roduction                                   | 8  |
| 3  | Yue    | Hang Leung's Correlated Background          | 8  |
|    | 3.1    | Motivation                                  | 8  |
|    | 3.2    | Unlike-sign Background Estimation           | 8  |
|    | 3.3    | Fit Function                                | 9  |
| 4  | Run    | 15pp Correlated Background                  | 10 |
|    | 4.1    | Initial Fits                                | 10 |
|    | 4.2    | Parameters as a function of $p_T$           | 10 |
|    | 4.3    | Checks on Run15pp Correlated Background     | 12 |
|    |        | 4.3.1 Rescaled Fits                         | 12 |
|    |        | 4.3.2 Parameter Ratio plots                 | 13 |
|    |        | 4.3.3 Ratio of Rescaled Fit/Initial Fit     | 14 |
|    | 4.4    | Final $p_T$ binning                         | 16 |
| 5  | Run    | 15pAu Correlated Background                 | 16 |
|    | 5.1    | Initial Fits                                | 16 |
|    | 5.2    | Parameters as a function of $p_T$           | 17 |
|    | 5.3    | Checks on Run15pAu Correlated Background    | 19 |
|    |        | 5.3.1 Rescaled Fits                         | 19 |
|    |        | F                                           | 19 |
|    |        | 5.3.3 Ratio of Rescaled Fit/Initial Fit     | 20 |
|    | 5.4    | Final $p_T$ binning                         | 20 |
| 6  | Run    | 115pAl and Run14HeAu Correlated Backgrounds | 21 |
|    | 6.1    | Final $p_T$ binning, Run15pAl               | 21 |
|    | 6.2    | Final $p_T$ binning, Run14HeAu              | 22 |
| 7  | Cor    | related Background Systematic Uncertainty   | 22 |
|    | 7.1    | Sanghoon's Method                           | 22 |
|    | 7.2    | Combinatorial Background Contribution       | 25 |
|    | 7.3    | Systematic Study Conclusion                 | 25 |

|           | 7.4 Check on CaseFGH                                                |    |
|-----------|---------------------------------------------------------------------|----|
|           | 7.5 Systematic Study Results                                        |    |
| 8         | Run15pp Checks on J/ $\psi$ Counts                                  | 35 |
|           | 8.1 Sum Over $p_T$                                                  |    |
|           | 8.2 Sum Over Rapidity                                               | 36 |
| 9         | Run15pAu Checks on J/ $\psi$ Counts                                 | 37 |
|           | 9.1 Sum Over $p_T$                                                  |    |
|           | 9.2 Sum Over Rapidity                                               |    |
|           | 9.3 Sum Over Centrality                                             |    |
|           | 9.4 $\sigma$ vs $p_T$                                               | 40 |
| 10        | Run15pAl Checks on J/ $\psi$ Counts                                 | 41 |
|           | 10.1 Sum over $p_T$                                                 |    |
|           | 10.2 Sum over Rapidity                                              |    |
|           | 10.3 Sum over Centrality                                            |    |
|           | 10.4 $\sigma$ vs. $p_T$                                             | 41 |
| 11        | Run14HeAu Checks on J/ $\psi$ Counts                                | 44 |
|           | 11.1 Sum over $p_T$                                                 |    |
|           | 11.2 Sum over Rapidity                                              |    |
|           | 11.3 Sum over Centrality                                            |    |
|           | 11.4 $\sigma$ vs. $p_T$                                             |    |
|           | 11.4.1 Fixing the J/ $\psi$ Width                                   |    |
| 12        | Bias Correction Factor                                              | 47 |
| 12        | Centralities                                                        | 48 |
| 13        | Centranties                                                         | 48 |
| 14        | NEW: 0-5-10-20% pAu Analysis                                        | 49 |
|           | 14.1 Checks                                                         | 49 |
|           | 14.2 Summary of Analysis Method                                     | 49 |
| 15        | <b>Binshift Corrections</b>                                         | 50 |
| 16        | Uncertainties: Type A, B and C                                      | 59 |
|           | 16.1 Type A: Statistical Uncertainty                                | 59 |
|           | 16.2 Type B: Systematic Uncertainty                                 |    |
|           | 16.2.1 Run14HeAu: Fixing the J/ $\psi$ Width and Center of the Peak | 59 |
|           | 16.3 Type C: Global Uncertainty                                     | 59 |
| <b>17</b> | Trigger and Acceptance Reconstruction Efficiencies                  | 62 |

| <b>18</b> | Run15pp Results                                     | 63 |
|-----------|-----------------------------------------------------|----|
|           | 18.1 GEANT3/GEANT4 Discrepancy                      | 63 |
|           | 18.1.1 Sanghoon's HI PWG Presentation               | 63 |
| 19        | Run15pAu Results                                    | 65 |
|           | 19.1 Fraction of Events per Centrality Range        | 65 |
| 20        | Run15pAl Results                                    | 71 |
|           | 20.1 Fraction of Events per Centrality Range        | 71 |
|           | 20.1.1 Sanghoon's High Luminosity Study of Run15pAl | 71 |
|           | 20.2 Rebinning Centralities                         | 71 |
| 21        | Run14HeAu Results                                   | 73 |
|           | 21.1 Fraction of Events per Centrality Range        | 73 |
|           | 21.2 Rebinning Centralities                         | 73 |
|           | 21.2.1 Combining TH2D Histograms                    | 74 |
|           | 21.3 $p_T$ Integrated $N_{coll}$                    | 75 |
| 22        | $\langle p_T^2  angle$ vs. $N_{coll}$               | 75 |
| 23        | Sum Over Centrality vs. Centrality Integrated       | 75 |
| 24        | $\mathbf{R}_{AB}$ vs. y                             | 80 |
| 25        | Rapidity with Centrality Dependence                 | 81 |
|           | 25.1 Checks                                         | 81 |
|           | 25.2 Corrbg Systematic Uncertainty                  | 87 |
|           | 25.3 Example Fits                                   | 88 |
|           | 25.4 Results                                        | 89 |
| <b>26</b> | First and Second Release Updates                    | 90 |
| A         | Raw J/ $\psi$ Counts:                               |    |
|           | $p_T$ /Rapidity/Centrality Integrated               | 93 |
| В         | Raw J/ $\psi$ Counts:                               |    |
|           | $p_T$ Dependent (Centrality Integrated)             | 94 |
| C         | Raw J/ $\psi$ Counts:                               |    |
|           | $p_T$ /Centrality Dependent                         | 96 |

## 1 Data and Preservation

## 1.1 picoDST Files

Matt Durham ran over the Analysis Train, and the picoDST files are located on hhj and hhj3:

/phenix/hhj/durham/taxi/Run15pp200MuonsMUPro108/13187/data /phenix/hhj3/durham/taxi/Run15pAl200MuonsMUPro105/13051/data /phenix/hhj3/durham/taxi/Run15pAu105plus108 /phenix/hhj3/durham/taxi/Run14HeAu200MuonsMUPro109/13053/data

## 1.2 HPSS Snapshot

A snapshot of fitting codes and files has been included in this directory in HPSS:

/home/klsmith/ppg228.tar

## 1.3 GitHub Repository

All final result macros and root files are located in this repository Sanghoon created:

PHENIX\_SmallSystem\_Jpsi

#### 1.4 HEPData

All measurements have now been uploaded to HEPData. Maxim Potekhin oversaw and assisted the process, and Christine Nattrass' code (github) was used to convert text files into yaml files:

Measurement of  $J/\psi$  at forward and backward rapidity in p+p, p+AI, p+Au, and  ${}^{3}$ He+Au collisions at  $\sqrt{s_{_{NN}}}=200~{\rm GeV}$ 

## 1.5 Data Set, Detailed

#### 1. Run15pp

Data taking period: Feb. 11, 2015 - Apr. 27, 2015

Master DST/pDST production tag: Run-15 200 GeV p+p pro108 (Muons)

Train number: 13187 Number of runs: 873

Runnumber range: 421815 – 432008

Bad runs list for North (1) and South: Sanghoon's bad run list

#### 2. Run15pAl

Data taking period: Jun. 9, 2015 – Jun. 22, 2015

Master DST/pDST production tag: Run-15 200 GeV p+Al pro105 (Muons)

Train number: 13051 Number of runs: 152

Runnumber range: 436759 – 438422

Bad runs list for North (1) and South: Sanghoon's bad run list

#### 3a. Run15pAu

Data taking period: May 4, 2015 - Jun. 8, 2015

Master DST/pDST production tag: Run-15 200 GeV p+Au (No VTX) pro105 (Muons)

Train number: 13052 Number of runs: 79

Runnumber range: 432681 – 436647

Bad runs list for North (1) and South: Sanghoon's bad run list

#### 3b. **Run15pAu**

Data taking period: May 4, 2015 - Jun. 8, 2015

Master DST/pDST production tag: Run-15 200 GeV p+Au pro108 (Muons)

Train number: 13050 Number of runs: 349

Runnumber range: 432639 – 436647

Bad runs list for North (1) and South: Sanghoon's bad run list

#### 4. Run14HeAu

Data taking period: Jun. 24, 2014 - Jul. 5, 2014

Master DST/pDST production tag: Run-14 200 GeV He+Au pro109 (Muons)

Train number: 13053 Number of runs: 140

Runnumber range: 415751 – 416842

Bad runs list for North (1) and South: Sanghoon's bad run list

# **Correction to Preliminary Plots**

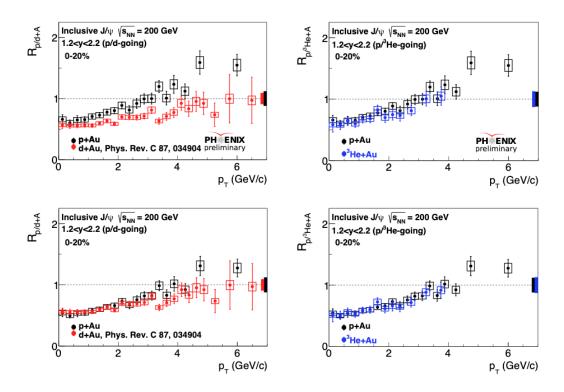



Figure 1: Top: Preliminary Plots. Bottom: Corrected Preliminary Plots. Left: Run15  $R_{pAu}$  vs. Run08  $R_{dAu}$  in the North arm for 0-20% Centrality. Right: Run15  $R_{pAu}$  vs. Run14  $R_{HeAu}$  in the North arm for the same centrality.

Preliminary was granted for  $R_{pAu}$  and  $R_{HeAu}$  on May 10, 2019. At this time, pAu and HeAu North 0-20% centrality agreed with each other, but pAu and dAu North 0-20% did not. These results were surprising to the analyzers, but many cross checks were performed and it was not apparent a mistake had been made during the analysis process.

Preliminary was requested for Tony Frawley to present at the 13th International Heavy Quarkonium Workshop on May 14, 2019. But Tony had doubts the North arm results were correct, and a bug in the nuclear modification calculation code was suspected. This code was then rewritten, although the same results were observed.

Sanghoon Lim then offered to look at the rewritten nuclear modification code. He found that the fraction of events per centrality range used in the denominator of the invariant yield calculations were incorrect for both systems (pAu and HeAu). This mistake was a conceptual error in the way the events in each centrality bin were counted.

Sanghoon then determined the correct fraction of events per centrality, the plots were updated, and the HI PWG was notified. Please see sections 15.1 and 17.1 for more details on how Sanghoon determined the correct fraction of events per centrality.

## 2 Introduction

This analysis note is an extension of AN 1391. The topic of both this analysis note and AN 1391 is  $J/\psi$  as a function of  $p_T$  and centrality in small systems. But the important distinction between the two is that the analysis presented in this note has used Yue Hang Leung's correlated background results from AN 1306 (Run15pp) and AN 1369 (Run15pAu).

Another important distinction is that the method for determining the systematic uncertainty due to the correlated background shape has been revised. Lastly, this current analysis note presents centrality results for pAu, pAl and <sup>3</sup>HeAu, where AN 1391 presents centrality for only one system: pAu. Otherwise, the current analysis has continued as outlined in AN 1391.

**UPDATE:** Sanghoon Lim requested additional measurements for this analysis note that were not included in AN 1354. The measurements he requested are  $J/\psi$  as a function of y with centrality dependence. Please see section 23 for details.

# 3 Yue Hang Leung's Correlated Background

#### 3.1 Motivation

In AN 1391 we describe the difference in  $J/\psi$  counts that was observed when the shape of the correlated background changed. The actual shape of the correlated background is not fully known. Due to this uncertainty, it was suggested by **Xioachun He** during an FVTX meeting that we use Yue Hang Leung's results from his analysis of the correlated background in Run15pp (AN 1306) and Run15pAu (AN 1369).

# 3.2 Unlike-sign Background Estimation

The total background is the sum of the combinatorial and correlated backgrounds. The background is composed of unlike-sign muon pairs, such that

$$BG(UL) = c\bar{c}(UL) + b\bar{b}(UL) + corr\_had(UL) + dy(UL) + comb(UL). \tag{1}$$

AN 1306 showed the following:

$$b\bar{b}(UL) \approx b\bar{b}(LS)$$
  
 $corr\_had(UL) \approx corr\_had(LS)$   
 $comb(UL) \approx comb(LS)$ .

In this analysis, we have estimated the unlike-sign background using like-sign pairs:

$$BG(UL) = LS\_pairs + c\bar{c}(UL) + dy(UL), \tag{2}$$

where LS pairs include  $b\bar{b}$  and correlated hadron pairs in addition to combinatorial pairs:

$$LS\_pairs = b\bar{b}(LS) + corr\_had(LS) + comb(LS). \tag{3}$$

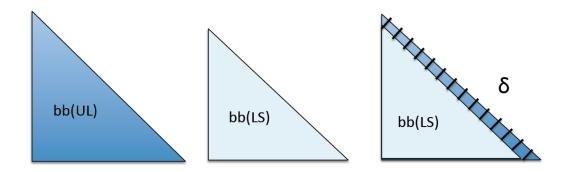



Figure 2: Schematic of the  $\delta_{b\bar{b}}$  contribution for estimating the unlike-sign background using like-sign pairs.

But for the most precise results, we have used

$$BG(UL) = LS\_pairs + c\bar{c}(UL) + dy(UL) + \delta_{b\bar{b}}(UL) + \delta_{corr\ had}(UL), \tag{4}$$

where

$$\delta_{b\bar{b}}(UL) = b\bar{b}(UL) - b\bar{b}(LS) \tag{5}$$

$$\delta_{corr\ had}(UL) = corr\_had(UL) - corr\_had(LS). \tag{6}$$

A schematic of  $\delta$  is included in Figure 1. Therefore, in our reconstruction of Yue Hang's correlated background, we have used all of the following components directly from his studies except for the comb(LS):

$$BG(UL) = c\bar{c}(UL) + b\bar{b}(UL) + corr\_had(UL) + dy(UL) + comb(LS) - b\bar{b}(LS) - corr\_had(LS). \tag{7}$$

#### 3.3 Fit Function

The function used to fit Yue Hang's correlated background is the same function used in AN 1391 and AN 1354. It contains five parameters, with 'c' being the normalization. It will be used in various ways throughout the analysis, with some parameters fixed and others free, depending on the purpose of the fit.

$$y = \frac{c}{(e^{-ax-bx^2} + x/d)^e}$$

Figure 3: The correlated background fit function (AN 1354 Eq. 2, AN 1391 Section 1).

# 4 Run15pp Correlated Background

#### 4.1 Initial Fits

We began with reconstructing the correlated background for Run15pp. Figure 3 shows the mass distribution for 500 MeV/c  $p_T$  slices over the range 0-7 GeV/c, where we have fit the background using the function described above. For the initial fits, all parameters are free. We also fit well beyond the lower mass limit of  $2.0 \text{ GeV/c}^2$ .

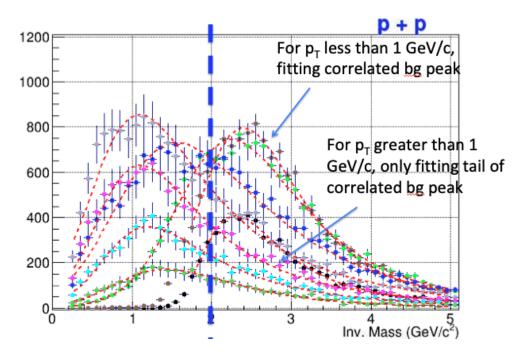



Figure 4: Yue Hang's Run15pp correlated background in 500 MeV/c binwidths in the North Arm. All parameters are free.

Immediately we can see that the distribution is divided around 2 GeV/ $c^2$ . At low  $p_T$ , which is approximately 0-1 GeV/c, the correlated background peaks to the right of 2 GeV/ $c^2$ . But for  $p_T$  greater than 1 GeV/c, the peak begins shifting to the left of 2 GeV/ $c^2$ . For this analysis, we are fitting the data in the window 2-5 GeV/ $c^2$ . These results suggest the correlated background could be  $p_T$  dependent. We therefore took the resulting bestfit parameters for a, b, d, e and plotted them as a function of  $p_T$ .

# **4.2** Parameters as a function of $p_T$

The parameters over the range 1-7 GeV/c were similar enough to fit with polynomial functions. The results are shown in Figure 4. These polynomial functions were then input into the Crystal Ball fitter, and the initial parameter values individually calculated for each  $p_T$  value.

However, the parameters over the range 0-1 GeV/c changed too rapidly to find functions that could accurately describe their behavior. In particular, the parameter 'd' had the most rapid change,

as shown in Figure 5. Instead, the bestfit results for parameters a, b, d, e were directly used as the initial parameters in the Crystal Ball fitter.

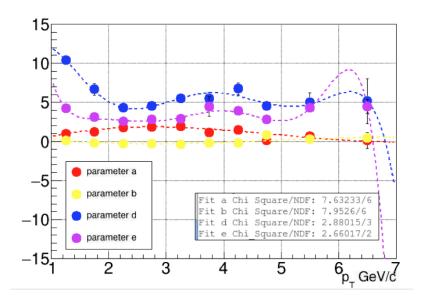



Figure 5: 1-7 GeV/c: Bestfit parameters of the correlated background fit function plotted vs.  $p_T$  for Run15pp North arm. The parameters are fit with polynomials of varying degrees.

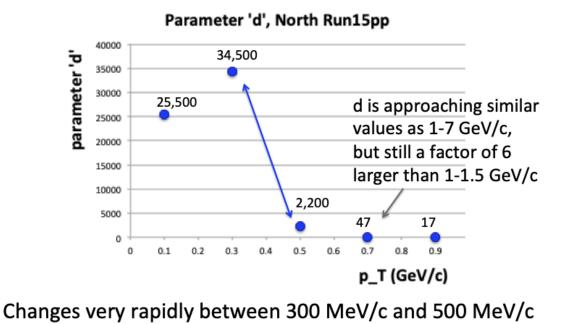



Figure 6: 0-1 GeV/c: Bestfit parameter 'd' of the correlated background fit function plotted vs.  $p_T$  for Run15pp North arm. We could not find functions that accurately describe the parameters over this range.

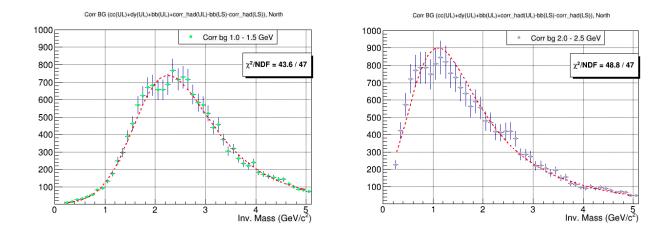



Figure 7: Run15pp North arm rescaled fits for  $1.0 < p_T < 1.5$  GeV/c, left, and  $2.0 < p_T < 2.5$  GeV/c. Only parameter 'c' is free.

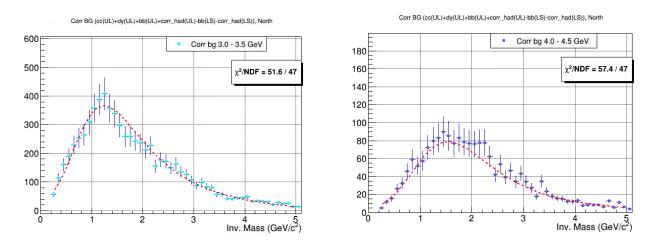



Figure 8: Run15pp North arm rescaled fits for  $3.0 < p_T < 3.5$  GeV/c, left, and  $4.0 < p_T < 4.5$  GeV/c. Only parameter 'c' is free.

# 4.3 Checks on Run15pp Correlated Background

We performed several checks to verify the accuracy of the parameter functions in fitting Yue Hang's initial correlated background shape.

#### 4.3.1 Rescaled Fits

We refit each correlated background mass distribution using the polynomial functions to calculate the bestfit parameter for the given  $p_T$  value. For this purpose, we fixed all parameters aside from the normalization, and the rescaled fit is taken over the same mass range as the initial fit. Examples of these results are shown in Figures 6 and 7.

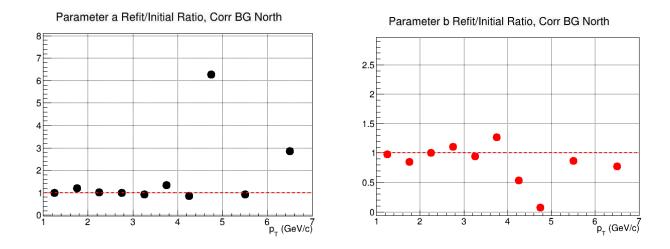
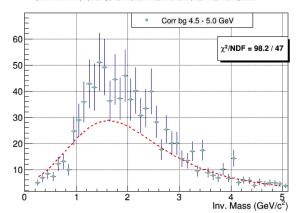



Figure 9: Run15pp North arm parameter 'a', left, and parameter 'b' ratios of rescaled fit value to initial fit value. We take a closer look at  $4.5 < p_T < 5.0$  GeV/c below.




Figure 10: Run15pp North arm parameter 'd', left, and parameter 'e' ratios of rescaled fit value to initial fit value.

#### 4.3.2 Parameter Ratio plots

Additionally, we took the ratio of the parameter value in the rescaled fit compared to the parameter value in the initial fit. The plots for parameters a, b, d, and e are shown in Figures 8 and 9.

Based on the parameter 'a' and 'b' plot results for  $4.0 < p_T < 4.5$  GeV/c, we take a closer look at the rescaled fit. As previously mentioned, the initial fits, as well as the rescaled fits, are over a broader mass range than the range we are using in the Crystal Ball fitter. Figure 10 shows the rescaled fit over the broader mass range compared with the rescaled fit over the Crystal Ball mass range. We see that the main reason for the poor fit is due to the peak. But at higher  $p_T$ , the peak does not fall within the mass range used in the Crystal ball fitter. And the fit over the actual data range is quite good, with  $\chi^2/NDF = 1.28$ .





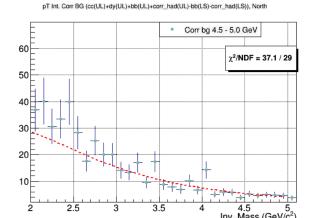



Figure 11: Left: The rescaled correlated background fit for  $4.5 < p_T < 5.0$  GeV/c over the same mass range as the initial fit. Right: The same rescaled correlated background fit over the mass range used in the Crystal Ball fitter.

#### 4.3.3 Ratio of Rescaled Fit/Initial Fit

The final check we made on the parameter functions is the  $p_T$  integrated comparison between the rescaled fits and Yue Hang's raw correlated background. The raw correlated background is the sum of all correlated background mass distributions over the  $p_T$  range 0-7 GeV/c, and is then fit once, after all the components have been summed over.

The rescaled  $p_T$  integrated background, on the other hand, is the sum of all individual fits over the same  $p_T$  range. Since the area under the curve of each distribution varies, we used a weighted average to determine  $p_T$  integrated for the rescaled fits:

$$y(x) = \frac{\sum_{i} x_i w_i}{\sum_{i} w_i}.$$
 (8)

Here, the weight  $w_i$  is the area under each correlated background curve, and  $x_i$  is the rescaled fit evaluated at each mass bin. Then the weighted average can be written as

$$y(m) = \frac{\sum_{p_T} A_{p_T} f(m \mid p_T)}{\sum_{p_T} A_{p_T}},$$
(9)

where the area is taken as the area under the curve of the initial fit,  $f_0(m \mid p_T)$ 

$$A_{p_T} = \int_2^5 f_0(m \,|\, p_T) \, dm. \tag{10}$$

See Figures 11 and 12 for the rescaled  $p_T$  integrated correlated background shape and for the ratio with the raw  $p_T$  integrated shape.

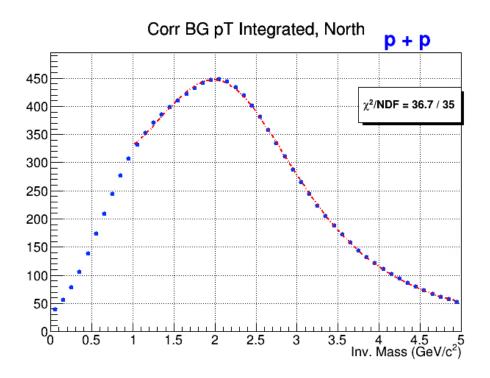



Figure 12: The rescaled  $p_T$  integrated correlated background.

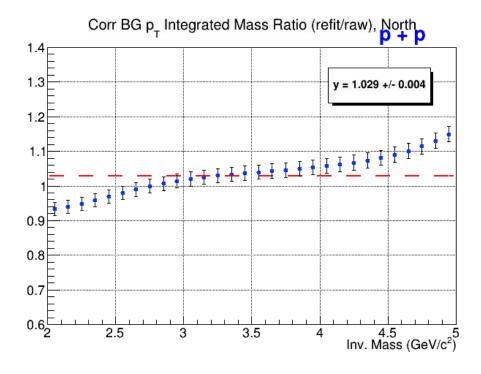



Figure 13: The mass ratio of the rescaled  $p_T$  integrated correlated background to the Yue Hang's raw  $p_T$  integrated correlated background over the mass range 2-5 GeV/ $c^2$ .

#### 4.4 Final $p_T$ binning

The final  $p_T$  binning used for the Run15pp correlated background is:

0 - 1 GeV/c: 200 MeV/c binwidths (omitted 400 - 600 MeV/c)

1 - 5 GeV/c: 500 MeV/c binwidths 5 - 7 GeV/c: 1 GeV/c binwidths

The final  $p_T$  binning used for the Run15pp data is:

0 - 6 GeV/c: 250 MeV/c binwidths 6 - 7 GeV/c: 500 MeV/c binwidths

# 5 Run15pAu Correlated Background

The Run15pAu correlated background consists of the same components as Run15pp, since we are again estimating the unlike-sign background using like-sign pairs, such that

$$BG(UL) = c\bar{c}(UL) + b\bar{b}(UL) + corr\_had(UL) + dy(UL) + comb(LS) - b\bar{b}(LS) - corr\_had(LS). \tag{11}$$

The Run15pAu correlated background was constructed by modifying the Run15pp correlated background. Aside from the comb(LS), all components listed above were modified except the contributions from dy(UL), since these modifications are not known.

For all other components, the Run15pp contributions were multiplied by a scaled modification factor determined by PYTHIA simulations, based on the Run08dAu nuclear modification results. Please see Yue Hang's AN 1369 for more detailed and precise information regarding the scaled modification factors.

#### **5.1** Initial Fits

We proceed now in the same manner as Run15pp. We began with the same  $p_T$  binwidths as Run15pp, which were 500 MeV/c  $p_T$  slices. Figures 13 and 14 show the Run15pAu mass distribution for 500 MeV/c  $p_T$  slices over the range 0-7 GeV/c, where we have fit the background using the same function as Run15pp (defined in section 2.3). For the initial fits, all parameters are free. We also fit well beyond the lower mass limit of 2.0 GeV/c<sup>2</sup>. The Run15pAu fits in the North and South arm are directly compared with the Run15pp fits.

But the rescaled fits had poor chisquare values, even over the same range as the Crystal Ball fitter. It became clear that the correlated background must change more rapidly in Run15pAu than in Run15pp, and that finer  $p_T$  binning would be needed. Therefore, we switched to 300 MeV/c binwidths in  $p_T$  for the Run15pAu correlated background.

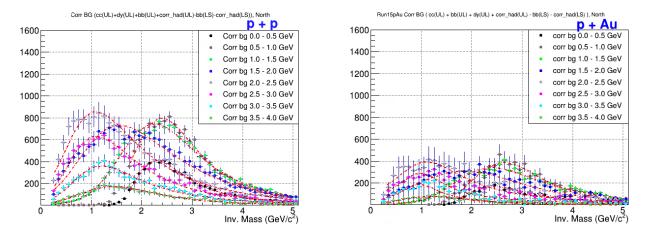



Figure 14: North Arm: Run15pp correlated background mass distribution, left, compared with Run15pAu. All parameters are free.

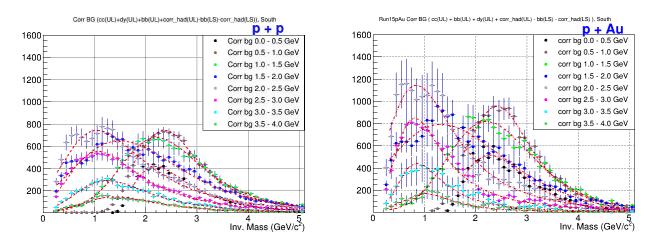



Figure 15: South Arm: Run15pp correlated background mass distribution, left, compared with Run15pAu. All parameters are free.

# **5.2** Parameters as a function of $p_T$

The parameters over the range 1-7 GeV/c were similar enough to fit with polynomial functions, as was the case for Run15pp. The results are shown in Figure 15. These polynomial functions were then input into the Crystal Ball fitter, and the initial parameter values individually calculated for each  $p_T$  value.

However, the parameters over the range 0-1 GeV/c changed too rapidly to find functions that could accurately describe their behavior, which was also the case in Run15pp. The same method was followed here as well, with the bestfit results for parameters a, b, d, e directly used as the initial parameters in the Crystal Ball fitter.

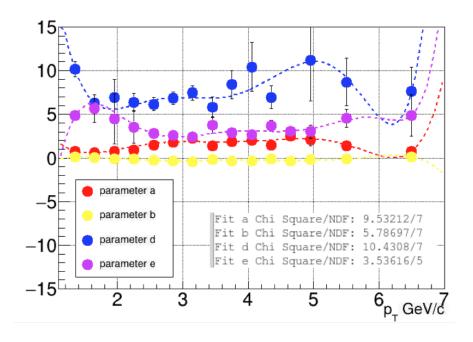



Figure 16: 1-7 GeV/c: Bestfit parameters of the correlated background fit function plotted vs.  $p_T$  for Run15pAu North arm. The parameters are fit with polynomials of varying degrees.

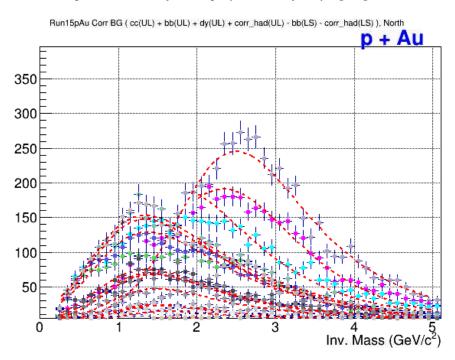



Figure 17: Rescaled fits for Run15pAu in the North Arm with 300 MeV/c binning. The initial parameter values were calculated from the polynomial functions shown in the above plot. Only the normalization parameter 'c' is free.

## 5.3 Checks on Run15pAu Correlated Background

The same checks were performed on the correlated background for Run15pAu as Run15pp.

#### 5.3.1 Rescaled Fits

We refit each correlated background mass distribution using the polynomial functions to calculate the bestfit parameter for the given  $p_T$  value. For this purpose, we fixed all parameters aside from the normalization. These fits are shown in Figure 16.

#### 5.3.2 Parameter Ratio plots

We also took the ratio of the parameter value in the rescaled fit compared to the parameter value in the initial fit. The plots for parameters a, b, d, and e are shown in Figures 17 and 18.

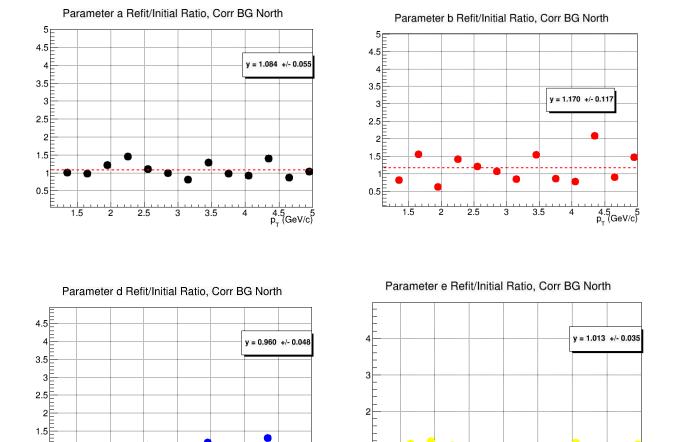



Figure 19: Top: Run15pAu North arm parameter 'a', left, and parameter 'b' ratios of rescaled fit value to initial fit value. Bottom: Run15pAu North Arm parameter 'd' and parameter 'e' ratios.

4.5 p<sub>T</sub> (GeV/c) 4.5 p<sub>r</sub> (GeV/c)

#### 5.3.3 Ratio of Rescaled Fit/Initial Fit

The final check we made on the parameter functions is the  $p_T$  integrated comparison between the rescaled fits and Yue Hang's raw correlated background, as shown in Figures 19 and 20. See Section 3.3.3 for details of the method.

## 5.4 Final $p_T$ binning

The final  $p_T$  binning used for the Run15pAu correlated background is:

0 - 1 GeV/c: 200 MeV/c binwidths (omitted 400 - 600 MeV/c)

1 - 5 GeV/c: 300 MeV/c binwidths 5 - 7 GeV/c: 1 GeV/c binwidths

The final  $p_T$  binning used for the Run15pAu Centrality data is:

0 - 4 GeV/c: 250 MeV/c binwidths 4 - 5 GeV/c: 500 MeV/c binwidths 5 - 7 GeV/c: 2 GeV/c binwidth

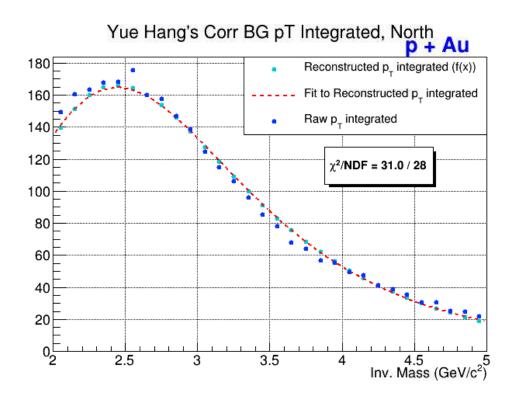



Figure 20: Run15pAu North Arm: The rescaled  $p_T$  integrated correlated background shown together with Yue Hang's raw  $p_T$  integrated correlated background over the mass range 2-5 GeV/ $c^2$ .

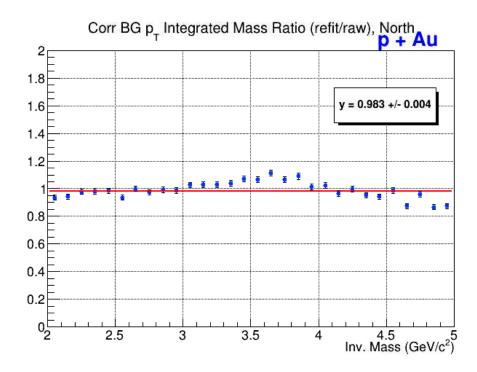



Figure 21: Run15pAu North Arm: The mass ratio of the rescaled  $p_T$  integrated correlated background to the Yue Hang's raw  $p_T$  integrated correlated background over the mass range 2-5 GeV/ $c^2$ .

# 6 Run15pAl and Run14HeAu Correlated Backgrounds

Yue Hang did not study the correlated backgrounds for Run15pAl or Run14HeAu. Therefore, to maintain uniformity in the analysis, we used the Run15pp correlated background results to fit Run15pAl, and we used the Run15pAu correlated background results to fit Run14HeAu.

We initially tried using the  $p_T$  dependent correlated background parameter functions, but the uncertainties in the fits were large and the fits themselves were less stable than what was observed in Run15pp and Run15pAu. Therefore, we decided to use the  $p_T$  integrated fit results for the initial parameters in both systems.

# **6.1** Final $p_T$ binning, Run15pAl

The final  $p_T$  binning used for the Run15pAl correlated background is the Run15pp binning:

0 - 1 GeV/c: 200 MeV/c binwidths (omitted 400 - 600 MeV/c)

1 - 5 GeV/c: 500 MeV/c binwidths 5 - 7 GeV/c: 1 GeV/c binwidths

The final  $p_T$  binning used for the Run15pAl Centrality data is:

0 - 4 GeV/c: 250 MeV/c binwidths

4 - 5 GeV/c: 1 GeV/c binwidths 5 - 7 GeV/c: 2 GeV/c binwidths

#### **6.2** Final $p_T$ binning, Run14HeAu

The final  $p_T$  binning used for the Run14HeAu correlated background is the Run15pAu binning:

0 - 1 GeV/c: 200 MeV/c binwidths (omitted 400 - 600 MeV/c)

1 - 5 GeV/c: 300 MeV/c binwidths 5 - 7 GeV/c: 1 GeV/c binwidths

The final  $p_T$  binning used for the Run14HeAu Centrality data is:

0 - 2.5 GeV/c: 250 MeV/c binwidths 2.5 - 4 GeV/c: 500 MeV/c binwidths 4 - 5 GeV/c: 1 GeV/c binwidths 5 - 7 GeV/c: 2 GeV/c binwidths

# 7 Correlated Background Systematic Uncertainty

The systematic uncertainties associated with each system are detailed in AN 1391, Table 11. These systematic uncertainties were applied in the same manner for the results presented in this note except for the correlated background systematic uncertainties.

# 7.1 Sanghoon's Method

One of the important differences between this analysis note and AN 1391 is the new method proposed by Sanghoon Lim to calculate the systematic uncertainty arising from the uncertainty in the correlated background shape. Here we present the logic for the study:

- 1.  $J/\psi$  fit with unmodified correlated background shape from Yue Hang's results is not good.
- 2. This is understandable because we're using different cuts and different mass calculation. In addition, his shape is also from simulation.
- 3. In order to handle that, we can free some parameters in the fit function for Yue Hang's correlated background shape.
- 4. Since we don't know how many free parameters are best, we tested two cases: one free except for normalization (case A) and two free except for normalization (Case FGH).

North Bin 7 - Case F 
$$y = \frac{c}{(e^{-ax-bx^2} + x/d)^e}$$
 parameters a, c, d free

North bin\_7, 1.50 - 1.75 GeV/c

 $x^2/NDF = 85.4 / 52$ 

J/Psi Counts = 2769.4 +/- 50.506

Figure 22: Example: Run15pp North Arm bin 7 (1.5 <  $p_T$  < 1.75 GeV/c) data fit using Case F, which has parameters a, c, d free.

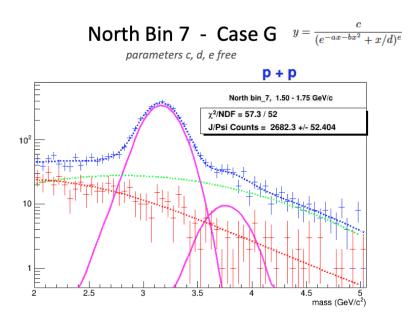



Figure 23: Example: Run15pp North Arm bin 7 (1.5 <  $p_T$  < 1.75 GeV/c) data fit using Case G, which has parameters c, d, e free.

We have included an example of this method using a high statistics bin from Run15pp: bin 7, which corresponds to the  $p_T$  range 1.50 – 1.75 GeV/c. See Figures 21 - 24.

This same method was applied to extract the counts for all  $p_T$  in both the North and South arms. We then calculated the systematic uncertainty between the Case A J/ $\psi$  counts and the average of

North Bin 7 - Case H 
$$y = \frac{c}{(e^{-ax-bx^2} + x/d)^c}$$

parameters a, c, e free

North bin\_7, 1.50 - 1.75 GeV/c

 $\chi^2/\text{NDF} = 96.6 / 52$ 
 $J/\text{Psi Counts} = 2883.3 + -64.522$ 

Figure 24: Example: Run15pp North Arm bin 7 (1.5 <  $p_T$  < 1.75 GeV/c) data fit using Case H, which has parameters a, c, e free.

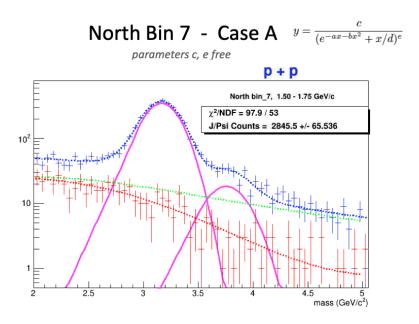



Figure 25: Example: Run15pp North Arm bin 7 (1.5 <  $p_T$  < 1.75 GeV/c) data fit using Case A, which has parameters c, e free.

the Case F, Case G, and Case H J/ $\psi$  counts, using the following formula:

$$\sigma_{corrbg} = \frac{|J/\psi^{CaseA} - J/\psi^{CaseFGH}|}{J/\psi^{CaseA}} \pm \frac{\sigma^{CaseA}}{J/\psi^{CaseA}}.$$
 (12)

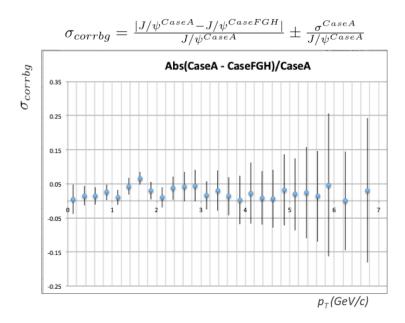



Figure 26: Run15pp North systematic uncertainty distribution as a function of  $p_T$ . There are discrepancies between the two cases larger than statistical uncertainty due to the combinatorial background.

## 7.2 Combinatorial Background Contribution

The resulting distribution was plotted as a function of  $p_T$  in Figure 25. The systematic uncertainty distribution shows differences between the counts that are larger than the statistical uncertainty. The contribution from the slope of the fit to the combinatorial background is enough to cause a discrepancy between the Case A and the Case FGH counts.

For the fitting of Cases F, G and H, the same initial parameters for the combinatorial background were used in all three cases for the aforementioned reason. We went back and fit Case A using the same set of initial parameters used for the Cases F, G and H. If the Case A fit failed, then A, F, G and H were refit with a new set of combinatorial initial parameters. This resolved the discrepancy between the counts. See Figure 26 for the final results.

# 7.3 Systematic Study Conclusion

From these four different cases of fixing and freeing the five parameters of the correlated background fit function, we can see the variation in  $J/\psi$  counts due to the uncertainty in the correlated background shape. In Table 1, we have summarized the resulting  $J/\psi$  counts from the four different cases, after refitting to a new set of parameters for the combinatorial background.

Table 1: Systematic Study Example: Bin 7 in Run15pp North Arm, with the same combinatorial background initial parameters used for all Cases.

| Case A         | Ave FGH        | Case F         | Case G         | Case H         | Prelim         |
|----------------|----------------|----------------|----------------|----------------|----------------|
| $2,845 \pm 66$ | $2,843 \pm 68$ | $2,766 \pm 75$ | $2,883 \pm 64$ | $2,881 \pm 64$ | $2,746 \pm 64$ |

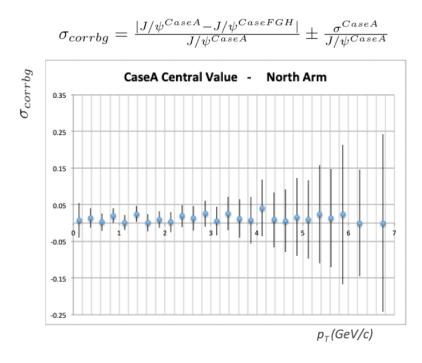



Figure 27: Run15pp North systematic uncertainty distribution as a function of  $p_T$  with the same combinatorial background initial parameters used in all four cases.

The results from Case A and the average of CaseFGH are consistent, which verifies that the  $J/\psi$  extraction is not that sensitive to the correlated background shape. Therefore, we decided to use the results from case A (less free parameters) as the central value and the results from case FGH (more free parameters) for the systematic check.

#### 7.4 Check on CaseFGH

Tony wondered how closely Case FGH matches Yue Hang's original correlated background shape, since there are two free parameters (aside from normalization), while Case A has one free parameter aside from normalization. Sanghoon suggested to take the mass ratios of the correlated background, with Case A compared with Yue Hang's initial fit and then to do the same with Case FGH. The results indicate that both Cases describe the initial correlated background quite well (see Figure 28).

# 7.5 Systematic Study Results

The systematic uncertainty as a function of  $p_T$  was plotted and a line of best fit was used to determine the overall value to assign as the correlated background systematic uncertainty. We used this approach for all systems and all measurements. The results are listed in Table 2. The fitted distributions for all systems and centralities are shown in Figures 28-34.

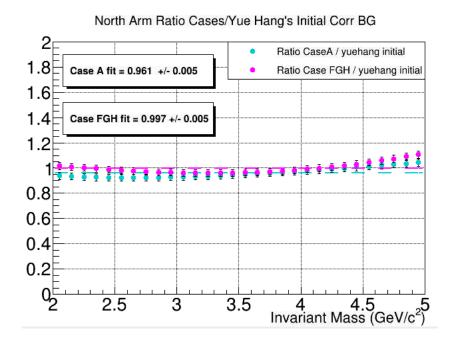



Figure 28: Run15pp North correlated background comparison between the ratios of Case FGH to Yue Hang's initial fit and Case A to Yue Hang's initial fit. bin 7 is shown (1.5 - 1.75 GeV/c).

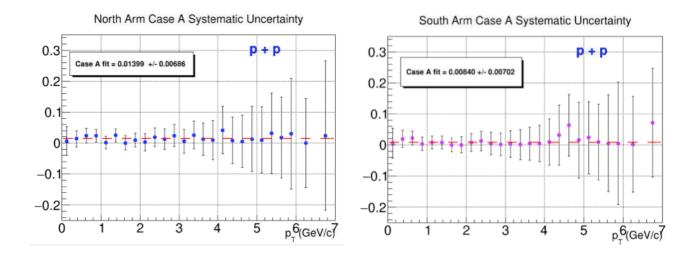



Figure 29: Run15pp correlated background fractional systematic uncertainty distributions for both North, left, and South Arms. The South arm uncertainty was rounded up to 1.00%

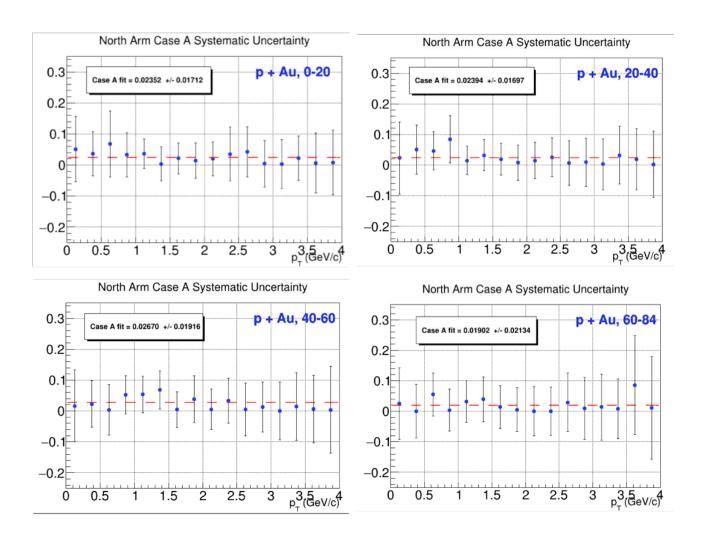



Figure 30: Run15pAu North correlated background fractional systematic uncertainty distributions for all centralities.

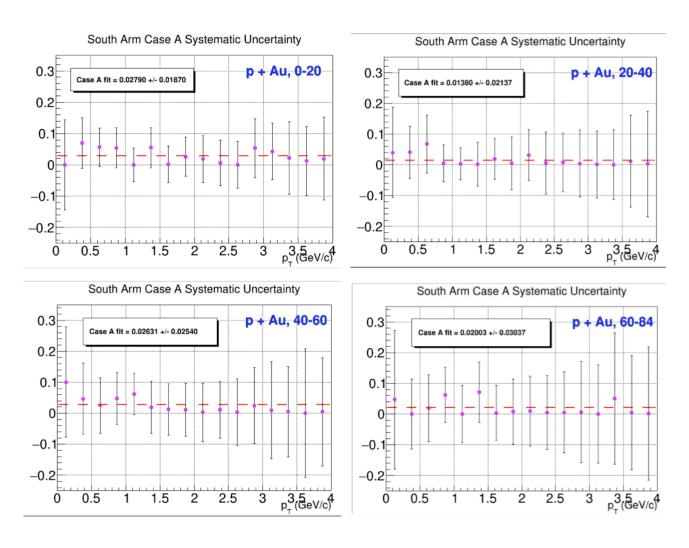



Figure 31: Run15pAu South correlated background fractional systematic uncertainty distributions for all centralities.

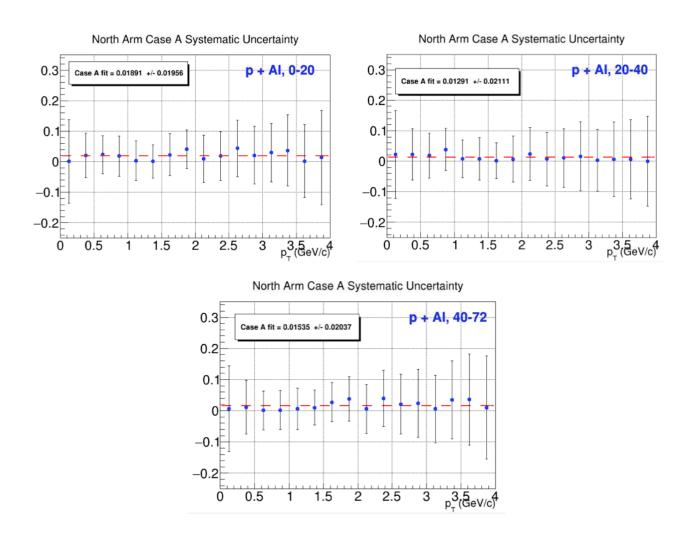



Figure 32: Run15pAl North correlated background fractional systematic uncertainty distributions for all centralities. Due to low statistics, Run15pp North systematic uncertainty ( $\sigma_{corrbg} = 1.4$ ) was used instead for all three centralities.



Figure 33: Run15pAl South correlated background fractional systematic uncertainty distributions for all centralities. Due to low statistics, Run15pp North systematic uncertainty ( $\sigma_{corrbg} = 1.0$ ) was used instead for all three centralities.

#### 7.5.1 Run14HeAu Systematic Uncertainty

We determined the systematic uncertainty in the same manner for Run14HeAu as for the other systems, and the results are included here. But because of the low statistics, the systematic uncertainty results are more likely measuring statistical fluctuations as opposed to changes in the shape of the correlated background. For this reason, we have assigned the Run15pAu systematic uncertainty results to Run14HeAu for the 0-20 and 20-40 centrality bins. For the 40-88 Centrality range, we took the weighted average of 40-60 and 60-84 uncertainties in pAu, with the weight being the centrality binwidth.

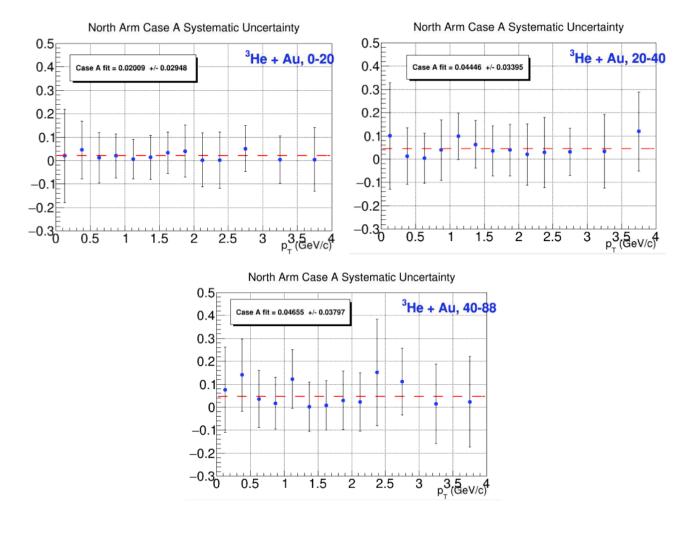



Figure 34: Run14HeAu North correlated background fractional systematic uncertainty distributions for all centralities. Please see above section "Run14HeAu Systematic Uncertainty" for details regarding the assignment of systematic uncertainty for this system.

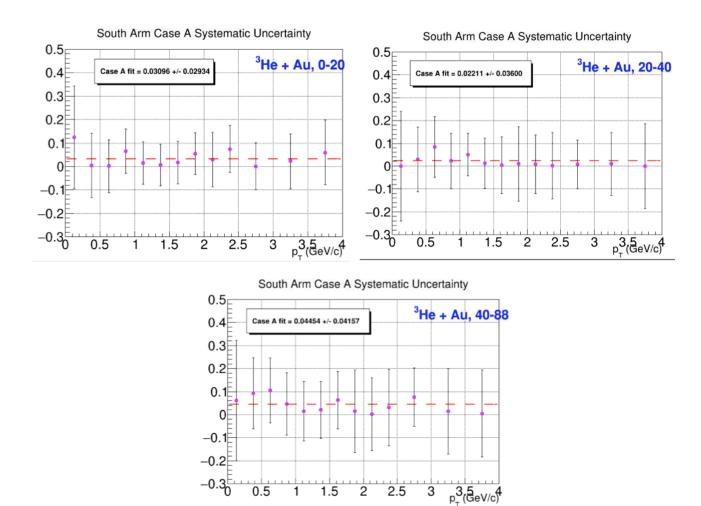



Figure 35: Run14HeAu South correlated background fractional systematic uncertainty distributions for all centralities. Please see the section "Run14HeAu Systematic Uncertainty" for details regarding the assignment of systematic uncertainty for this system.

Table 2: Correlated background fractional systematic uncertainty results. The value associated with the line of best fit through each  $p_T$  distribution was taken as the systematic uncertainty. The minimum bias uncertainties are the average of centrality uncertainties.

| Arm   | System    | Centrality | $\sigma_{corrbg}$ |
|-------|-----------|------------|-------------------|
| North | Run15pp   | -          | 1.40%             |
| South | Run15pp   | -          | 1.72%             |
| North | Run15pAu  | 0-5        | 2.39%             |
|       |           | 5-10       | 2.39%             |
|       |           | 10-20      | 2.39%             |
|       |           | 20-40      | 2.39%             |
|       |           | 40-60      | 2.67%             |
|       |           | 60-84      | 1.90%             |
|       |           | MinBias    | 2.33%             |
| South | Run15pAu  | 0-5        | 2.79%             |
|       |           | 5-10       | 2.79%             |
|       |           | 10-20      | 2.79%             |
|       |           | 0-20       | 2.79%             |
|       |           | 20-40      | 1.38%             |
|       |           | 20-40      | 1.38%             |
|       |           | 40-60      | 2.54%             |
|       |           | 60-84      | 2.00%             |
|       |           | MinBias    | 2.18%             |
| North | Run15pAl  | 0-20       | 1.40%             |
|       |           | 20-40      | 1.40%             |
|       |           | 40-72      | 1.40%             |
|       |           | MinBias    | 1.40%             |
| South | Run15pAl  | 0-20       | 1.72%             |
|       |           | 20-40      | 1.72%             |
|       |           | 40-72      | 1.72%             |
|       |           | MinBias    | 1.72%             |
| North | Run14HeAu | 0-20       | 2.35%             |
|       |           | 20-40      | 2.39%             |
|       |           | 40-88      | 2.25%             |
|       |           | MinBias    | 2.33%             |
| South | Run14HeAu | 0-20       | 2.79%             |
|       |           | 20-40      | 1.38%             |
|       |           | 40-88      | 2.25%             |
|       |           | MinBias    | 2.14 %            |

# 8 Run15pp Checks on J/ $\psi$ Counts

# 8.1 Sum Over $p_T$

We refit the previous results for J/ $\psi$  vs.  $p_T$  (AN1391) to ensure results were consistent despite different analysis methods used. The results are compared with Case FGH counts as well. See Figure 36.

|              |                | NORTH ARM     |             |             |             |              |               | SOUTH ARM      |               |              |             |              |              |             |
|--------------|----------------|---------------|-------------|-------------|-------------|--------------|---------------|----------------|---------------|--------------|-------------|--------------|--------------|-------------|
|              | pt [GeV/c]     | Case A        | Case FGH    | AN 1391     | Case F      | Case G       | Case H        | pt [GeV/c]     | Case A        | Case FGH     | AN 1391     | Case F       | Case G       | Case H      |
|              | 0.125          | 832 +/- 51    | 857 +/- 37  | 795 +/- 35  | 856 +/- 38  | 858 +/- 35   | 857 +/- 39    | 0.125          | 720 +/- 33    | 736 +/- 39   | 678 +/- 32  | 772 +/- 39   | 669 +/- 34   | 767 +/- 43  |
|              | 0.375          | 2246 +/- 59   | 2213 +/- 63 | 2147 +/- 58 | 2210 +/- 68 | 2153 +/- 62  | 2278 +/- 58   | 0.375          | 2048 +/- 54   | 2091 +/- 48  | 1975 +/- 57 | 2122 +/- 53  | 2079 +/- 43  | 2073 +/- 48 |
|              | 0.625          | 2848 +/- 74   | 2753 +/- 82 | 2737 +/- 67 | 2708 +/- 80 | 2795 +/- 77  | 2756 +/- 88   | 0.625          | 2690 +/- 60   | 2715 +/- 88  | 2621 +/- 65 | 2700 +/- 107 | 2719 +/- 77  | 2727 +/- 80 |
|              | 0.875          | 3680 +/- 78   | 3486 +/- 74 | 3413 +/- 74 | 3308 +/- 64 | 3450 +/- 78  | 3699 +/- 80   | 0.875          | 3299 +/- 77   | 3222 +/- 113 | 3266 +/- 73 | 3296 +/- 109 | 3194 +/- 117 | 3176 +/- 11 |
|              | 1.125          | 3687 +/- 82   | 3721 +/- 79 | 3548 +/- 77 | 3644 +/- 88 | 3760 +/- 75  | 3759 +/- 75   | 1.125          | 3528 +/- 68   | 3526 +/- 91  | 3446 +/- 58 | 3527 +/- 90  | 3525 +/- 89  | 3525 +/- 93 |
|              | 1.375          | 3237 +/- 71   | 3182 +/- 89 | 3045 +/- 68 | 3167 +/- 97 | 3094 +/- 102 | 3287 +/- 69   | 1.375          | 3066 +/- 70   | 3081 +/- 86  | 3024 +/- 67 | 3110 +/- 79  | 3065 +/- 92  | 3068 +/- 87 |
|              | 1.625          | 2877 +/- 64   | 2843 +/- 68 | 2746 +/- 64 | 2766 +/- 75 | 2883 +/- 64  | 2881 +/- 64   | 1.625          | 2796 +/- 64   | 2745 +/- 74  | 2708 +/- 91 | 2746 +/- 82  | 2691 +/- 90  | 2797 +/- 5  |
|              | 1.875          | 2512 +/- 59   | 2463 +/- 64 | 2367 +/- 61 | 2370 +/- 74 | 2510 +/- 60  | 2508 +/- 60   | 1.875          | 2185 +/- 55   | 2132 +/- 56  | 2107 +/- 56 | 2138 +/- 55  | 2090 +/- 56  | 2167 +/- 56 |
|              | 2.125          | 1966 +/- 54   | 1941 +/- 57 | 1847 +/- 53 | 1914 +/- 65 | 1953 +/- 53  | 1955 +/- 53   | 2.125          | 1743 +/- 44   | 1701 +/- 61  | 1666 +/- 53 | 1713 +/- 50  | 1658 +/- 83  | 1732 +/- 4  |
|              | 2.375          | 1638 +/- 48   | 1588 +/- 52 | 1530 +/- 66 | 1581 +/- 49 | 1549 +/- 58  | 1635 +/- 49   | 2.375          | 1424 +/- 44   | 1399 +/- 60  | 1347 +/- 45 | 1417 +/- 59  | 1367 +/- 76  | 1412 +/- 4  |
|              | 2.625          | 1284 +/- 42   | 1253 +/- 57 | 1215 +/- 57 | 1260 +/- 61 | 1216 +/- 68  | 1284 +/- 43   | 2.625          | 1073 +/- 38   | 1042 +/- 49  | 1013 +/- 39 | 1043 +/- 49  | 1015 +/- 61  | 1069 +/- 3  |
|              | 2.875          | 1086 +/- 38   | 1052 +/- 51 | 1043 +/- 39 | 1058 +/- 46 | 1003 +/- 69  | 1096 +/- 37   | 2.875          | 961 +/- 35    | 936 +/- 41   | 905 +/- 36  | 938 +/- 40   | 931 +/- 50   | 940 +/- 34  |
|              | 3.125          | 868 +/- 34    | 854 +/- 36  | 838 +/- 34  | 830 +/- 40  | 867 +/- 33   | 866 +/- 34    | 3.125          | 737 +/- 31    | 707 +/- 35   | 711 +/- 31  | 709 +/- 38   | 681 +/- 36   | 731 +/- 30  |
|              | 3.375          | 704 +/- 31    | 684 +/- 42  | 675 +/- 31  | 690 +/- 39  | 656 +/- 57   | 704 +/- 30    | 3.375          | 542 +/- 27    | 546 +/- 28   | 536 +/- 28  | 543 +/- 31   | 551 +/- 26   | 544 +/- 27  |
|              | 3.625          | 520 +/- 27    | 509 +/- 29  | 493 +/- 27  | 488 +/- 32  | 518 +/- 27   | 520 +/- 27    | 3.625          | 457 +/- 24    | 445 +/- 28   | 437 +/- 26  | 445 +/- 25   | 439 +/- 35   | 452 +/- 25  |
|              | 3.875          | 378 +/- 23    | 377 +/- 27  | 354 +/- 24  | 377 +/- 30  | 377 +/- 23   | 378 +/- 27    | 3.875          | 342 +/- 21    | 334 +/- 27   | 334 +/- 23  | 336 +/- 26   | 329 +/- 33   | 337 +/- 22  |
|              | 4.125          | 275 +/- 21    | 261 +/- 24  | 247 +/- 20  | 251 +/- 17  | 256 +/- 35   | 275 +/- 19    | 4.125          | 231 +/- 17    | 234 +/- 17   | 216 +/- 18  | 233 +/- 17   | 234 +/- 17   | 234 +/- 17  |
|              | 4.375          | 231 +/- 17    | 227 +/- 18  | 212 +/- 18  | 227 +/- 19  | 228 +/- 17   | 227 +/- 17    | 4.375          | 154 +/- 15    | 154 +/- 15   | 142 +/- 16  | 153 +/- 15   | 154 +/- 14   | 156 +/- 17  |
|              | 4.625          | 180 +/- 15    | 176 +/- 15  | 170 +/- 16  | 174 +/- 15  | 177 +/- 15   | 176 +/- 15    | 4.625          | 145 +/- 13    | 132 +/- 19   | 130 +/- 15  | 149 +/- 13   | 107 +/- 17   | 140 +/- 27  |
|              | 4.875          | 125 +/- 13    | 121 +/- 13  | 118 +/- 14  | 117 +/- 15  | 123 +/- 12   | 124 +/- 13    | 4.875          | 86 +/- 10     | 84 +/- 11    | 84 +/- 12   | 83 +/- 12    | 83 +/- 12    | 87 +/- 11   |
|              | 5.125          | 105 +/- 12    | 102 +/- 11  | 103 +/ -12  | 99 +/- 12   | 102 +/- 11   | 105 +/- 12    | 5.125          | 92 +/- 11     | 84 +/- 13    | 84 +/- 12   | 81 +/- 14    | 81 +/- 14    | 90 +/- 11   |
|              | 5.375          | 91 +/- 12     | 84 +/- 11   | 83 +/- 12   | 76 +/- 11   | 93 +/- 13    | 83 +/- 10     | 5.375          | 83 +/- 11     | 84 +/- 11    | 77 +/- 10   | 84 +/- 10    | 84 +/- 11    | 84 +/- 10   |
|              | 5.625          | 75 +/- 10     | 74 +/- 10   | 68 +/- 10   | 71 +/- 11   | 75 +/- 10    | 75 +/- 10     | 5.625          | 53 +/- 9      | 53 +/- 9     | 46 +/- 9    | 53 +/- 9     | 53 +/- 8     | 53 +/- 9    |
|              | 5.875          | 44 +/- 9      | 41 +/- 9    | 38 +/- 8    | 38 +/- 8    | 42 +/- 10    | 43 +/- 8      | 5.875          | 34 +/- 7      | 34 +/- 7     | 27 +/- 7    | 34 +/- 7     | 34 +/- 7     | 34 +/- 7    |
|              | 6.25           | 72 +/- 9      | 69 +/- 10   | 64 +/- 9    | 69 +/- 10   | 69 +/- 9     | 69 +/- 10     | 6.25           | 49 +/- 8      | 49 +/- 12    | 47 +/- 15   | 49 +/- 9     | -            | 48 +/- 15   |
|              | 6.75           | 32 +/- 7      | 32 +/- 7    | 27 +/- 7    | 32 +/- 7    | -            | 32 +/- 7      | 6.75           | 46 +/- 8      | 42 +/- 10    | 39 +/- 8    | 39 +/- 13    | -            | 45 +/- 8    |
|              | sum:           | 31593         | 30965       | 29,921      |             |              |               | sum:           | 28583         | 28,309       | 27,667      |              |              |             |
|              | pt int:        | 31452 +/- 215 | 30714       | 29,597      |             |              |               | pt int:        | 28511 +/- 205 | 28,689       | 28,288      |              |              |             |
| sum/pt       | int % diff:    | 0.45%         | 0.81        |             |             |              | sum/pt i      | nt % diff:     | 0.25%         |              |             |              |              |             |
| ase A/FGH pt | int % diff:    | 2.37%         |             |             |             |              | Case A/FGH    | pt int % diff: | 0.62%         |              |             |              |              |             |
| se A/prelim  | pt int % diff: | 5.82%         |             |             |             |              | Case A/prelim | ot int % diff: | 0.79%         |              |             |              |              |             |

Figure 36: Run15pp North and South arm  $p_T$  check. Case A is consistent with Case FGH, and Case A as the central value is consistent with  $p_T$  integrated results.

# 8.2 Sum Over Rapidity

We refit the preliminary results for  $J/\psi$  vs. rapidity (AN1354) to ensure results were consistent despite different analysis methods used. The results are compared with Case FGH counts as well. See Figure 37.

| Run15pp            | NORTH               |                         |                |                |                |                |
|--------------------|---------------------|-------------------------|----------------|----------------|----------------|----------------|
|                    | rap center Case A   |                         | Case F         | Case G         | Case H         | AN 1354        |
| 1.325 2,082 +/- 54 |                     | Ave FGH<br>2,034 +/- 58 | 1,949 +/- 73   | 2,086 +/- 51   | 2,065 +/- 51   | 1,974 +/- 58   |
| 1.575              |                     |                         | 10,062 +/- 161 | 9,926 +/- 180  | 10,614 +/- 121 |                |
| 1.825              | , ,                 |                         | 11,850 +/- 172 | 11,659 +/- 224 | , .            | 11,431 +/- 192 |
| 2.075              | 7,040 +/- 109       | 7,088 +/- 161           | 7,283 +/- 112  | 6,725 +/- 262  | 7,255 +/- 108  | 6,554 +/- 233  |
| sum:               | 31,875              | 31,272                  | 31,144         | 30,396         | 32,271         | 29,956         |
| МВ                 | 31,487 +/- 215      | 30,714 +/- 274          | 30,351 +/- 279 | 29,975 +/- 327 | 31,817 +/- 217 | 29,399 +/- 279 |
| sum/MB % diff:     | 1.22%               | 1.80%                   | 2.56%          | 1.39%          | 1.42%          |                |
| sum CaseA/Cas      | se FGH % diff       | 1.89%                   |                |                |                |                |
| Case A/Case FG     | GH MB % diff:       | 2.45%                   |                |                |                |                |
| sum Case A/ p      | relim % diff:       | 6.21%                   |                |                |                |                |
|                    |                     |                         |                |                |                |                |
| Run15pp            | SOUTH               |                         |                |                |                |                |
| rap center         | Case A              | Ave Case FGH            | Case F         | Case G         | Case H         | AN 1354        |
| -1.325             | 3,151 +/- 66        | 3,085                   | 2,934 +/- 103  | 3,147 +/- 65   | 3,174 +/- 65   | 2,907 +/- 125  |
| -1.575             | 12,079 +/- 132      | 12,033                  | 11,696 +/- 143 | 12,196 +/- 193 | 12,206 +/- 129 | 11,341 +/- 203 |
| -1.825             | 10,645 +/- 124      | 10,757                  | 10,604 +/- 120 | 10,824 +/- 94  | 10,842 +/- 118 | 10,918 +/-192  |
| -2.075             | 2,978 +/- 63        | 3,113                   | 3,138 +/- 64   | 3,095 +/- 64   | 3,105 +/- 66   | 3,017 +/- 87   |
| sum:               | sum: 28,853         |                         | 28,372         | 29,262         | 29,327         | 28,183         |
| МВ                 | MB 28,511 +/- 205   |                         | 28,145 +/- 229 | 28,942 +/- 153 | 28,981 +/- 202 | 28,207 +/- 282 |
| sum/MB % diff      | sum/MB % diff 1.19% |                         | 0.80%          | 1.10%          | 1.34%          |                |
| sum Case A/Ca      | se FGH % diff       | -0.47%                  |                |                |                |                |
| Case A/Case FG     | GH MB % diff:       | -0.62%                  |                |                |                |                |
| sum Case A/ p      | relim % diff:       | 2.35%                   |                |                |                |                |

Figure 37: Run15pp forward and backward rapidity check. Case A is consistent with Case FGH, and Case A as the central value is consistent with rapidity integrated results.

# 9 Run15pAu Checks on J/ $\psi$ Counts

The same checks were performed on Run15pAu as Run15pp, in addition to several more needed to confirm centrality results.

### 9.1 Sum Over $p_T$

| pt [GeV/c] | pAu North     | pAu South     |  |  |
|------------|---------------|---------------|--|--|
| 0.125      | 421 +/-24     | 218 +/- 19    |  |  |
| 0.375      | 1074 +/-43    | 723 +/- 33    |  |  |
| 0.625      | 1393 +/-47    | 841 +/- 40    |  |  |
| 0.875      | 1818 +/-56    | 1196 +/- 46   |  |  |
| 1.125      | 1873 +/-51    | 1439 +/- 46   |  |  |
| 1.375      | 1775 +/-51    | 1118 +/- 45   |  |  |
| 1.625      | 1732 +/-78    | 1195 +/- 68   |  |  |
| 1.875      | 1433 +/-49    | 928 +/- 40    |  |  |
| 2.125      | 1270 +/-37    | 819 +/- 37    |  |  |
| 2.375      | 1053 +/-36    | 663 +/- 31    |  |  |
| 2.625      | 875 +/-36     | 551 +/- 28    |  |  |
| 2.875      | 769 +/-45     | 464 +/- 26    |  |  |
| 3.125      | 646 +/-30     | 357 +/- 22    |  |  |
| 3.375      | 566 +/-28     | 304 +/- 21    |  |  |
| 3.625      | 389 +/-22     | 245 +/- 18    |  |  |
| 3.875      | 310 +/-20     | 179 +/- 16    |  |  |
| 4.125      | 252 +/-18     | 142 +/- 10    |  |  |
| 4.375      | 168 +/-14     | 125 +/- 13    |  |  |
| 4.625      | 161 +/-15     | 82 +/- 11     |  |  |
| 4.875      | 144 +/-13     | 61 +/- 9      |  |  |
| 5.125      | 107 +/-11     | 41 +/- 7      |  |  |
| 5.375      | 86 +/-10      | 36 +/- 7      |  |  |
| 5.625      | 68 +/-9       | 28 +/- 6      |  |  |
| 5.875      | 57 +/-8       | 17 +/- 5      |  |  |
| 6.25       | 55 +/-8       | 19 +/- 5      |  |  |
| 6.75       | 41 +/-8       | 18 +/- 5      |  |  |
| SUM        | 18535         | 11810         |  |  |
| Min Bias   | 18328 +/- 175 | 11661 +/- 152 |  |  |
| % diff     | 1.12%         | 1.65%         |  |  |
| AN1354     | 18194 +/- 224 | 11602 +/- 193 |  |  |

Figure 38: Centrality Integrated Results for Run15pAu.

## 9.2 Sum Over Rapidity

We refit the preliminary results for J/ $\psi$  vs. rapidity (AN1354) to ensure results were consistent despite different analysis methods used. The results are compared with Case FGH counts as well.

# 9.3 Sum Over Centrality

We checked if the sum of Case A  $p_T$  counts over each centrality bin is consistent with the sum of the average of Cases F, G and H. We also checked if the resulting sum is consistent with the  $p_T$  integrated fit value for each centrality range.

| NORTH  Case A  1393 +/- 43              | Ave FGH                                                                                                                                                                                                                              | Case F                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1393 +/- 43                             |                                                                                                                                                                                                                                      | Case F                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
|                                         | 1246 . / 54                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                    | Case G                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Case H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AN 1354       |
| CC2F . / 100                            | 1346 +/- 51                                                                                                                                                                                                                          | 1347 +/- 49                                                                                                                                                                                                                                                                                                                                        | 1350 +/- 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1342 +/- 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1334 +/- 60   |
| 6635 +/- 100                            | 6436 +/- 123                                                                                                                                                                                                                         | 6622 +/- 101                                                                                                                                                                                                                                                                                                                                       | 6335 +/- 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6350 +/- 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6464 +/- 128  |
| 6736 +/- 107                            | 6651 +/- 126                                                                                                                                                                                                                         | 6736 +/- 107                                                                                                                                                                                                                                                                                                                                       | 6603 +/- 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6614 +/- 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6822 +/- 136  |
| 3674 +/- 83                             | 3860 +/- 108                                                                                                                                                                                                                         | 3870 +/- 93                                                                                                                                                                                                                                                                                                                                        | 3853 +/- 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3858 +/- 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3793 +/- 99   |
| 18438                                   | 18,293                                                                                                                                                                                                                               | 18,379                                                                                                                                                                                                                                                                                                                                             | 18,141                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18,164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18,413        |
| 18328 +/- 175                           | 18112 +/- 248                                                                                                                                                                                                                        | 18197 +/- 236                                                                                                                                                                                                                                                                                                                                      | 18118 +/- 244                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18021 +/- 263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18194 +/- 224 |
| 0.60%                                   | 0.99%                                                                                                                                                                                                                                | 1.00%                                                                                                                                                                                                                                                                                                                                              | 0.13%                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
| FGH % diff                              | 0.79%                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| MB % diff:                              | 1.19%                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| lim % diff:                             | 0.73%                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
|                                         |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| SOUTH                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| Case A                                  | Ave Case FGH                                                                                                                                                                                                                         | Case F                                                                                                                                                                                                                                                                                                                                             | Case G                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Case H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AN 1354       |
| 1579 +/- 52                             | 1570 +/- 56                                                                                                                                                                                                                          | 1571 +/- 53                                                                                                                                                                                                                                                                                                                                        | 1568 +/- 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1572 +/- 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1521 +/- 57   |
| 5297 +/- 100                            | 5076 +/- 126                                                                                                                                                                                                                         | 5124 +/- 107                                                                                                                                                                                                                                                                                                                                       | 4969 +/- 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5136 +/- 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4910 +/- 155  |
| 3887 +/- 78                             | 3895 +/- 91                                                                                                                                                                                                                          | 3916 +/- 90                                                                                                                                                                                                                                                                                                                                        | 3886 +/- 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3884 +/- 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4138 +/- 80   |
| 913 +/- 40                              | 968 +/- 44                                                                                                                                                                                                                           | 950 +/- 52                                                                                                                                                                                                                                                                                                                                         | 979 +/- 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 976 +/- 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 973 +/- 39    |
| 11676                                   | 11,509                                                                                                                                                                                                                               | 11561                                                                                                                                                                                                                                                                                                                                              | 11,402                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11,568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12,595        |
| 11661 +/- 152                           | 11622 +/- 155                                                                                                                                                                                                                        | 11667 +/- 136                                                                                                                                                                                                                                                                                                                                      | 11637 +/- 143                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11561 +/- 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11602 +/- 193 |
| 0.13%                                   | -0.98%                                                                                                                                                                                                                               | -0.91%                                                                                                                                                                                                                                                                                                                                             | -2.04%                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.06%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
| FGH % diff                              | 1.44%                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| MB % diff:                              | 0.34%                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| lim % diff:                             | 0.51%                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| 111111111111111111111111111111111111111 | 3674 +/- 83<br>18438<br>8328 +/- 175<br>0.60%<br>FGH % diff<br>MB % diff:<br>im % diff:<br>SOUTH<br>Case A<br>1579 +/- 52<br>5297 +/- 100<br>3887 +/- 78<br>913 +/- 40<br>11676<br>1661 +/- 152<br>0.13%<br>FGH % diff<br>MB % diff: | 3674 +/- 83 3860 +/- 108 18438 18,293 8328 +/- 175 18112 +/- 248 0.60% 0.99% FGH % diff 0.79% MB % diff: 1.19% im % diff: 0.73%  SOUTH  Case A Ave Case FGH 1579 +/- 52 1570 +/- 56 5297 +/- 100 5076 +/- 126 3887 +/- 78 3895 +/- 91 913 +/- 40 968 +/- 44 11676 11,509 1661 +/- 152 11622 +/- 155 0.13% -0.98% FGH % diff 1.44% MB % diff: 0.34% | 3874 +/- 83 3860 +/- 108 3870 +/- 93 18438 18,293 18,379 8328 +/- 175 18112 +/- 248 18197 +/- 236 0.60% 0.99% 1.00% FGH % diff 0.79% MB % diff: 1.19% im % diff: 0.73%  SOUTH  Case A Ave Case FGH Case F 1579 +/- 52 1570 +/- 56 1571 +/- 53 6297 +/- 100 5076 +/- 126 5124 +/- 107 3887 +/- 78 3895 +/- 91 3916 +/- 90 913 +/- 40 968 +/- 44 950 +/- 52 11676 11,509 11561 1661 +/- 152 11622 +/- 155 11667 +/- 136 0.13% -0.98% -0.91% FGH % diff 1.44% MB % diff: 0.34% | 3874 +/- 83 3860 +/- 108 3870 +/- 93 3853 +/- 113 18438 18,293 18,379 18,141 8328 +/- 175 18112 +/- 248 18197 +/- 236 18118 +/- 244 0.60% 0.99% 1.00% 0.13% FGH % diff 0.79% MB % diff: 1.19% im % diff: 0.73%  SOUTH  Case A Ave Case FGH Case F Case G 1579 +/- 52 1570 +/- 56 1571 +/- 53 1568 +/- 60 6297 +/- 100 5076 +/- 126 5124 +/- 107 4969 +/- 144 3887 +/- 78 3895 +/- 91 3916 +/- 90 3886 +/- 115 913 +/- 40 968 +/- 44 950 +/- 52 979 +/- 40 11676 11,509 11561 11,402 1661 +/- 152 11622 +/- 155 11667 +/- 136 11637 +/- 143 0.13% -0.98% -0.91% -2.04% FGH % diff 1.44% MB % diff: 0.34% | 3874 +/- 83   |

Figure 39: Run15pAu rapidity checks. Top: Forward rapidity. Case A is consistent with Case FGH, and Case A as the central value is consistent with rapidity integrated results in both directions.

|               | centrality 0-20    |            | Run15pAu North Arm |            |            |      | centrality 0-20                 |                    |            | Run15pAu South Arm |            |          |
|---------------|--------------------|------------|--------------------|------------|------------|------|---------------------------------|--------------------|------------|--------------------|------------|----------|
| pt [GeV/c]    | Case A             | Case FGH   | Case F             | Case G     | Case H     | pt [ | [GeV/c]                         | Case A             | Case FGH   | Case F             | Case G     | Case H   |
| 0.125         | 139 +/-15          | 147 +/- 14 | 150 +/- 13         | 139 +/- 14 | 150 +/- 14 | C    | 0.125                           | 87 +/- 12          | 88 +/- 12  | 83 +/- 11          | 83 +/- 12  | 98 +/- 1 |
| 0.375         | 345 +/-26          | 346 +/- 24 | 357 +/- 23         | 344 +/- 23 | 337 +/- 25 | C    | 0.375                           | 300 +/- 24         | 321 +/- 21 | 307 +/- 22         | 315 +/- 21 | 340 +/-  |
| 0.625         | 461 +/-31          | 483 +/- 25 | 481 +/- 26         | 484 +/- 25 | 484 +/- 25 | C    | 0.625                           | 360 +/- 24         | 394 +/- 35 | 389 +/- 31         | 397 +/- 51 | 397 +/-  |
| 0.875         | 577 +/-35          | 560 +/- 36 | 560 +/- 32         | 561 +/- 39 | 558 +/- 37 | C    | 0.875                           | 482 +/- 33         | 456 +/- 36 | 460 +/- 36         | 394 +/- 42 | 515 +/-  |
| 1.125         | 655 +/-31          | 679 +/- 31 | 694 +/- 30         | -          | 664 +/- 31 | 1    | 1.125                           | 617 +/- 27         | 617 +/- 36 | 632 +/- 30         | 617 +/- 33 | 603 +/-  |
| 1.375         | 595 +/-32          | 593 +/- 40 | 590 +/- 32         | 591 +/- 44 | 599 +/- 43 | 1    | 1.375                           | 466 +/- 29         | 501 +/- 32 | 502 +/- 31         | 499 +/- 35 | 500 +/-  |
| 1.625         | 555 +/-30          | 569 +/- 36 | 568 +/- 34         | 573 +/- 39 | 567 +/- 35 | 1    | 1.625                           | 516 +/- 32         | 518 +/- 42 | 518 +/- 42         | 519 +/- 42 | 518 +/-  |
| 1.875         | 506 +/-29          | 499 +/- 33 | 491 +/- 30         | 500 +/- 29 | 506 +/- 40 | 1    | 1.875                           | 406 +/- 25         | 426 +/- 25 | 426 +/- 25         | 427 +/- 25 | 427 +/-  |
| 2.125         | 432 +/-25          | 429 +/- 27 | 429 +/- 27         | 425 +/- 30 | 434 +/- 24 | 2    | 2.125                           | 374 +/- 31         | 363 +/- 26 | 365 +/- 25         | 358 +/- 26 | 365 +/-  |
| 2.375         | 337 +/-23          | 325 +/- 26 | 336 +/- 29         | 310 +/- 24 | 329 +/- 24 | 2    | 2.375                           | 292 +/- 21         | 303 +/- 20 | 308 +/- 20         | 301 +/- 18 | 301 +/-  |
| 2.625         | 300 +/-21          | 288 +/- 21 | 297 +/- 21         | 275 +/- 22 | 291 +/- 21 | 2    | 2.625                           | 254 +/- 20         | 259 +/- 20 | 256 +/- 19         | 260 +/- 19 | 260 +/-  |
| 2.875         | 276 +/-21          | 277 +/- 20 | 276 +/- 20         | 280 +/- 20 | 275 +/- 20 | 2    | 2.875                           | 181 +/- 17         | 172 +/- 18 | 180 +/- 17         | 157 +/- 18 | 179 +/-  |
| 3.125         | 220 +/-18          | 220 +/- 18 | 226 +/- 18         | 221 +/- 17 | 213 +/- 19 | 3    | 3.125                           | 157 +/- 16         | 148 +/- 16 | 149 +/- 16         | 141 +/- 17 | 153 +/-  |
| 3.375         | 209 +/-16          | 211 +/- 17 | 210 +/- 17         | 206 +/- 17 | 216 +/- 16 | 3    | 3.375                           | 123 +/- 14         | 121 +/- 14 | 122 +/- 14         | 118 +/- 13 | 122 +/-  |
| 3.625         | 133 +/-13          | 132 +/- 12 | 132 +/- 13         | 131 +/- 10 | 132 +/- 13 | 3    | 3.625                           | 117 +/- 13         | 119 +/- 13 | 118 +/- 13         | 119 +/- 13 | 119 +/-  |
| 3.875         | 117 +/-12          | 118 +/- 13 | 118 +/- 13         | 120 +/- 12 | 117 +/- 13 | 3    | 3.875                           | 75 +/- 11          | 74 +/- 11  | -                  | 73 +/- 11  | 74 +/-   |
| 4.25          | 143 +/-14          | 127 +/- 13 | 131 +/- 12         | 124 +/- 14 | 125 +/- 14 |      | 4.25                            | 106 +/- 11         | 104 +/- 12 | 103 +/- 12         | 106 +/- 12 | -        |
| 4.75          | 120 +/-12          | 122 +/- 12 | 122 +/- 12         | -          | 121 +/- 13 |      | 4.75                            | 69 +/- 9           | 65 +/- 9   | 61 +/- 8           | 68 +/- 9   | 61 +/-   |
| 6             | 145 +/-13          | 148 +/- 15 | 148 +/- 16         | -          | 149 +/- 13 |      | 6                               | 72 +/- 9           | 66 +/- 10  | 71 +/- 9           | 62 +/- 11  | 74 +/- : |
| sum           | 6263               | 6273       |                    |            |            |      | sum                             | 5054               | 5115       |                    |            |          |
| pt int:       | 6185 +/- 104       |            |                    |            |            | р    | pt int:                         | 4968 +/- 91        |            |                    |            |          |
| Case A sum/Ca | se A pt Int % diff | :          | 1.25%              |            |            | Case | A sum/Cas                       | e A pt Int % diff: |            | 1.72%              |            |          |
| Case A sum/Ca | se FGH sum % di    | ff:        | -0.16%             |            |            | Case | Case A sum/Case FGH sum % diff: |                    | f:         | -1.20%             |            |          |

| centrality 20-40                |                                  | Run15pAu North Arm |            |            | centrality 20-40 |                |                     | Run15pAu South Arm |            |            |            |
|---------------------------------|----------------------------------|--------------------|------------|------------|------------------|----------------|---------------------|--------------------|------------|------------|------------|
| pt [GeV/c]                      | Case A                           | Case FGH           | Case F     | Case G     | Case H           | pt [GeV/c]     | Case A              | Case FGH           | Case F     | Case G     | Case H     |
| 0.125                           | 100 +/-12                        | 105 +/- 11         | 105 +/- 11 | 105 +/- 10 | 105 +/- 12       | 0.125          | 62 +/-9             | 63 +/- 9           | 64 +/- 8   | 61 +/- 9   | 64 +/- 9   |
| 0.375                           | 294 +/-23                        | 309 +/- 22         | 313 +/- 21 | 307 +/- 22 | 307 +/- 24       | 0.375          | 198 +/-16           | 209 +/- 17         | 210 +/- 17 | 209 +/- 17 | 209 +/- 17 |
| 0.625                           | 377 +/-24                        | 401 +/- 26         | 399 +/- 28 | 401 +/- 25 | 402 +/- 24       | 0.625          | 227 +/-19           | 212 +/- 25         | 207 +/- 21 | 213 +/- 25 | 214 +/- 30 |
| 0.875                           | 491 +/-36                        | 439 +/- 35         | 435 +/- 29 | 437 +/- 36 | 444 +/- 39       | 0.875          | 330 +/-18           | 344 +/- 26         | 345 +/- 25 | 343 +/- 27 | 343 +/- 28 |
| 1.125                           | 556 +/-28                        | 563 +/- 27         | 588 +/- 27 | 521 +/- 26 | 579 +/- 27       | 1.125          | 413 +/-23           | 391 +/- 25         | 321 +/- 24 | 436 +/- 23 | 416 +/- 27 |
| 1.375                           | 517 +/-27                        | 516 +/- 28         | 523 +/- 27 | 511 +/- 28 | 513 +/- 31       | 1.375          | 309 +/-24           | 298 +/- 30         | 280 +/- 23 | 303 +/- 41 | 311 +/- 25 |
| 1.625                           | 505 +/-27                        | 513 +/- 32         | 521 +/- 32 | 513 +/- 27 | 505 +/- 37       | 1.625          | 321 +/-24           | 319 +/- 23         | 323 +/- 22 | 306 +/- 26 | 327 +/- 22 |
| 1.875                           | 429 +/-25                        | 425 +/- 30         | 423 +/- 30 | 425 +/- 34 | 428 +/- 25       | 1.875          | 225 +/-20           | 226 +/- 17         | 233 +/- 18 | 220 +/- 15 | 226 +/- 18 |
| 2.125                           | 363 +/-22                        | 364 +/- 21         | 366 +/- 21 | 363 +/- 21 | 363 +/- 21       | 2.125          | 213 +/-18           | 220 +/- 19         | 220 +/- 18 | 220 +/- 17 | 220 +/- 21 |
| 2.375                           | 318 +/-20                        | 309 +/- 21         | 320 +/- 19 | 294 +/- 22 | 314 +/- 21       | 2.375          | 155 +/-16           | 156 +/- 16         | 155 +/- 16 | 157 +/- 16 | 155 +/- 16 |
| 2.625                           | 254 +/-17                        | 251 +/- 18         | 254 +/- 19 | 256 +/- 18 | 242 +/- 18       | 2.625          | 146 +/-17           | 142 +/- 15         | 145 +/- 15 | 140 +/- 16 | 141 +/- 15 |
| 2.875                           | 212 +/-17                        | 210 +/- 18         | 211 +/- 18 | 216 +/- 17 | 204 +/- 18       | 2.875          | 126 +/-15           | 127 +/- 13         | 126 +/- 13 | 127 +/- 14 | 127 +/- 13 |
| 3.125                           | 178 +/-14                        | 177 +/- 15         | 179 +/- 15 | 172 +/- 15 | 178 +/- 15       | 3.125          | 108 +/-12           | 108 +/- 12         | 107 +/- 12 | 109 +/- 12 | 107 +/- 11 |
| 3.375                           | 135 +/-13                        | 130 +/- 14         | 135 +/- 12 | 123 +/- 14 | 133 +/- 14       | 3.375          | 100 +/-11           | 99 +/- 11          | 99 +/- 11  | 100 +/- 11 | 100 +/- 11 |
| 3.625                           | 114 +/-12                        | 115 +/- 12         | 125 +/- 11 | 114 +/- 12 | 107 +/- 12       | 3.625          | 64 +/-10            | 65 +/- 10          | 65 +/- 10  | 66 +/- 11  | 64 +/- 9   |
| 3.875                           | 90 +/-10                         | 91 +/- 10          | 91 +/- 10  | 91 +/- 10  | 91 +/- 11        | 3.875          | 44 +/-8             | 45 +/- 8           | 46 +/- 8   | 45 +/- 8   | 44 +/- 8   |
| 4.25                            | 134 +/-14                        | 134 +/- 13         | 134 +/- 13 | 134 +/- 13 | 134 +/- 13       | 4.25           | 90 +/-10            | 87 +/- 11          | 84 +/- 11  | -          | 90 +/- 10  |
| 4.75                            | 68 +/-10                         | 67 +/- 10          | 68 +/- 10  | 66 +/- 10  | 69 +/- 9         | 4.75           | 48 +/-8             | 47 +/- 8           | 46 +/- 8   | 48 +/- 8   | 40 +/- 10  |
| 6                               | 121 +/-12                        | 114 +/- 13         | 115 +/- 14 | 114 +/- 13 | 122 +/- 11       | 6              | 50 +/-7             | 49 +/- 8           | 49 +/- 7   | 49 +/- 8   | 50 +/- 7   |
| sum                             | 5256                             | 5233               |            |            |                  | sum            | 3228                | 3207               |            |            |            |
| pt int:                         | 5174 +/- 90                      |                    |            |            |                  | pt int:        | 3208 +/- 111        |                    |            |            |            |
| Case A sum/Cas                  | Case A sum/Case A pt Int % diff: |                    | 1.57%      |            |                  | Case A sum/Cas | se A pt Int % diff: | :                  | 0.62%      |            |            |
| Case A sum/Case FGH sum % diff: |                                  | ff:                | -0.44%     |            |                  | Case A sum/Cas | se FGH sum % di     | ff:                | 0.65%      |            |            |

|               | centrality 40-60   |            | Ru         | n15pAu North A | ırm        |             | centrality 40-60                 |            | Ru         | n15pAu South A | rm         |
|---------------|--------------------|------------|------------|----------------|------------|-------------|----------------------------------|------------|------------|----------------|------------|
| pt [GeV/c]    | Case A             | Case FGH   | Case F     | Case G         | Case H     | pt [GeV/c]  | Case A                           | Case FGH   | Case F     | Case G         | Case H     |
| 0.125         | 96 +/-10           | 99 +/- 11  | 99 +/- 11  | 99 +/- 11      | 98 +/- 11  | 0.125       | 47 +/-11                         | 52 +/- 9   | 50 +/- 9   | 49 +/- 8       | 57 +/- 10  |
| 0.375         | 254 +/-19          | 260 +/- 18 | 260 +/- 18 | 260 +/- 18     | 260 +/- 18 | 0.375       | 136 +/-15                        | 129 +/- 15 | 128 +/- 14 | 131 +/- 14     | 129 +/- 15 |
| 0.625         | 286 +/-23          | 287 +/- 28 | 294 +/- 24 | 289 +/- 27     | 278 +/- 34 | 0.625       | 144 +/-17                        | 176 +/- 15 | 169 +/- 15 | 180 +/- 15     | 180 +/- 15 |
| 0.875         | 406 +/-27          | 424 +/- 25 | 417 +/- 27 | 426 +/- 24     | 428 +/- 24 | 0.875       | 208 +/-19                        | 199 +/- 18 | 206 +/- 15 | 195 +/- 20     | 195 +/- 19 |
| 1.125         | 407 +/-23          | 408 +/- 27 | 452 +/- 23 | -              | 364 +/- 30 | 1.125       | 280 +/-18                        | 263 +/- 22 | 293 +/- 18 | 231 +/- 25     | 265 +/- 22 |
| 1.375         | 407 +/-25          | 435 +/- 24 | 435 +/- 23 | 435 +/- 23     | 436 +/- 24 | 1.375       | 214 +/-21                        | 229 +/- 18 | -          | 227 +/- 18     | 231 +/- 18 |
| 1.625         | 414 +/-24          | 407 +/- 24 | 406 +/- 26 | 406 +/- 22     | 410 +/- 23 | 1.625       | 224 +/-22                        | 225 +/- 17 | 223 +/- 17 | 225 +/- 17     | 225 +/- 18 |
| 1.875         | 267 +/-21          | 252 +/- 20 | 289 +/- 20 | 209 +/- 22     | 258 +/- 19 | 1.875       | 179 +/-16                        | 176 +/- 16 | 180 +/- 16 | 170 +/- 16     | 179 +/- 15 |
| 2.125         | 264 +/-17          | 274 +/- 19 | 273 +/- 19 | 274 +/- 18     | 274 +/- 19 | 2.125       | 155 +/-15                        | 155 +/- 15 | 160 +/- 13 | 148 +/- 16     | 156 +/- 15 |
| 2.375         | 210 +/-17          | 203 +/- 16 | 199 +/- 16 | 202 +/- 16     | 209 +/- 17 | 2.375       | 124 +/-13                        | 127 +/- 12 | 129 +/- 13 | 126 +/- 12     | 125 +/- 12 |
| 2.625         | 178 +/-14          | 181 +/- 16 | 188 +/- 14 | 180 +/- 17     | 176 +/- 15 | 2.625       | 99 +/-10                         | 99 +/- 11  | 100 +/- 11 | 99 +/- 11      | 99 +/- 10  |
| 2.875         | 166 +/-14          | 170 +/- 14 | 170 +/- 14 | 170 +/- 15     | 170 +/- 15 | 2.875       | 81 +/-11                         | 83 +/- 11  | 88 +/- 11  | 77 +/- 11      | 84 +/- 11  |
| 3.125         | 140 +/-13          | 142 +/- 13 | 145 +/- 13 | 144 +/- 14     | 138 +/- 12 | 3.125       | 52 +/-8                          | 53 +/- 8   | 53 +/- 8   | 53 +/- 9       | 53 +/- 8   |
| 3.375         | 101 +/-11          | 103 +/- 11 | 103 +/- 11 | 103 +/- 11     | 103 +/- 11 | 3.375       | 53 +/-8                          | 53 +/- 8   | 52 +/- 8   | 53 +/- 8       | 53 +/- 8   |
| 3.625         | 104 +/-11          | 103 +/- 11 | 103 +/- 11 | 104 +/- 11     | 102 +/- 12 | 3.625       | 32 +/-6                          | 35 +/- 7   | 34 +/- 7   | 36 +/- 7       | 35 +/- 7   |
| 3.875         | 62 +/-8            | 62 +/- 9   | 62 +/- 9   | 62 +/- 9       | 62 +/- 9   | 3.875       | 37 +/-7                          | 37 +/- 6   | 38 +/- 6   | 38 +/- 6       | 37 +/- 7   |
| 4.25          | 86 +/-10           | 87 +/- 10  | 86 +/- 11  | 87 +/- 10      | 87 +/- 10  | 4.25        | 42 +/-7                          | 43 +/- 7   | 42 +/- 8   | -              | 43 +/- 7   |
| 4.75          | 71 +/-10           | 78 +/- 10  | 84 +/- 10  | -              | 72 +/- 10  | 4.75        | 22 +/-5                          | 23 +/- 5   | 23 +/- 5   | 22 +/- 5       | 23 +/- 5   |
| 6             | 77 +/-10           | 79 +/- 10  | 79 +/- 10  | -              | 79 +/- 10  | 6           | 26 +/-7                          | 26 +/- 8   | 26 +/- 8   | 26 +/- 8       | 26 +/- 8   |
| sum           | 3998               | 4054       |            |                |            | sum         | 2155                             | 2183       |            |                |            |
| pt int:       | 3968 +/- 80        |            |            |                |            | pt int:     | 2128 +/- 75                      |            |            |                |            |
| Case A sum/Ca | se A pt Int % diff | :          | 0.75%      |                |            | Case A sum/ | Case A sum/Case A pt Int % diff: |            | 2.19%      |                |            |
| Case A sum/Ca | se FGH sum % di    | ff:        | -1.37%     |                |            | Case A sum/ | Case FGH sum % d                 | ff:        | -1.29%     |                |            |

|              | centrality 60-84   |            | Ru         | n15pAu North A | \rm        |               | centrality 60-84   |            | Ru         | n15pAu South A | rm  |
|--------------|--------------------|------------|------------|----------------|------------|---------------|--------------------|------------|------------|----------------|-----|
| pt [GeV/c]   | Case A             | Case FGH   | Case F     | Case G         | Case H     | pt [GeV/c]    | Case A             | Case FGH   | Case F     | Case G         |     |
| 0.125        | 81 +/-10           | 85 +/- 10  | 84 +/- 10  | 85 +/- 10      | 87 +/- 9   | 0.125         | 30 +/-7            | 31 +/- 7   | 32 +/- 7   | 31 +/- 8       |     |
| 0.375        | 197 +/-17          | 198 +/- 17 | 198 +/- 18 | 198 +/- 17     | 198 +/- 17 | 0.375         | 102 +/-14          | 99 +/- 13  | 100 +/- 13 | 99 +/- 12      | 9   |
| 0.625        | 287 +/-20          | 298 +/- 21 | 292 +/- 20 | 301 +/- 20     | 301 +/- 22 | 0.625         | 120 +/-15          | 121 +/- 12 | 121 +/- 12 | 121 +/- 12     | 1   |
| 0.875        | 352 +/-24          | 350 +/- 25 | 352 +/- 26 | 351 +/- 23     | 348 +/- 28 | 0.875         | 159 +/-14          | 169 +/- 15 | 163 +/- 15 | 171 +/- 14     | 1   |
| 1.125        | 295 +/-21          | 304 +/- 18 | 302 +/- 16 | 313 +/- 19     | 298 +/- 20 | 1.125         | 134 +/-13          | 135 +/- 14 | 136 +/- 17 | 136 +/- 13     | 1   |
| 1.375        | 303 +/-22          | 290 +/- 23 | 285 +/- 22 | 311 +/- 20     | 275 +/- 27 | 1.375         | 130 +/-14          | 140 +/- 14 | 139 +/- 14 | 141 +/- 14     | 1   |
| 1.625        | 268 +/-21          | 271 +/- 19 | 261 +/- 17 | 286 +/- 17     | 265 +/- 21 | 1.625         | 142 +/-14          | 143 +/- 14 | 143 +/- 14 | 143 +/- 15     | 1   |
| 1.875        | 233 +/-17          | 234 +/- 17 | 233 +/- 17 | 234 +/- 17     | 234 +/- 17 | 1.875         | 109 +/-11          | 111 +/- 11 | 111 +/- 9  | 112 +/- 12     | 1   |
| 2.125        | 198 +/-16          | 198 +/- 16 | 198 +/- 16 | 198 +/- 16     | 198 +/- 16 | 2.125         | 96 +/-12           | 92 +/- 11  | 95 +/- 11  | 88 +/- 11      | 9   |
| 2.375        | 183 +/-16          | 183 +/- 15 | 183 +/- 15 | 183 +/- 15     | 183 +/- 15 | 2.375         | 82 +/-10           | 84 +/- 10  | 84 +/- 10  | 84 +/- 10      | 8   |
| 2.625        | 145 +/-14          | 149 +/- 14 | 149 +/- 14 | 149 +/- 14     | 149 +/- 14 | 2.625         | 63 +/-9            | 64 +/- 9   | 64 +/- 9   | 64 +/- 9       |     |
| 2.875        | 115 +/-12          | 115 +/- 13 | 115 +/- 13 | 115 +/- 13     | 115 +/- 12 | 2.875         | 60 +/-8            | 59 +/- 9   | 60 +/- 10  | 59 +/- 9       |     |
| 3.125        | 107 +/-12          | 103 +/- 13 | 101 +/- 14 | 105 +/- 12     | 103 +/- 14 | 3.125         | 44 +/-7            | 44 +/- 7   | 43 +/- 6   | 44 +/- 7       |     |
| 3.375        | 108 +/-12          | 109 +/- 12 | 108 +/- 14 | 110 +/- 11     | 110 +/- 11 | 3.375         | 28 +/-6            | 26 +/- 6   | 26 +/- 6   | 25 +/- 6       |     |
| 3.625        | 47 +/-7            | 40 +/- 7   | 41 +/- 7   | 40 +/- 7       | 40 +/- 7   | 3.625         | 29 +/-6            | 29 +/- 6   | 29 +/- 6   | -              |     |
| 3.875        | 37 +/-7            | 38 +/- 7   | 38 +/- 7   | 38 +/- 7       | 38 +/- 7   | 3.875         | 22 +/-5            | 23 +/- 5   | -          | 22 +/- 5       | - 2 |
| 4.25         | 63 +/-9            | 64 +/- 9   | 64 +/- 9   | 64 +/- 9       | 64 +/- 9   | 4.25          | 28 +/-6            | 28 +/- 6   | 28 +/- 6   | 28 +/- 6       | - 2 |
| 4.75         | 44 +/-8            | 45 +/- 8   | 46 +/- 8   |                | 45 +/- 8   | 4.75          | 20 +/-4            | 20 +/- 4   | 20 +/- 4   | 20 +/- 4       |     |
| 6            | 57 +/-9            | 53 +/- 8   | 53 +/- 9   | 54 +/- 8       | 56 +/- 8   | 6             | 18 +/-4            | 13 +/- 4   | 14 +/- 4   | -              |     |
| sum          | 3118               | 3130       |            |                |            | sum           | 1416               | 1432       |            |                |     |
| pt int:      | 3039 +/- 69        |            |            |                |            | pt int:       | 1386 +/- 43        |            |            |                |     |
| ase A sum/Ca | se A pt Int % diff | :          | 2.57%      |                |            | Case A sum/Ca | se A pt Int % diff | :          | 2.14%      |                |     |
| ase A sum/Ca | se FGH sum % di    | ff:        | -0.38%     |                |            | Case A sum/Ca | se FGH sum % di    | ff:        | 1.12%      |                |     |

### 9.4 $\sigma$ vs $p_T$

During an fvtx meeting, it was requested by Xuan Li to plot the width of the J/ $\psi$  peak versus  $p_T$  as an additional check on the Run15pAu centrality, because the peak looked narrow at low  $p_T$ . The plots for each centrality range in both the north and south arms as well as the  $p_T$  integrated widths as a function of centrality are shown in 40 and 41.

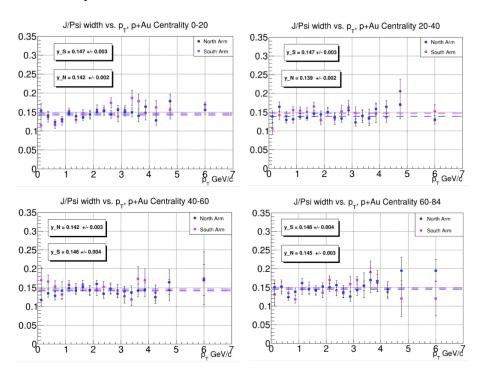



Figure 40: Run15pAu J/ $\psi$  width check as a function of  $p_T$  and centrality. The muon arms consistently measures approximately 140 MeV for  $\sigma$ .

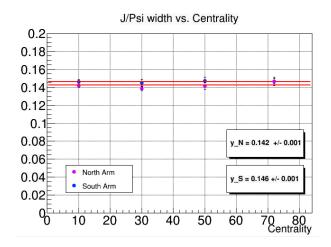



Figure 41: Run15pAu North and South arms  $p_T$  integrated width as function of centrality.

# 10 Run15pAl Checks on J/ $\psi$ Counts

All of the same checks used for Run15pAu were used for Run15pAl.

### **10.1** Sum over $p_T$

|   | pt [GeV/c] | pAl North     | pAl South    |
|---|------------|---------------|--------------|
|   | 0.125      | 258 +/- 22    | 164 +/- 19   |
|   | 0.375      | 831 +/- 38    | 523 +/- 31   |
|   | 0.625      | 1056 +/- 43   | 750 +/- 40   |
|   | 0.875      | 1251 +/- 45   | 818 +/- 38   |
|   | 1.125      | 1231 +/- 45   | 801 +/- 37   |
|   | 1.375      | 1208 +/- 42   | 882 +/- 36   |
|   | 1.625      | 1050 +/- 40   | 736 +/- 35   |
|   | 1.875      | 934 +/- 38    | 560 +/- 30   |
|   | 2.125      | 783 +/- 32    | 491 +/- 28   |
|   | 2.375      | 597 +/- 29    | 367 +/- 26   |
|   | 2.625      | 501 +/- 28    | 317 +/- 24   |
|   | 2.875      | 466 +/- 28    | 266 +/- 22   |
|   | 3.125      | 392 +/- 23    | 227 +/- 18   |
|   | 3.375      | 284 +/- 20    | 161 +/- 15   |
|   | 3.625      | 240 +/- 18    | 117 +/- 12   |
|   | 3.875      | 146 +/- 14    | 88 +/- 11    |
|   | 4.25       | 226 +/- 17    | 102 +/- 13   |
|   | 4.75       | 137 +/- 14    | 51 +/- 8     |
|   | 5.5        | 139 +/- 13    | 67 +/- 9     |
|   | 6.5        | 50 +/- 8      | 11 +/- 4     |
|   | SUM        | 11780         | 7500         |
|   | Min Bias   | 11738 +/- 138 | 7455 +/- 115 |
|   | % diff     | 0.36%         | 0.60%        |
|   | AN1354     | 11085 +/- 190 | 6567 +/- 206 |
| 1 |            |               |              |

Figure 42: Centrality Integrated Results for Run15pAl.

# 10.2 Sum over Rapidity

We refit the preliminary results for  $J/\psi$  vs. rapidity (AN1354) to ensure results were consistent despite different analysis methods used. The results are compared with Case FGH counts as well.

## 10.3 Sum over Centrality

We checked if the sum of Case A  $p_T$  counts over each centrality bin is consistent with the sum of the average of Cases F, G and H. We also checked if the resulting sum is consistent with the  $p_T$  integrated fit value for each centrality range.

## **10.4** $\sigma$ vs. $p_T$

During an fvtx meeting, it was requested by Xuan Li to plot the width of the J/ $\psi$  peak versus  $p_T$  as an additional check on the Run15pAu centrality, because the peak looked narrow at low  $p_T$ . We continue the same check here with Run15pAl.

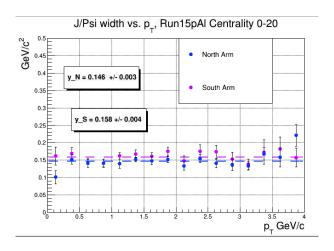

| Run15pAl       | NORTH         |               |               |               |               |               |
|----------------|---------------|---------------|---------------|---------------|---------------|---------------|
| rap center     | Case A        | Ave FGH       | Case F        | Case G        | Case H        | AN 1354       |
| 1.325          | 853 +/- 33    | 825           | 813 +/- 43    | 822 +/- 41    | 841 +/- 32    | 843 +/- 47    |
| 1.575          | 4004 +/- 77   | 3893          | 3844 +/- 78   | 3811 +/- 113  | 4023 +/- 76   | 3785 +/- 95   |
| 1.825          | 4406 +/- 84   | 4309          | 4297 +/- 103  | 4149 +/- 153  | 4482 +/- 84   | 4125 +/- 121  |
| 2.075          | 2615 +/- 66   | 2646          | 2691 +/- 70   | 2506 +/- 73   | 2742 +/- 65   | 2539 +/- 87   |
| sum:           | 11878         | 11,673        | 11,645        | 11,288        | 12,088        | 11,292        |
| MB             | 11738 +/- 138 | 11502 +/- 168 | 11354 +/- 165 | 11281 +/- 205 | 11872 +/- 135 | 11085 +/- 190 |
| sum/MB % diff: | 1.19%         | 1.48%         | 2.51%         | 0.06%         | 1.80%         |               |
| sum CaseA/Cas  | se FGH % diff | 1.73%         |               |               |               |               |
| Case A/Case FG | GH MB % diff: | 2.03%         |               |               |               |               |
| sum Case A/ p  | relim % diff: | 5.72%         |               |               |               |               |
|                |               |               |               |               |               |               |
| Run15pAl       | SOUTH         |               |               |               |               |               |
| rap center     | Case A        | Ave Case FGH  | Case F        | Case G        | Case H        | AN 1354       |
| -1.325         | 907 +/- 36    | 885           | 842 +/- 48    | 906 +/- 34    | 906 +/- 35    | 682 +/- 54    |
| -1.575         | 3288 +/- 72   | 3,277         | 3233 +/- 74   | 3299 +/- 80   | 3300 +/- 70   | 2920 +/- 234  |
| -1.825         | 2497 +/- 65   | 2,584         | 2543 +/- 68   | 2576 +/- 53   | 2632 +/- 49   | 2364 +/- 107  |
| -2.075         | 766 +/- 42    | 792           | 768 +/- 41    | 795 +/- 32    | 814 +/- 38    | 601 +/- 47    |
| sum:           | 7458          | 7,538         | 7386          | 7,576         | 7,652         | 6,567         |
| MB             | 7455 +/- 115  | 7458 +/- 111  | 7212 +/- 114  | 7544 +/- 111  | 7617 +/- 108  | 6567 +/- 206  |
| sum/MB % diff  | 0.04%         | 1.07%         | 2.38%         | 0.42%         | 0.46%         |               |
| sum Case A/Ca  | se FGH % diff | 1.07%         |               |               |               |               |
| Case A/Case FG | GH MB % diff: | 0.04%         |               |               |               |               |
| sum Case A/ p  | relim % diff: | 12.70%        |               |               |               |               |

Figure 43: Run15pAl forward and backward rapidity check. Case A is consistent with Case FGH, and Case A as the central value is consistent with rapidity integrated results.

|            | centrality 0-20 |            | Ru         | n15pAl North A | rm         |
|------------|-----------------|------------|------------|----------------|------------|
| pt [GeV/c] | Case A          | Case FGH   | Case F     | Case G         | Case H     |
| 0.125      | 87 +/- 12       | 87 +/- 12  | 87 +/- 12  | 87 +/- 13      | 87 +/- 11  |
| 0.375      | 349 +/- 25      | 356 +/- 24 | 357 +/- 25 | 357 +/- 24     | 356 +/- 25 |
| 0.625      | 396 +/- 25      | 386 +/- 25 | 370 +/- 26 | 389 +/- 22     | 401 +/- 26 |
| 0.875      | 492 +/- 32      | 502 +/- 30 | 496 +/- 30 | 504 +/- 31     | 504 +/- 31 |
| 1.125      | 501 +/- 33      | 503 +/- 33 | -          | 503 +/- 37     | 503 +/- 29 |
| 1.375      | 459 +/- 25      | 460 +/- 28 | 453 +/- 33 | 464 +/- 26     | 463 +/- 26 |
| 1.625      | 385 +/- 27      | 376 +/- 27 | 365 +/- 27 | 370 +/- 28     | 393 +/- 25 |
| 1.875      | 385 +/- 24      | 369 +/- 37 | 357 +/- 36 | 364 +/- 51     | 387 +/- 24 |
| 2.125      | 275 +/- 21      | 278 +/- 21 | 282 +/- 21 | 266 +/- 23     | 284 +/- 21 |
| 2.375      | 243 +/- 19      | 239 +/- 22 | 232 +/- 27 | 241 +/- 18     | 245 +/- 19 |
| 2.625      | 184 +/- 17      | 176 +/- 17 | 174 +/- 18 | 167 +/- 17     | 187 +/- 17 |
| 2.875      | 184 +/- 17      | 188 +/- 17 | 182 +/- 16 | 189 +/- 17     | 192 +/- 17 |
| 3.125      | 154 +/- 15      | 149 +/- 15 | 143 +/- 16 | 149 +/- 15     | 156 +/- 14 |
| 3.375      | 114 +/- 13      | 110 +/- 15 | 108 +/- 11 | 104 +/- 20     | 116 +/- 13 |
| 3.625      | 104 +/- 12      | 104 +/- 12 | -          | 104 +/- 12     | 104 +/- 12 |
| 3.875      | 61 +/- 9        | 61 +/- 11  | 60 +/- 11  | -              | 63 +/- 10  |
| sum        | 4373            | 4344       |            |                |            |

|            | centrality 20-40 |            | D.         | ın15pAl North A |            |
|------------|------------------|------------|------------|-----------------|------------|
|            |                  |            |            |                 |            |
| pt [GeV/c] | Case A           | Case FGH   | Case F     | Case G          | Case H     |
| 0.125      | 62 +/- 9         | 63 +/- 10  | 63 +/- 10  | 62 +/- 9        | 64 +/- 10  |
| 0.375      | 214 +/- 18       | 210 +/- 21 | 210 +/- 20 | 200 +/- 26      | 219 +/- 18 |
| 0.625      | 282 +/- 21       | 288 +/- 21 | 288 +/- 21 | 286 +/- 20      | 289 +/- 21 |
| 0.875      | 336 +/- 23       | 323 +/- 23 | 304 +/- 23 | 328 +/- 24      | 338 +/- 22 |
| 1.125      | 389 +/- 24       | 386 +/- 42 | 392 +/- 30 | 370 +/- 72      | 395 +/- 25 |
| 1.375      | 374 +/- 26       | 371 +/- 30 | 362 +/- 41 | 375 +/- 24      | 375 +/- 25 |
| 1.625      | 349 +/- 20       | 350 +/- 21 | 351 +/- 22 | 349 +/- 21      | 349 +/- 20 |
| 1.875      | 259 +/- 20       | 261 +/- 20 | 258 +/- 20 | 263 +/- 19      | 263 +/- 19 |
| 2.125      | 252 +/- 22       | 246 +/- 21 | 231 +/- 19 | 252 +/- 23      | 253 +/- 20 |
| 2.375      | 168 +/- 15       | 170 +/- 15 | 169 +/- 15 | 170 +/- 15      | 170 +/- 15 |
| 2.625      | 153 +/- 15       | 155 +/- 14 | 155 +/- 14 | 155 +/- 14      | 155 +/- 14 |
| 2.875      | 129 +/- 14       | 127 +/- 15 | 121 +/- 17 | 130 +/- 14      | 129 +/- 14 |
| 3.125      | 113 +/- 11       | 113 +/- 11 | 113 +/- 12 | 113 +/- 12      | 113 +/- 11 |
| 3.375      | 93 +/- 11        | 92 +/- 11  | 91 +/- 11  | -               | 93 +/- 11  |
| 3.625      | 88 +/- 11        | 87 +/- 12  | 85 +/- 12  | 88 +/- 11       | 88 +/- 12  |
| 3.875      | 51 +/- 7         | 51 +/- 8   | 51 +/- 8   | 51 +/- 7        | 51 +/- 7   |
| sum        | 3312             | 3291       |            |                 |            |

|            | centrality 40-72 |            | Ru         | n15pAl North A | rm         |
|------------|------------------|------------|------------|----------------|------------|
| pt [GeV/c] | Case A           | Case FGH   | Case F     | Case G         | Case H     |
| 0.125      | 86 +/- 12        | 87 +/- 12  | 86 +/- 12  | 86 +/- 12      | 88 +/- 12  |
| 0.375      | 244 +/- 21       | 247 +/- 22 | 232 +/- 20 | 251 +/- 25     | 258 +/- 21 |
| 0.625      | 360 +/- 22       | 360 +/- 25 | 358 +/- 23 | 355 +/- 29     | 367 +/- 23 |
| 0.875      | 435 +/- 27       | 436 +/- 28 | 419 +/- 30 | 442 +/- 28     | 448 +/- 27 |
| 1.125      | 392 +/- 26       | 395 +/- 28 | 394 +/- 30 | -              | 395 +/- 25 |
| 1.375      | 412 +/- 23       | 408 +/- 24 | -          | 400 +/- 24     | 416 +/- 24 |
| 1.625      | 361 +/- 23       | 351 +/- 38 | 349 +/- 23 | 334 +/- 68     | 369 +/- 24 |
| 1.875      | 303 +/- 22       | 292 +/- 21 | 265 +/- 19 | 305 +/- 22     | 305 +/- 22 |
| 2.125      | 232 +/- 18       | 231 +/- 19 | 232 +/- 19 | 225 +/- 19     | 235 +/- 18 |
| 2.375      | 189 +/- 17       | 182 +/- 19 | 175 +/- 16 | 179 +/- 24     | 192 +/- 16 |
| 2.625      | 166 +/- 16       | 170 +/- 16 | 170 +/- 16 | 170 +/- 18     | 170 +/- 16 |
| 2.875      | 153 +/- 17       | 149 +/- 17 | 139 +/- 21 | 154 +/- 15     | 154 +/- 15 |
| 3.125      | 124 +/- 13       | 124 +/- 13 | 125 +/- 14 | 123 +/- 13     | 125 +/- 13 |
| 3.375      | 81 +/- 10        | 84 +/- 10  | 78 +/- 9   | 92 +/- 11      | 82 +/- 10  |
| 3.625      | 56 +/- 8         | 54 +/- 9   | 52 +/- 9   | 53 +/- 8       | 56 +/- 8   |
| 3.875      | 43 +/- 7         | 44 +/- 7   | 44 +/- 7   | -              | 44 +/- 7   |
| sum        | 3637             | 3611       |            |                |            |



# 11 Run14HeAu Checks on J/ $\psi$ Counts

All of the same checks used for Run15pAu were used for Run14HeAu.

### 11.1 Sum over $p_T$

| pt [GeV/c] | HeAu North  | HeAu South   |  |  |
|------------|-------------|--------------|--|--|
| 0.125      | 78 +/- 11   | 68 +/- 11    |  |  |
| 0.375      | 196 +/- 17  | 241 +/- 20   |  |  |
| 0.625      | 323 +/- 21  | 273 +/- 22   |  |  |
| 0.875      | 347 +/- 25  | 433 +/- 48   |  |  |
| 1.125      | 406 +/- 25  | 501 +/- 27   |  |  |
| 1.375      | 381 +/- 22  | 447 +/- 23   |  |  |
| 1.625      | 364 +/- 24  | 391 +/- 24   |  |  |
| 1.875      | 322 +/- 21  | 366 +/- 24   |  |  |
| 2.125      | 250 +/- 20  | 265 +/- 19   |  |  |
| 2.375      | 193 +/- 17  | 239 +/- 18   |  |  |
| 2.625      | 214 +/- 17  | 238 +/- 18   |  |  |
| 2.875      | 135 +/- 15  | 151 +/- 16   |  |  |
| 3.125      | 128 +/- 12  | 113 +/- 12   |  |  |
| 3.375      | 89 +/- 13   | 93 +/- 11    |  |  |
| 3.625      | 85 +/- 11   | 89 +/- 13    |  |  |
| 3.875      | 55 +/- 8    | 59 +/- 9     |  |  |
| 4.25       | 86 +/- 12   | 73 +/- 10    |  |  |
| 4.75       | 60 +/- 8    | 45 +/- 8     |  |  |
| 6          | 56 +/- 9    | 52 +/- 9     |  |  |
| SUM        | 3769        | 4138         |  |  |
| Min Bias   | 3804 +/- 88 | 4069 +/- 103 |  |  |
| % diff     | 0.92%       | 1.68%        |  |  |
| AN1354     | 3825 +/- 91 | 3987 +/- 118 |  |  |

Figure 44: Centrality Integrated Results for Run14HeAu.

## 11.2 Sum over Rapidity

We refit the preliminary results for J/ $\psi$  vs. rapidity (AN1354) to ensure results were consistent despite different analysis methods used. The results are compared with Case FGH counts as well.

## 11.3 Sum over Centrality

As with the other systems, we checked if the sum of Case A  $p_T$  counts over each centrality bin is consistent with the sum of the average of Cases F, G and H. We also checked if the resulting sum is consistent with the  $p_T$  integrated fit value for each centrality range.

## 11.4 $\sigma$ vs. $p_T$

During an fvtx meeting, it was requested by Xuan Li to plot the width of the J/ $\psi$  peak versus  $p_T$  as an additional check on the Run15pAu centrality, because the peak looked narrow at low  $p_T$ . We continued the same check here with Run14HeAu.

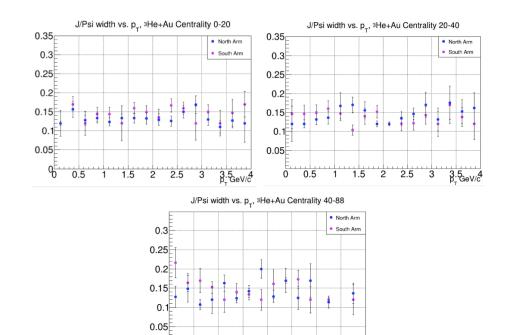

| Run14HeAu      | NORTH         |              |              |              |              |              |
|----------------|---------------|--------------|--------------|--------------|--------------|--------------|
| rap center     | Case A        | Ave FGH      | Case F       | Case G       | Case H       | AN 1354      |
| •              |               |              |              |              |              |              |
| 1.325          | 325 +/- 21    | 316 +/- 34   | 317 +/- 40   | 315 +/- 39   | 317 +/- 22   | 334 +/- 21   |
| 1.575          | 1346 +/- 49   | 1311 +/- 56  | 1303 +/- 49  | 1322 +/- 45  | 1309 +/- 75  | 1318 +/- 62  |
| 1.825          | 1503 +/- 54   | 1459 +/- 75  | 1437 +/- 51  | 1466 +/- 83  | 1475 +/- 90  | 1552 +/- 56  |
| 2.075          | 639 +/- 34    | 667 +/- 36   | 677 +/- 35   | 663 +/- 34   | 661 +/- 39   | 686 +/- 29   |
| sum:           | 3812          | 3,753        | 3,734        | 3,766        | 3,762        | 3,890        |
| MB             | 3804 +/- 88   | 3764 +/- 106 | 3741 +/- 80  | 3768 +/- 128 | 3783 +/- 111 | 3825 +/- 91  |
| sum/MB % diff: | 0.21%         | 0.29%        | -0.19%       | -0.05%       | 2.79%        |              |
| sum CaseA/Cas  | se FGH % diff | 1.56%        |              |              |              |              |
| Case A/Case FG | GH MB % diff: | 1.06%        |              |              |              |              |
| sum Case A/ p  | relim % diff: | 2.03%        |              |              |              |              |
|                |               |              |              |              |              |              |
| Run14HeAu      | SOUTH         |              |              |              |              |              |
| rap center     | Case A        | Ave Case FGH | Case F       | Case G       | Case H       | AN 1354      |
| -1.325         | 505 +/- 31    | 514 +/- 29   | 512 +/- 29   | 515 +/- 29   | 515 +/- 29   | 508 +/- 28   |
| -1.575         | 1684 +/- 64   | 1529 +/- 75  | 1560 +/- 67  | 1405 +/- 87  | 1622 +/- 72  | 1455 +/- 83  |
| -1.825         | 1427 +/- 62   | 1447 +/- 86  | 1471 +/- 69  | 1427 +/- 68  | 1441 +/- 120 | 1454 +/- 71  |
| -2.075         | 477 +/- 41    | 492 +/- 32   | 490 +/- 33   | 493 +/- 32   | 493 +/- 32   | 484 +/- 27   |
| sum:           | 4093          | 3,982        | 4033         | 3,840        | 4,071        | 3,901        |
| МВ             | 4069 +/- 103  | 3912 +/- 163 | 3986 +/- 103 | 3852 +/- 271 | 3898 +/- 114 | 3987 +/- 118 |
| sum/MB % diff  | 0.59%         | 1.77%        | 1.17%        | -0.31%       | 2.08%        |              |
| sum Case A/Ca  | se FGH % diff | 2.75%        |              |              |              |              |
| Case A/Case FG | iH MB % diff: | 3.93%        |              |              |              |              |
| sum Case A/ p  | relim % diff: | 5.23%        |              |              |              |              |

Figure 45: Run14HeAu forward and backward rapidity check. Case A is consistent with Case FGH, and Case A as the central value is consistent with rapidity integrated results.

| (              | centrality 0-20 | )           | Run1       | 4HeAu North | Arm        | (             | centrality 0-20 | )           | Run1       | 4HeAu South | Arm        |
|----------------|-----------------|-------------|------------|-------------|------------|---------------|-----------------|-------------|------------|-------------|------------|
| pt [GeV/c]     | Case A          | Case FGH    | Case F     | Case G      | Case H     | pt [GeV/c]    | Case A          | Case FGH    | Case F     | Case G      | Case H     |
| 0.125          | 29 +/- 6        | 29 +/- 5    | 29 +/- 5   | 29 +/- 6    | 28 +/- 6   | 0.125         | 23 +/- 5        | 20 +/- 6    | 20 +/- 5   | 23 +/- 7    | 18 +/- 8   |
| 0.375          | 78 +/- 10       | 82 +/- 11   | 82 +/- 11  | 81 +/- 11   | 81 +/- 12  | 0.375         | 105 +/- 14      | 105 +/- 15  | 109 +/- 13 | 100 +/- 18  | 106 +/- 14 |
| 0.625          | 115 +/- 12      | 116 +/- 12  | 116 +/- 12 | 116 +/- 12  | 116 +/- 12 | 0.625         | 120 +/- 14      | 120 +/- 14  | 120 +/- 14 | 120 +/- 14  | 120 +/- 14 |
| 0.875          | 136 +/- 13      | 133 +/- 16  | 133 +/- 20 | 133 +/- 14  | 133 +/- 14 | 0.875         | 198 +/- 19      | 185 +/- 19  | 188 +/- 20 | 173 +/- 20  | 194 +/- 18 |
| 1.125          | 162 +/- 14      | 162 +/- 16  | 158 +/- 21 | 164 +/- 14  | 163 +/- 14 | 1.125         | 215 +/- 19      | 218 +/- 19  | 212 +/- 20 | -           | 225 +/- 18 |
| 1.375          | 148 +/- 14      | 150 +/- 13  | 150 +/- 13 | 150 +/- 13  | 150 +/- 13 | 1.375         | 184 +/- 16      | 185 +/- 17  | 190 +/- 16 | 184 +/- 17  | 181 +/- 18 |
| 1.625          | 159 +/- 14      | 164 +/- 14  | 168 +/- 14 | 161 +/- 14  | -          | 1.625         | 188 +/- 17      | 191 +/- 16  | 182 +/- 17 | 196 +/- 16  | 196 +/- 16 |
| 1.875          | 119 +/- 13      | 114 +/- 18  | 115 +/- 13 | 114 +/- 17  | 114 +/- 22 | 1.875         | 184 +/- 16      | 173 +/- 24  | 184 +/- 23 | 166 +/- 28  | 169 +/- 20 |
| 2.125          | 100 +/- 12      | 99 +/- 12   | 99 +/- 12  | 99 +/- 12   | 100 +/- 12 | 2.125         | 124 +/- 14      | 120 +/- 14  | 126 +/- 14 | 109 +/- 15  | 125 +/- 13 |
| 2.375          | 82 +/- 10       | 82 +/- 10   | 82 +/- 10  | 82 +/- 10   | 82 +/- 10  | 2.375         | 126 +/- 13      | 117 +/- 14  | 105 +/- 16 | 120 +/- 14  | 126 +/- 13 |
| 2.75           | 131 +/- 13      | 138 +/- 13  | 139 +/- 13 | 137 +/- 13  | 137 +/- 14 | 2.75          | 154 +/- 15      | 154 +/- 15  | 154 +/- 15 | 155 +/- 15  | 154 +/- 16 |
| 3.25           | 105 +/- 11      | 105 +/- 11  | 104 +/- 11 | 105 +/- 11  | 105 +/- 11 | 3.25          | 90 +/- 10       | 88 +/- 11   | -          | 87 +/- 11   | 89 +/- 11  |
| 3.75           | 60 +/- 8        | 60 +/- 8    | 59 +/- 8   | 60 +/- 8    | 60 +/- 8   | 3.75          | 73 +/- 10       | 68 +/- 12   | 70 +/- 11  | 66 +/- 16   | 68 +/- 9   |
| sum            | 1424            | 1433        |            |             |            | sum           | 1783            | 1746        |            |             |            |
| pt int:        |                 |             |            |             |            | pt int:       |                 |             |            |             |            |
| Case A sum/0   | Case A pt Int 9 | % diff:     |            |             |            | Case A sum/   | Case A pt Int 9 | % diff:     |            |             |            |
| Case A sum/0   | Case FGH sum    | % diff:     |            |             |            | Case A sum/   | Case FGH sum    | n % diff:   |            |             |            |
| Case A pt Int, | /Case FGH pt    | Int % diff: |            |             |            | Case A pt Int | /Case FGH pt    | Int % diff: |            |             |            |

| С             | entrality 20-4  | 0           | Run1       | 4HeAu North | Arm        | С              | entrality 20-4  | 0           | Run1       | 4HeAu South | Arm        |
|---------------|-----------------|-------------|------------|-------------|------------|----------------|-----------------|-------------|------------|-------------|------------|
| pt [GeV/c]    | Case A          | Case FGH    | Case F     | Case G      | Case H     | pt [GeV/c]     | Case A          | Case FGH    | Case F     | Case G      | Case H     |
| 0.125         | 24 +/- 6        | 27 +/- 5    | 26 +/- 5   | 27 +/- 5    | 27 +/- 5   | 0.125          | 23 +/- 6        | 23 +/- 6    | 23 +/- 6   | 23 +/- 5    | -          |
| 0.375         | 83 +/- 10       | 84 +/- 10   | 83 +/- 10  | 83 +/- 10   | 84 +/- 10  | 0.375          | 81 +/- 11       | 79 +/- 11   | 76 +/- 11  | 85 +/- 10   | 77 +/- 11  |
| 0.625         | 102 +/- 11      | 102 +/- 11  | 103 +/- 11 | 101 +/- 11  | 102 +/- 11 | 0.625          | 92 +/- 12       | 100 +/- 12  | 97 +/- 12  | 101 +/- 12  | 101 +/- 12 |
| 0.875         | 88 +/- 11       | 91 +/- 12   | 91 +/- 12  | 91 +/- 11   | 91 +/- 12  | 0.875          | 121 +/- 15      | 118 +/- 16  | 127 +/- 15 | 115 +/- 16  | 113 +/- 17 |
| 1.125         | 133 +/- 13      | 120 +/- 16  | 134 +/- 13 | 93 +/- 22   | 134 +/- 13 | 1.125          | 149 +/- 14      | 141 +/- 17  | 139 +/- 21 | 141 +/- 15  | 143 +/- 15 |
| 1.375         | 114 +/- 12      | 107 +/- 13  | 103 +/- 12 | 108 +/- 13  | 108 +/- 13 | 1.375          | 118 +/- 13      | 117 +/- 14  | 117 +/- 14 | 117 +/- 14  | 116 +/- 13 |
| 1.625         | 99 +/- 11       | 96 +/- 13   | 99 +/- 11  | 91 +/- 17   | 98 +/- 11  | 1.625          | 122 +/- 15      | 123 +/- 15  | 122 +/- 14 | 122 +/- 15  | 124 +/- 15 |
| 1.875         | 105 +/- 12      | 109 +/- 11  | 109 +/- 11 | 109 +/- 11  | 109 +/- 11 | 1.875          | 97 +/- 16       | 98 +/- 16   | 97 +/- 18  | 98 +/- 14   | 98 +/- 16  |
| 2.125         | 74 +/- 10       | 76 +/- 10   | 77 +/- 10  | 75 +/- 10   | 75 +/- 10  | 2.125          | 78 +/- 10       | 78 +/- 10   | 77 +/- 10  | 79 +/- 9    | 77 +/- 10  |
| 2.375         | 64 +/- 10       | 66 +/- 9    | 65 +/- 9   | 66 +/- 9    | 66 +/- 9   | 2.375          | 68 +/- 10       | 68 +/- 10   | 71 +/- 9   | 64 +/- 12   | 69 +/- 10  |
| 2.75          | 120 +/- 12      | 123 +/- 12  | 122 +/- 12 | 124 +/- 12  | -          | 2.75           | 115 +/- 12      | 116 +/- 12  | 116 +/- 12 | 116 +/- 12  | 116 +/- 12 |
| 3.25          | 53 +/- 8        | 54 +/- 8    | 54 +/- 8   | 55 +/- 8    | 55 +/- 8   | 3.25           | 60 +/- 8        | 60 +/- 9    | 59 +/- 8   | 61 +/- 8    | 61 +/- 9   |
| 3.75          | 41 +/- 7        | 36 +/- 8    | 38 +/- 8   | 35 +/- 8    | 35 +/- 9   | 3.75           | 40 +/- 7        | 40 +/- 7    | 39 +/- 7   | 40 +/- 7    | 39 +/- 7   |
| sum           | 1099            | 1091        |            |             |            | sum            | 1165            | 1161        |            |             |            |
| pt int:       |                 |             |            |             |            | pt int:        |                 |             |            |             |            |
| Case A sum/   | Case A pt Int 9 | % diff:     |            |             |            | Case A sum/    | Case A pt Int 9 | % diff:     |            |             |            |
| Case A sum/   | Case FGH sum    | % diff:     |            |             |            | Case A sum/    | Case FGH sum    | % diff:     |            |             |            |
| Case A pt Int | /Case FGH pt    | Int % diff: |            |             |            | Case A pt Int, | /Case FGH pt    | Int % diff: |            |             |            |

| entrality 40-8                        | 8                                                                                                                            | Run1                                                                                                                                                                                                                                             | .4HeAu North                                                                                                                                                                                                                                                                                                                                                                                                      | ı Arm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | entrality 40-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Run1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .4HeAu South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Case A                                | Case FGH                                                                                                                     | Case F                                                                                                                                                                                                                                           | Case G                                                                                                                                                                                                                                                                                                                                                                                                            | Case H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pt [GeV/c]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Case A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Case FGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Case F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Case G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Case H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 30 +/- 5                              | 32 +/- 3                                                                                                                     | -                                                                                                                                                                                                                                                | 29 +/- 5                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19 +/- 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 +/- 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 +/- 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19 +/- 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22 +/- 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 53 +/- 8                              | 46 +/- 9                                                                                                                     | 49 +/- 9                                                                                                                                                                                                                                         | 44 +/- 9                                                                                                                                                                                                                                                                                                                                                                                                          | 44 +/- 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58 +/- 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53 +/- 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52 +/- 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 56 +/- 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 83 +/- 10                             | 86 +/- 11                                                                                                                    | 85 +/- 10                                                                                                                                                                                                                                        | 86 +/- 12                                                                                                                                                                                                                                                                                                                                                                                                         | 86 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72 +/- 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61 +/- 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 85 +/- 10                             | 86 +/- 10                                                                                                                    | 85 +/- 9                                                                                                                                                                                                                                         | 87 +/- 10                                                                                                                                                                                                                                                                                                                                                                                                         | 87 +/- 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 +/- 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73 +/- 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 73 +/- 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73 +/- 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73 +/- 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 87 +/- 11                             | 76 +/- 12                                                                                                                    | 71 +/- 11                                                                                                                                                                                                                                        | 77 +/- 12                                                                                                                                                                                                                                                                                                                                                                                                         | 79 +/- 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 +/- 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69 +/- 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67 +/- 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71 +/- 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 101 +/- 11                            | 102 +/- 11                                                                                                                   | 102 +/- 11                                                                                                                                                                                                                                       | 101 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                        | 102 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 88 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92 +/- 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87 +/- 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 96 +/- 10                             | 96 +/- 11                                                                                                                    | 96 +/- 11                                                                                                                                                                                                                                        | 95 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                         | 96 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 94 +/- 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 79 +/- 10                             | 82 +/- 10                                                                                                                    | 80 +/- 11                                                                                                                                                                                                                                        | 82 +/- 10                                                                                                                                                                                                                                                                                                                                                                                                         | 82 +/- 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44 +/- 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44 +/- 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43 +/- 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44 +/- 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44 +/- 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 73 +/- 9                              | 72 +/- 11                                                                                                                    | 72 +/- 9                                                                                                                                                                                                                                         | 71 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                         | 71 +/- 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48 +/- 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48 +/- 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48 +/- 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48 +/- 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48 +/- 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 37 +/- 9                              | 37 +/- 10                                                                                                                    | -                                                                                                                                                                                                                                                | 46 +/- 7                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39 +/- 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40 +/- 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40 +/- 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40 +/- 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 63 +/- 9                              | 70 +/- 10                                                                                                                    | 71 +/- 9                                                                                                                                                                                                                                         | 70 +/- 9                                                                                                                                                                                                                                                                                                                                                                                                          | 70 +/- 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80 +/- 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75 +/- 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34 +/- 6                              | 34 +/- 6                                                                                                                     | -                                                                                                                                                                                                                                                | 34 +/- 6                                                                                                                                                                                                                                                                                                                                                                                                          | 34 +/- 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31 +/- 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32 +/- 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31 +/- 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32 +/- 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32 +/- 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 31 +/- 6                              | 31 +/- 6                                                                                                                     | 31 +/- 7                                                                                                                                                                                                                                         | 32 +/- 6                                                                                                                                                                                                                                                                                                                                                                                                          | 32 +/- 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29 +/- 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29 +/- 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29 +/- 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29 +/- 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 852                                   | 843                                                                                                                          |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       |                                                                                                                              |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pt int:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| n/Case A pt I                         | nt % diff:                                                                                                                   |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Case A sum/Case A pt Int % diff:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt % diff:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| /Case FGH si                          | um % diff:                                                                                                                   |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Case A sun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/Case FGH si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | um % diff:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Case A pt Int/Case FGH pt Int % diff: |                                                                                                                              |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Case A pt In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t/Case FGH p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t Int % diff:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| m                                     | Case A 30 +/- 5 53 +/- 8 83 +/- 10 85 +/- 10 87 +/- 11 101 +/- 11 96 +/- 10 73 +/- 9 37 +/- 9 63 +/- 9 34 +/- 6 31 +/- 6 852 | 30 +/- 5 32 +/- 3 53 +/- 8 46 +/- 9 83 +/- 10 86 +/- 11 85 +/- 10 86 +/- 10 87 +/- 11 76 +/- 12 101 +/- 11 102 +/- 11 96 +/- 10 96 +/- 11 79 +/- 10 82 +/- 10 73 +/- 9 72 +/- 11 37 +/- 9 37 +/- 10 63 +/- 9 70 +/- 10 34 +/- 6 31 +/- 6 852 843 | Case A Case FGH Case F 30 +/- 5 32 +/- 3 - 53 +/- 8 46 +/- 9 49 +/- 9 83 +/- 10 86 +/- 11 85 +/- 10 85 +/- 10 86 +/- 11 85 +/- 10 85 +/- 11 76 +/- 12 71 +/- 11 101 +/- 11 102 +/- 11 96 +/- 11 79 +/- 10 96 +/- 11 96 +/- 11 73 +/- 9 72 +/- 11 72 +/- 9 37 +/- 9 37 +/- 10 - 63 +/- 9 70 +/- 10 71 +/- 9 34 +/- 6 34 +/- 6 - 31 +/- 6 31 +/- 6 31 +/- 7 852 843   **Case FGH sum % diff: **Case FGH sum % diff: | Case A Case FGH Case F Case G 30 +/- 5 32 +/- 3 - 29 +/- 5 53 +/- 8 46 +/- 9 49 +/- 9 44 +/- 9 83 +/- 10 86 +/- 11 85 +/- 10 86 +/- 12 85 +/- 10 86 +/- 12 71 +/- 11 77 +/- 12 101 +/- 11 102 +/- 11 102 +/- 11 101 +/- 11 96 +/- 10 96 +/- 11 96 +/- 11 95 +/- 11 77 +/- 10 82 +/- 10 80 +/- 11 82 +/- 10 73 +/- 9 72 +/- 11 72 +/- 9 71 +/- 11 37 +/- 9 37 +/- 10 - 46 +/- 7 63 +/- 9 70 +/- 10 71 +/- 9 70 +/- 9 34 +/- 6 34 +/- 6 - 34 +/- 6 31 +/- 6 31 +/- 6 31 +/- 7 32 +/- 6 852 843 | Case A Case FGH Case F Case G Case H  30 +/- 5 32 +/- 3 - 29 +/- 5 -  53 +/- 8 46 +/- 9 49 +/- 9 44 +/- 9 44 +/- 9  83 +/- 10 86 +/- 11 85 +/- 10 86 +/- 12 86 +/- 11  85 +/- 10 86 +/- 11 85 +/- 10 87 +/- 10 87 +/- 10  87 +/- 11 76 +/- 12 71 +/- 11 77 +/- 12 79 +/- 13  101 +/- 11 102 +/- 11 102 +/- 11 101 +/- 11 102 +/- 11  79 +/- 10 96 +/- 11 96 +/- 11 95 +/- 11 96 +/- 11  79 +/- 10 82 +/- 10 80 +/- 11 82 +/- 10 82 +/- 10  73 +/- 9 72 +/- 11 72 +/- 9 71 +/- 11 71 +/- 12  37 +/- 9 37 +/- 10 - 46 +/- 7 -  63 +/- 9 70 +/- 10 71 +/- 9 70 +/- 9 70 +/- 10  34 +/- 6 34 +/- 6 - 34 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 | Case A Case FGH Case F Case G Case H  30 +/- 5 32 +/- 3 - 29 +/- 5 -  53 +/- 8 46 +/- 9 49 +/- 9 44 +/- 9 44 +/- 9  83 +/- 10 86 +/- 11 85 +/- 10 86 +/- 12 86 +/- 11  85 +/- 10 86 +/- 11 85 +/- 10 87 +/- 10 87 +/- 10  87 +/- 11 76 +/- 12 71 +/- 11 77 +/- 12 79 +/- 13  101 +/- 11 102 +/- 11 102 +/- 11 101 +/- 11 102 +/- 11  79 +/- 10 96 +/- 11 96 +/- 11 95 +/- 11 96 +/- 11  79 +/- 10 82 +/- 10 80 +/- 11 82 +/- 10 82 +/- 10  73 +/- 9 72 +/- 11 72 +/- 9 71 +/- 11 71 +/- 12  37 +/- 9 37 +/- 10 - 46 +/- 7 -  63 +/- 9 70 +/- 10 71 +/- 9 70 +/- 9 70 +/- 10  34 +/- 6 34 +/- 6 - 34 +/- 6 - 34 +/- 6  31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6 31 +/- 6  852 843 | Case A         Case FGH         Case F         Case G         Case H         pt [GeV/c]           30 +/- 5         32 +/- 3         -         29 +/- 5         -         0.125           53 +/- 8         46 +/- 9         49 +/- 9         44 +/- 9         0.375           83 +/- 10         86 +/- 11         85 +/- 10         86 +/- 11         0.625           85 +/- 10         86 +/- 10         85 +/- 9         87 +/- 10         87 +/- 10         0.875           87 +/- 11         76 +/- 12         71 +/- 11         77 +/- 12         79 +/- 13         1.125           101 +/- 11         102 +/- 11         101 +/- 11         102 +/- 11         1.375           96 +/- 10         96 +/- 11         96 +/- 11         96 +/- 11         1.625           79 +/- 10         82 +/- 10         80 +/- 11         82 +/- 10         82 +/- 10         1.875           73 +/- 9         72 +/- 11         72 +/- 9         71 +/- 11         71 +/- 12         2.125           37 +/- 9         70 +/- 10         71 +/- 9         70 +/- 10         71 +/- 11         71 +/- 12         2.375           34 +/- 6         34 +/- 6         34 +/- 6         34 +/- 6         32 +/- 6         3.25           31 +/- 6 | Case A         Case FGH         Case F         Case G         Case H         pt [GeV/c]         Case A           30 +/- 5         32 +/- 3         -         29 +/- 5         -         0.125         19 +/- 5           53 +/- 8         46 +/- 9         49 +/- 9         44 +/- 9         0.375         58 +/- 9           83 +/- 10         86 +/- 11         85 +/- 10         86 +/- 11         0.625         72 +/- 10           85 +/- 10         86 +/- 11         85 +/- 10         87 +/- 10         0.875         70 +/- 9           87 +/- 11         76 +/- 12         71 +/- 11         77 +/- 12         79 +/- 13         1.125         70 +/- 9           9101 +/- 11         102 +/- 11         101 +/- 11         102 +/- 11         1.25 +/- 10         87 +/- 10         87 +/- 11         1.25 +/- 9         70 +/- 9         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12         94 +/- 12 | Case A         Case FGH         Case F         Case G         Case H         pt [GeV/c]         Case A         Case FGH           30 +/- 5         32 +/- 3         -         29 +/- 5         -         0.125         19 +/- 5         20 +/- 5           53 +/- 8         46 +/- 9         49 +/- 9         44 +/- 9         0.375         58 +/- 9         53 +/- 10           83 +/- 10         86 +/- 11         85 +/- 10         86 +/- 11         0.655         72 +/- 10         65 +/- 11           85 +/- 10         86 +/- 11         85 +/- 10         87 +/- 10         0.875         70 +/- 9         73 +/- 9           87 +/- 11         76 +/- 12         71 +/- 11         77 +/- 12         79 +/- 13         1.125         70 +/- 9         69 +/- 9           96 +/- 11         102 +/- 11         101 +/- 11         102 +/- 11         1.375         87 +/- 11         88 +/- 11           96 +/- 10         96 +/- 11         96 +/- 11         96 +/- 11         96 +/- 11         1.625         94 +/- 12         100 +/- 11           79 +/- 10         82 +/- 10         80 +/- 11         82 +/- 10         1.875         44 +/- 8         44 +/- 8           73 +/- 9         72 +/- 11         72 +/- 10         82 +/- 10         1.875 | Case A         Case FGH         Case F         Case G         Case H         pt [GeV/c]         Case A         Case FGH         Case F           30 +/- 5         32 +/- 3         -         29 +/- 5         -         0.125         19 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 5         20 +/- 10         60 +/- 10         66 +/- 10         80 +/- 10         80 +/- 10         80 +/- 10         80 +/- 10         80 +/- 10         80 +/- 10         80 +/- 11 | Case A         Case FGH         Case F         Case G         Case H         pt [GeV/c]         Case A         Case FGH         Case F         Case G           30 +/- 5         32 +/- 3         -         29 +/- 5         -         0.125         19 +/- 5         20 +/- 5         20 +/- 5         19 +/- 5           53 +/- 8         46 +/- 9         49 +/- 9         44 +/- 9         44 +/- 9         0.375         58 +/- 9         53 +/- 10         52 +/- 9         50 +/- 11           83 +/- 10         86 +/- 11         85 +/- 10         86 +/- 11         0.625         72 +/- 10         66 +/- 11         64 +/- 11         61 +/- 11         61 +/- 12         64 +/- 11         61 +/- 12         64 +/- 11         67 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 9         73 +/- 10         83 +/- 10         83 +/- 11         10 +/- 1 |



1.5

2.5

3.5<sub>GeV/c</sub>4

Е 0

0.5 1

#### 11.4.1 Fixing the J/ $\psi$ Width

However, the widths were not as well defined for Run4HeAu as in Run15pAu, due to low statistics. Tony suggested to fix the  $J/\psi$  width to the average value of pAu for the corresponding centrality range. Sanghoon further suggested that the width of the  $J/\psi$  peak be fixed to the width of the HeAu minimum bias fit, if statistics were good enough. The statistics were quite good (see Figure 46), and so this method was implemented for all HeAu fits. This method carries a systematic uncertainty with it, which we will discuss in the Type B systematic uncertainty section.

#### 11.4.2 Fixing the Center of the J/ $\psi$ Peak

Sanghoon additionally suggested to fix the center of the J/ $\psi$  peak after seeing the results from fixing the width. This also carries with it a systematic uncertainty that we will discuss in the Type B systematic uncertainty section.

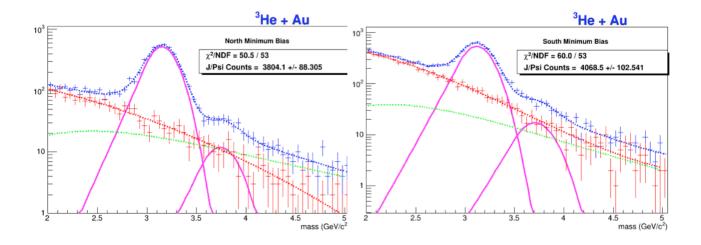



Figure 46: Run14HeAu Minimum Bias fits for the North, left, and South arm.

## 12 Bias Correction Factor

The bias correction factor is used in the nuclear modification factor for both centrality integrated and centrality dependent measurements. These factors were determined by James Nagle in the following three Analysis Notes: AN 1207 (Run14HeAu), AN 1265 (Run15pAu) and AN 1290 (Run15pAl). For additional information on how it is applied to the raw counts, see slides 23-28 in the following link: bias correction factor c(x)

## 13 Centralities

Initially we planned to analyze the Run15pAu data organized into 0-20, 20-40, 40-60 and 60-84% centrality bins, and all analysis prior to July 2019 showed these centrality ranges. However, in June 2019, Sanghoon completed a separate analysis on charged hadrons in p+Au and p+Al data, and the paper was released to the collaboration. Tony was interested in particular in Figure 10, which includes finer centrality binning for 0-20%.

Charged hadron paper: PPG201

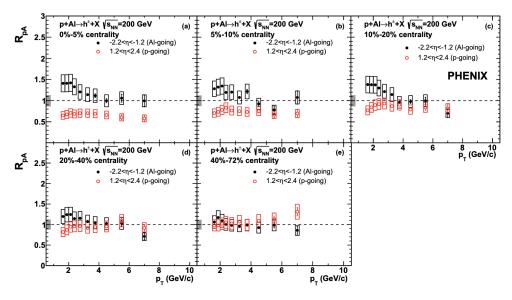
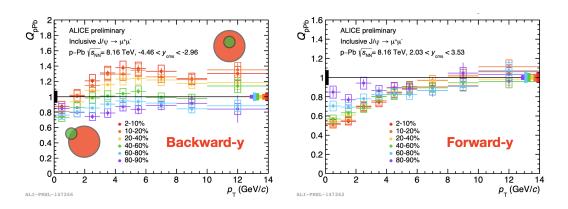




FIG. 10.  $R_{pA}$  of charged hadrons as a function of  $p_T$  at backward rapidity,  $-2.2 < \eta < -1.2$ , Al-going (filled [black] circles) and forward rapidity,  $1.4 < \eta < 2.4$ , p-going (open [red] circles) in various centrality classes of p+Al collisions at  $\sqrt{s_{NN}} = 200$  GeV.

Additionally, ALICE released new results at the Initial Stages 2019 conference on  $J/\psi \to \mu^+\mu^-$ , which also included finer centrality binning for 0-20%. **Therefore, it was decided in the FVTX meeting July 17, 2019 to include 0-5, 5-10 and 10-20 for Run15pAu, but keep 0-20 p+Au to compare with p+Al and He+Au.** Initial Stages 2019 presentation: ALICE Results



# 14 NEW: 0-5-10-20% pAu Analysis

As discussed in the last section, the decision to add finer centrality binning came at the end of the analysis. For this reason, we have added the finer centrality binning results in a separate section.

#### 14.1 Checks

We performed the same checks that were done for Run15pAu 0-20-40-60-84 centrality. The sum over  $p_T$  and the sum over rapidity are independent of centrality. Therefore, the only relevant check is the sum over centrality.

|        | Run15pAu 0-5 | Run15pAu 5-10 | Run15pAu 10-20 |        | Run15pAu 0-5 | Run15pAu 5-10 | Run15pAu 10-2 |
|--------|--------------|---------------|----------------|--------|--------------|---------------|---------------|
|        | NORTH        | NORTH         | NORTH          |        | SOUTH        | SOUTH         | SOUTH         |
| bin    | Counts       | Counts        | Counts         | bin    | Counts       | Counts        | Counts        |
| 1      | 30 +/- 6     | 31 +/- 6      | 70 +/- 9       | 1      | 31 +/- 7     | 23 +/-5       | 36 +/-7       |
| 2      | 86 +/- 13    | 93 +/- 10     | 150 +/- 14     | 2      | 82 +/-14     | 78 +/-11      | 139 +/-18     |
| 3      | 134 +/- 14   | 112 +/- 13    | 224 +/- 18     | 3      | 118 +/-16    | 108 +/-13     | 177 +/-17     |
| 4      | 136 +/- 14   | 147 +/- 15    | 301 +/- 21     | 4      | 136 +/- 20   | 129 +/-20     | 241 +/-19     |
| 5      | 156 +/- 15   | 163 +/- 17    | 325 +/- 21     | 5      | 179 +/-19    | 171 +/-15     | 251 +/-18     |
| 6      | 185 +/- 16   | 149 +/- 15    | 263 +/- 21     | 6      | 153 +/-16    | 157 +/-14     | 201 +/-18     |
| 7      | 157 +/- 14   | 138 +/- 13    | 261 +/- 20     | 7      | 162 +/-16    | 131 +/-13     | 215 +/-17     |
| 8      | 149 +/- 14   | 117 +/- 13    | 230 +/- 19     | 8      | 147 +/-14    | 127 +/-13     | 172 +/-15     |
| 9      | 104 +/- 11   | 127 +/- 12    | 204 +/- 16     | 9      | 119 +/-14    | 87 +/-13      | 155 +/-14     |
| 10     | 82 +/- 12    | 83 +/- 10     | 169 +/- 16     | 10     | 102 +/-11    | 74 +/-11      | 117 +/-15     |
| 11     | 80 +/- 10    | 68 +/- 9      | 157 +/- 15     | 11     | 85 +/-11     | 66 +/-9       | 90 +/-10      |
| 12     | 67 +/- 9     | 59 +/- 10     | 143 +/- 13     | 12     | 52 +/-9      | 41 +/-7       | 88 +/-11      |
| 13     | 60 +/- 9     | 53 +/- 9      | 102 +/- 11     | 13     | 56 +/-8      | 42 +/-8       | 55 +/-8       |
| 14     | 52 +/- 8     | 67 +/- 9      | 87 +/- 10      | 14     | 46 +/-8      | 16 +/-4       | 55 +/-8       |
| 15     | 41 +/- 7     | 31 +/- 6      | 60 +/- 8       | 15     | 32 +/-8      | 25 +/-6       | 53 +/-8       |
| 16     | 28 +/- 6     | 25 +/- 6      | 60 +/- 8       | 16     | 22 +/-5      | 22 +/-6       | 31 +/-7       |
| 17     | 40 +/- 7     | 41 +/- 7      | 61 +/- 8       | 17     | 43 +/-7      | 20 +/-6       | 42 +/-7       |
| 18     | 24 +/- 5     | 28 +/- 6      | 55 +/- 8       | 18     | 19 +/-5      | 19 +/-5       | 24 +/-6       |
| 19     | 36 +/- 6     | 32 +/- 6      | 72 +/- 9       | 19     | 15 +/-5      | 15 +/-5       | 30 +/-6       |
| SUM    | 1647         | 1563          | 2994           | SUM    | 1600         | 1351          | 2175          |
| pT int | 1629 +/- 53  | 1552 +/- 52   | 2970 +/- 71    | pT int | 1538 +/- 49  | 1328 +/- 44   | 2124 +/- 65   |
| % diff | 1.10%        | 0.71%         | 0.80%          | % diff | 3.95%        | 1.72%         | 2.37%         |

## 14.2 Summary of Analysis Method

Because 0-5-10-20 is much finer binning than 0-20, we decided to fix the J/ $\psi$  lineshape to prevent against statistical fluctuations from low statistics. For the systematic uncertainty related to doing this, we used the results from the HeAu study, since this study used Run15pAu 0-20 centrality anyway (for better statistics). See section 6.5.1 for more information.

We also did not calculate a new correlated background uncertainty for 0-5-10-20, and instead used the uncertainty results already determined using the Run15pAu 0-20 centrality (see section 6.5).

Also, for this finer centrality, we were able to fit all the way up to 7 GeV/c. Therefore all Run15pAu results for centrality integrated and centrality dependence are over the range 0-7 GeV/c, and all Run15pAu centrality dependence has the same binning.

# 15 Binshift Corrections

Binshift corrections were applied as outlined in AN 1391. For  $R_{AB}$  measurements, binshift corrections were applied to both the pp invariant yield as well as the AA invariant yield. The corrections are listed by system in the following order: Run15pp, Run15pAu, Run15pAl and Run14HeAu.

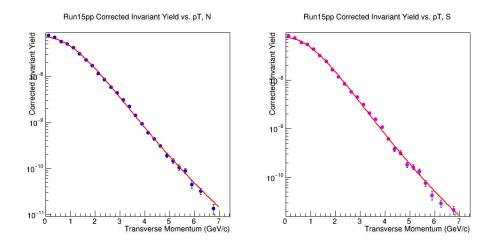



Figure 47: Run15pp North and South invariant yield binshift correction fits.

|           | NORTH Run15pp        | SOUTH Run15pp        |  |  |
|-----------|----------------------|----------------------|--|--|
| pt[GeV/c] | binshift corrections | binshift corrections |  |  |
| 0.125     | 0.997643             | 0.997524             |  |  |
| 0.375     | 0.997994             | 0.997915             |  |  |
| 0.625     | 0.99865              | 0.998643             |  |  |
| 0.875     | 0.999534             | 0.999613             |  |  |
| 1.125     | 1.00055              | 1.00071              |  |  |
| 1.375     | 1.0016               | 1.00183              |  |  |
| 1.625     | 1.00261              | 1.00287              |  |  |
| 1.875     | 1.00352              | 1.00379              |  |  |
| 2.125     | 1.00429              | 1.00455              |  |  |
| 2.375     | 1.00491              | 1.00514              |  |  |
| 2.625     | 1.00537              | 1.00556              |  |  |
| 2.875     | 1.0057               | 1.00584              |  |  |
| 3.125     | 1.00591              | 1.00599              |  |  |
| 3.375     | 1.00601              | 1.00604              |  |  |
| 3.625     | 1.00603              | 1.00601              |  |  |
| 3.875     | 1.00599              | 1.00592              |  |  |
| 4.125     | 1.00589              | 1.00579              |  |  |
| 4.375     | 1.00576              | 1.00563              |  |  |
| 4.625     | 1.00559              | 1.00544              |  |  |
| 4.875     | 1.00542              | 1.00524              |  |  |
| 5.125     | 1.00522              | 1.00503              |  |  |
| 5.375     | 1.00503              | 1.00482              |  |  |
| 5.625     | 1.00483              | 1.00462              |  |  |
| 5.875     | 1.00463              | 1.00441              |  |  |
| 6.25      | 1.01746              | 1.01656              |  |  |
| 6.75      | 1.01598              | 1.01508              |  |  |

Figure 48: Run15pp North and South invariant yield binshift corrections.

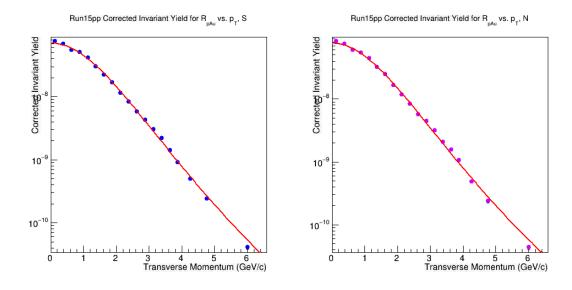



Figure 49: Run15pp North and South invariant yield binshift correction fits for pAu Centrality. All pAu centrality fits share the same  $p_T$  binning, therefore only one set of pp yields (and corrections) are necessary.

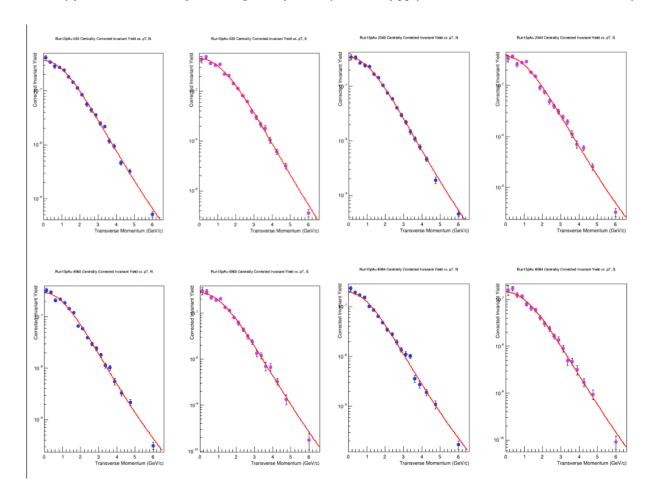



Figure 50: Run15pAu North and South invariant yield binshift correction fits. Larger centralities shown.

|            |                         | -                        |                          |                          |                          |
|------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|            | Run15pAu NORTH          | 0-20 Centrality          | 20-40 Centrality         | 40-60 Centrality         | 60-84 Centrality         |
| pt [GeV/c] | pp binshift corrections | pAu binshift corrections | pAu binshift corrections | pAu binshift corrections | pAu binshift corrections |
| 0.125      | 0.99759                 | 0.99806                  | 0.998382                 | 0.997817                 | 0.99770                  |
| 0.375      | 0.99796                 | 0.99830                  | 0.998536                 | 0.998128                 | 0.99805                  |
| 0.625      | 0.99865                 | 0.99876                  | 0.998833                 | 0.998707                 | 0.99868                  |
| 0.875      | 0.99958                 | 0.99938                  | 0.999257                 | 0.999482                 | 0.99953                  |
| 1.125      | 1.00063                 | 1.00010                  | 0.999782                 | 1.00036                  | 1.00050                  |
| 1.375      | 1.00170                 | 1.00086                  | 1.00038                  | 1.00127                  | 1.00147                  |
| 1.625      | 1.00271                 | 1.00161                  | 1.00102                  | 1.00212                  | 1.00239                  |
| 1.875      | 1.00360                 | 1.00231                  | 1.00168                  | 1.00288                  | 1.00319                  |
| 2.125      | 1.00434                 | 1.00292                  | 1.00233                  | 1.00351                  | 1.00386                  |
| 2.375      | 1.00492                 | 1.00343                  | 1.00295                  | 1.004                    | 1.00437                  |
| 2.625      | 1.00534                 | 1.00384                  | 1.00352                  | 1.00437                  | 1.00474                  |
| 2.875      | 1.00562                 | 1.00414                  | 1.00403                  | 1.00461                  | 1.00498                  |
| 3.125      | 1.00578                 | 1.00436                  | 1.00448                  | 1.00476                  | 1.00512                  |
| 3.375      | 1.00585                 | 1.00449                  | 1.00486                  | 1.00482                  | 1.00517                  |
| 3.625      | 1.00583                 | 1.00456                  | 1.00518                  | 1.00482                  | 1.00515                  |
| 3.875      | 1.00575                 | 1.00457                  | 1.00543                  | 1.00476                  | 1.00507                  |
| 4.25       | 1.02236                 | 1.01812                  | 1.02288                  | 1.01853                  | 1.01966                  |
| 4.75       | 1.02096                 | 1.01739                  | 1.02362                  | 1.0174                   | 1.01838                  |
| 6          | 1.30000                 | 1.25564                  | 1.41067                  | 1.24618                  | 1.25917                  |

Figure 51: North binshift correction values for Run15pAu and Run15pp invariant yields. All centralities shown.

|            | Run15pAu SOUTH          | 0-20 Centrality          | 20-40 Centrality         | 40-60 Centrality         | 60-84 Centrality         |
|------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| pt [GeV/c] | pp binshift corrections | pAu binshift corrections | pAu binshift corrections | pAu binshift corrections | pAu binshift corrections |
| 0.125      | 0.99746                 | 0.99823                  | 0.997936                 | 0.998043                 | 0.99805                  |
| 0.375      | 0.99788                 | 0.99842                  | 0.998208                 | 0.998278                 | 0.99829                  |
| 0.625      | 0.99865                 | 0.99878                  | 0.998719                 | 0.998726                 | 0.99873                  |
| 0.875      | 0.99966                 | 0.99929                  | 0.999413                 | 0.999346                 | 0.99935                  |
| 1.125      | 1.00080                 | 0.99992                  | 1.00022                  | 1.00009                  | 1.00008                  |
| 1.375      | 1.00193                 | 1.00060                  | 1.00107                  | 1.00089                  | 1.00088                  |
| 1.625      | 1.00298                 | 1.00132                  | 1.0019                   | 1.00171                  | 1.00169                  |
| 1.875      | 1.00387                 | 1.00203                  | 1.00265                  | 1.0025                   | 1.00246                  |
| 2.125      | 1.00459                 | 1.00271                  | 1.00331                  | 1.00322                  | 1.00317                  |
| 2.375      | 1.00513                 | 1.00332                  | 1.00386                  | 1.00385                  | 1.00379                  |
| 2.625      | 1.00550                 | 1.00386                  | 1.00428                  | 1.00438                  | 1.00431                  |
| 2.875      | 1.00573                 | 1.00432                  | 1.0046                   | 1.00482                  | 1.00473                  |
| 3.125      | 1.00584                 | 1.00469                  | 1.00481                  | 1.00515                  | 1.00505                  |
| 3.375      | 1.00585                 | 1.00499                  | 1.00494                  | 1.00539                  | 1.00528                  |
| 3.625      | 1.00578                 | 1.00521                  | 1.005                    | 1.00555                  | 1.00543                  |
| 3.875      | 1.00567                 | 1.00537                  | 1.00499                  | 1.00564                  | 1.00551                  |
| 4.25       | 1.02182                 | 1.02205                  | 1.0197                   | 1.02276                  | 1.02224                  |
| 4.75       | 1.02023                 | 1.02207                  | 1.01881                  | 1.02231                  | 1.02177                  |
| 6          | 1.28320                 | 1.35857                  | 1.27562                  | 1.34856                  | 1.33856                  |
|            |                         |                          |                          |                          |                          |

Figure 52: South binshift correction values for Run15pAu and Run15pp invariant yields. All centralities shown.

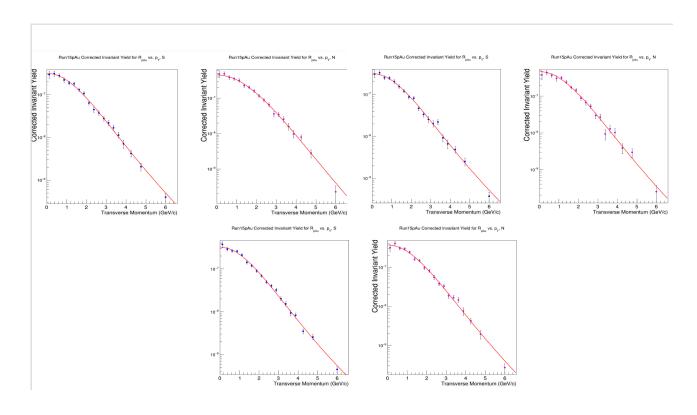



Figure 53: Run15pAu North and South invariant yield binshift correction fits. Finer centralities shown.

|            | Run15pAu NORTH          | 0-5 Centrality           | 5-10 Centrality          | 10-20 Centrality         |
|------------|-------------------------|--------------------------|--------------------------|--------------------------|
| pt [GeV/c] | pp binshift corrections | pAu binshift corrections | pAu binshift corrections | pAu binshift corrections |
| 0.125      | 0.99761                 | 0.998039                 | 0.997994                 | 0.997949                 |
| 0.375      | 0.99798                 | 0.998284                 | 0.998253                 | 0.998222                 |
| 0.625      | 0.99865                 | 0.998747                 | 0.99874                  | 0.998734                 |
| 0.875      | 0.99956                 | 0.999379                 | 0.999401                 | 0.999425                 |
| 1.125      | 1.0006                  | 1.00012                  | 1.00017                  | 1.00022                  |
| 1.375      | 1.00165                 | 1.0009                   | 1.00097                  | 1.00104                  |
| 1.625      | 1.00266                 | 1.00167                  | 1.00176                  | 1.00184                  |
| 1.875      | 1.00355                 | 1.00239                  | 1.00247                  | 1.00255                  |
| 2.125      | 1.00429                 | 1.00302                  | 1.00309                  | 1.00317                  |
| 2.375      | 1.00487                 | 1.00355                  | 1.00361                  | 1.00366                  |
| 2.625      | 1.0053                  | 1.00397                  | 1.00401                  | 1.00404                  |
| 2.875      | 1.00559                 | 1.00429                  | 1.0043                   | 1.0043                   |
| 3.125      | 1.00576                 | 1.00451                  | 1.0045                   | 1.00448                  |
| 3.375      | 1.00584                 | 1.00466                  | 1.00462                  | 1.00457                  |
| 3.625      | 1.00583                 | 1.00473                  | 1.00467                  | 1.0046                   |
| 3.875      | 1.00576                 | 1.00475                  | 1.00467                  | 1.00457                  |
| 4.25       | 1.02242                 | 1.01883                  | 1.0184                   | 1.01791                  |
| 4.75       | 1.02105                 | 1.01809                  | 1.01755                  | 1.01697                  |
| 6          | 1.30251                 | 1.26733                  | 1.25556                  | 1.24348                  |

|            | Run15pAu SOUTH          | 0-5 Centrality           | 5-10 Centrality          | 10-20 Centrality         |
|------------|-------------------------|--------------------------|--------------------------|--------------------------|
| pt [GeV/c] | pp binshift corrections | pAu binshift corrections | pAu binshift corrections | pAu binshift corrections |
| 0.125      | 0.9975                  | 0.998338                 | 0.997934                 | 0.997969                 |
| 0.375      | 0.99791                 | 0.998499                 | 0.998196                 | 0.998227                 |
| 0.625      | 0.99865                 | 0.998811                 | 0.998694                 | 0.998715                 |
| 0.875      | 0.99964                 | 0.999255                 | 0.99938                  | 0.999384                 |
| 1.125      | 1.00074                 | 0.999807                 | 1.0002                   | 1.00017                  |
| 1.375      | 1.00186                 | 1.00044                  | 1.00108                  | 1.00101                  |
| 1.625      | 1.00289                 | 1.00111                  | 1.00196                  | 1.00185                  |
| 1.875      | 1.00379                 | 1.00181                  | 1.00281                  | 1.00264                  |
| 2.125      | 1.00451                 | 1.0025                   | 1.00357                  | 1.00334                  |
| 2.375      | 1.00507                 | 1.00315                  | 1.00424                  | 1.00393                  |
| 2.625      | 1.00546                 | 1.00376                  | 1.00479                  | 1.00442                  |
| 2.875      | 1.0057                  | 1.00431                  | 1.00522                  | 1.00479                  |
| 3.125      | 1.00583                 | 1.00479                  | 1.00555                  | 1.00506                  |
| 3.375      | 1.00585                 | 1.0052                   | 1.00578                  | 1.00524                  |
| 3.625      | 1.0058                  | 1.00555                  | 1.00593                  | 1.00534                  |
| 3.875      | 1.0057                  | 1.00582                  | 1.006                    | 1.00538                  |
| 4.25       | 1.02201                 | 1.02458                  | 1.0241                   | 1.02145                  |
| 4.75       | 1.02048                 | 1.02542                  | 1.02348                  | 1.02072                  |
| 6          | 1.28869                 | 1.44721                  | 1.36436                  | 1.31291                  |
|            |                         |                          |                          |                          |

Figure 54: South binshift correction values for Run15pAu and Run15pp invariant yields. Finer centralities shown.

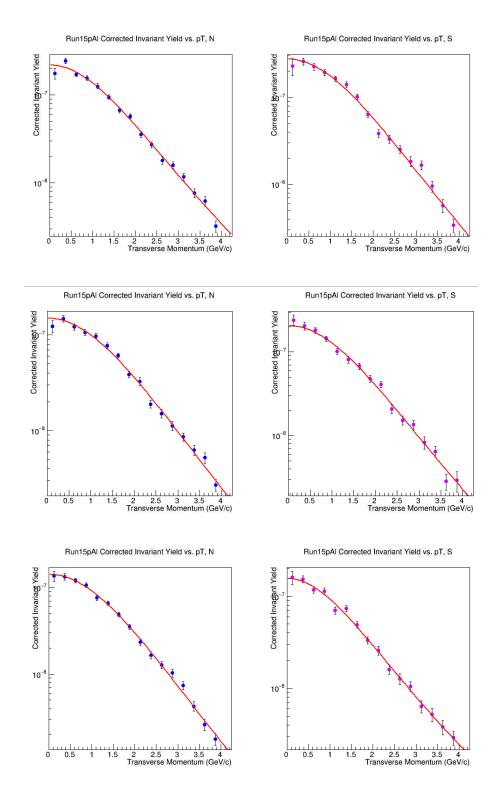



Figure 55: Run15pAl North and South invariant yield binshift correction fits. All centralities shown. The pp invariant yields used in the nuclear modification factor  $R_{pAl}$  share the same  $p_T$  binning as Run15pAu, and are shown in Figure 51.

|                | Run15pAl NORTH                            | 0-20 Centrality                             | 20-40 Centrality                             | 40-72 Centrality                             |
|----------------|-------------------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|
| pt [GeV/c]     | pp binshift corrections                   | pAl binshift corrections                    | pAl binshift corrections                     | pAl binshift corrections                     |
| 0.125          | 0.99761                                   | 0.99745                                     | 0.997842                                     | 0.997648                                     |
| 0.375          | 0.99798                                   | 0.99790                                     | 0.998144                                     | 0.998001                                     |
| 0.625          | 0.99865                                   | 0.99871                                     | 0.998709                                     | 0.99866                                      |
| 0.875          | 0.99956                                   | 0.99974                                     | 0.999467                                     | 0.999542                                     |
| 1.125          | 1.00060                                   | 1.00084                                     | 1.00033                                      | 1.00055                                      |
| 1.375          | 1.00165                                   | 1.00188                                     | 1.00123                                      | 1.00158                                      |
| 1.625          | 1.00266                                   | 1.00277                                     | 1.00207                                      | 1.00257                                      |
| 1.875          | 1.00355                                   | 1.00348                                     | 1.00283                                      | 1.00344                                      |
| 2.125          | 1.00429                                   | 1.00399                                     | 1.00347                                      | 1.00417                                      |
| 2.375          | 1.00487                                   | 1.00433                                     | 1.00397                                      | 1.00475                                      |
| 2.625          | 1.00530                                   | 1.00452                                     | 1.00435                                      | 1.00518                                      |
| 2.875          | 1.00559                                   | 1.00460                                     | 1.00461                                      | 1.00547                                      |
| 3.125          | 1.00576                                   | 1.00458                                     | 1.00477                                      | 1.00564                                      |
| 3.375          | 1.00584                                   | 1.00450                                     | 1.00485                                      | 1.00572                                      |
| 3.625          | 1.00583                                   | 1.00437                                     | 1.00485                                      | 1.00572                                      |
| 3.875          | 1.00576                                   | 1.00421                                     | 1.00481                                      | 1.00566                                      |
| pt [GeV/c]     | Run15pAl SOUTH<br>pp binshift corrections | 0-20 Centrality<br>pAl binshift corrections | 20-40 Centrality<br>pAl binshift corrections | 40-72 Centrality<br>pAI binshift corrections |
|                |                                           |                                             |                                              |                                              |
| 0.125          | 0.99750                                   | 0.99760                                     | 0.997454                                     | 0.997155                                     |
| 0.375          | 0.99791                                   | 0.99797                                     | 0.997878                                     | 0.997737                                     |
| 0.625          | 0.99865                                   | 0.99867                                     | 0.998658                                     | 0.998761                                     |
| 0.875          | 0.99964                                   | 0.99959                                     | 0.999682                                     | 1.00001                                      |
| 1.125          | 1.00074                                   | 1.00063                                     | 1.00082                                      | 1.00126                                      |
| 1.375          | 1.00186                                   | 1.00167                                     | 1.00194                                      | 1.00236                                      |
| 1.625          | 1.00289                                   | 1.00264                                     | 1.00296                                      | 1.00322                                      |
| 1.875          | 1.00379                                   | 1.00347                                     | 1.00383                                      | 1.00383                                      |
| 2.125          | 1.00451                                   | 1.00414                                     | 1.00451                                      | 1.00422                                      |
| 2.375          | 1.00507                                   | 1.00465                                     | 1.00501                                      | 1.00442                                      |
| 2.625          | 1.00546                                   | 1.00501                                     | 1.00534                                      | 1.00447                                      |
| 2.875          | 1.00570                                   | 1.00523                                     | 1.00554                                      | 1.00442                                      |
| 3.125          | 1.00583                                   | 1.00535                                     | 1.00562                                      | 1.0043                                       |
| 3.375          | 1.00585                                   | 1.00537                                     | 1.00561                                      | 1.00414                                      |
|                | 1.00580                                   | 1.00532                                     | 1.00553                                      | 1.00395                                      |
| 3.625<br>3.875 | 1.00570                                   | 1.00523                                     | 1.0054                                       | 1.00375                                      |

Figure 56: North and South Arm binshift correction values for Run15pAl and Run15pp invariant yields. All centralities shown.

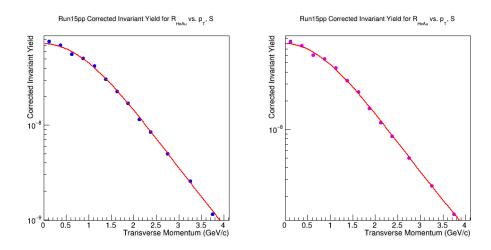



Figure 57: Run15pp North and South invariant yield binshift correction fits for HeAu Centrality. All HeAu centrality fits share the same  $p_T$  binning, therefore only one set of pp yields (and corrections) are necessary.

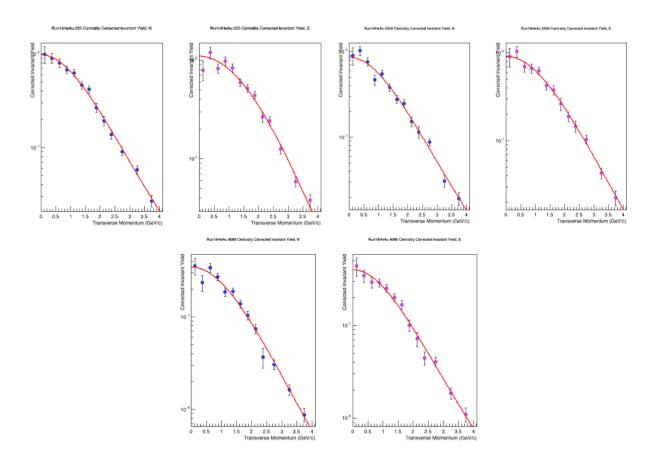



Figure 58: Run14HeAu North and South invariant yield binshift correction fits. All centralities shown.

|            | Run14HeAu NORTH         | 0-20 Centrality           | 20-40 Centrality          | 40-88 Centrality          |
|------------|-------------------------|---------------------------|---------------------------|---------------------------|
| pt [GeV/c] | pp binshift corrections | HeAu binshift corrections | HeAu binshift corrections | HeAu binshift corrections |
| 0.125      | 0.99747                 | 0.99779                   | 0.997659                  | 0.997596                  |
| 0.375      | 0.99789                 | 0.99813                   | 0.998026                  | 0.997961                  |
| 0.625      | 0.99867                 | 0.99874                   | 0.998702                  | 0.998645                  |
| 0.875      | 0.99969                 | 0.99954                   | 0.999587                  | 0.999562                  |
| 1.125      | 1.00080                 | 1.00043                   | 1.00056                   | 1.00061                   |
| 1.375      | 1.00190                 | 1.00129                   | 1.00153                   | 1.00169                   |
| 1.625      | 1.00289                 | 1.00207                   | 1.00241                   | 1.00272                   |
| 1.875      | 1.00371                 | 1.00272                   | 1.00314                   | 1.00364                   |
| 2.125      | 1.00436                 | 1.00323                   | 1.00372                   | 1.00441                   |
| 2.375      | 1.00482                 | 1.00360                   | 1.00415                   | 1.00503                   |
| 2.75       | 1.02095                 | 1.01571                   | 1.01813                   | 1.02271                   |
| 3.25       | 1.02146                 | 1.01615                   | 1.0187                    | 1.02431                   |
| 3.75       | 1.02077                 | 1.01566                   | 1.01818                   | 1.02439                   |
|            |                         |                           |                           |                           |
|            | Run14HeAu SOUTH         | 0-20 Centrality           | 20-40 Centrality          | 4088 Centrality           |
| pt [GeV/c] | pp binshift corrections | HeAu binshift corrections | HeAu binshift corrections | HeAu binshift correction  |
| 0.125      | 0.99726                 | 0.99841                   | 0.998017                  | 0.997313                  |
| 0.375      | 0.99777                 | 0.99855                   | 0.998266                  | 0.997838                  |
| 0.625      | 0.99869                 | 0.99883                   | 0.998736                  | 0.998764                  |
| 0.875      | 0.99986                 | 0.99924                   | 0.999379                  | 0.999896                  |
| 1.125      | 1.00110                 | 0.99974                   | 1.00013                   | 1.00104                   |
| 1.375      | 1.00227                 | 1.00033                   | 1.00094                   | 1.00205                   |
| 1.625      | 1.00326                 | 1.00098                   | 1.00173                   | 1.00286                   |
| 1.875      | 1.00404                 | 1.00166                   | 1.00247                   | 1.00344                   |
| 2.125      | 1.00459                 | 1.00235                   | 1.00312                   | 1.00381                   |
| 2.375      | 1.00495                 | 1.00303                   | 1.00367                   | 1.00401                   |
| 2.75       | 1.02083                 | 1.01594                   | 1.01721                   | 1.01631                   |
| 3.25       | 1.02058                 | 1.02042                   | 1.01919                   | 1.01556                   |
| 3.75       | 1.01936                 | 1.02393                   | 1.0199                    | 1.01423                   |

Figure 59: North, top, and South binshift correction values for Run14HeAu and Run15pp invariant yields. All centralities shown.

# 16 Uncertainties: Type A, B and C

### **16.1** Type A: Statistical Uncertainty

The Type A statistical uncertainty present in this analysis arises from only one source: the uncertainty in the  $J/\psi$  yield.

### **16.2** Type B: Systematic Uncertainty

All Type B systematic uncertainties taken into consideration in this analysis, aside from the correlated background shape and fixing the J/ $\psi$  lineshape (see section 12.2.1), were determined by Matt Durham and Sanghoon Lim in AN 1354. These include background normalization, trigger efficiency, J/ $\psi$  polarization, run to run variation, phi matching and initial shape. The same procedure and uncertainties were used for the centrality dependent nuclear modification factor as for the centrality integrated nuclear modification factor. In particular, the systematic uncertainty on J/ $\psi$  polarization cancels out when calculating  $R_{AB}$  by assuming the same polarization between pp and pAl, pp and pAu, and pp and  $^3$ HeAu.

### 16.2.1 Run14HeAu: Fixing the J/ $\psi$ Width and Center of the Peak

As previously mentioned, the statistics were low for Run14HeAu J/ $\psi$  analysis as a function of  $p_T$  and centrality. To remedy this, we fixed the center of the J/ $\psi$  peak as well as the width of the J/ $\psi$  peak to the HeAu minimum bias results. The HeAu minimum bias was fit using the  $p_T$  integrated pAu correlated background result as initial parameters, using the Case 'A' fit.

The systematic uncertainty for fixing the J/ $\psi$  peak and width was determined using the Run15pAu data set, since the statistics were too low in Run14HeAu to accurately determine this effect. Since both the width and the center of the peak were fixed to the same value for all centrality bins, the systematic uncertainty is independent of centrality. We selected the centrality bin with the highest statistics, Run15pAu 0-20. Following the suggestions by Tony and Sanghoon described in 10.4.1 and 10.4.2, the pAu MB data was fit and the bestfit results for the width and the center of the J/ $\psi$  peak were extracted.

We then refit the pAu 0-20 spectra with the width and the center of the peak fixed to the minimum bias values shown in the above figures. Taking the minimum bias results as the central value, we calculated the systematic uncertainty following the same formula used in Sanghoon's method for the correlated background systematic study. The results are shown on the next page.

# **16.3** Type C: Global Uncertainty

The global uncertainties in the centrality dependent  $R_{AB}$  are due to the BBC uncertainty, the  $N_{coll}$  estimation and also from the bias correction factors. These are the same sources of global uncertainty that were present in the centrality integrated  $R_{AB}$ . Please refer to the table on the next page for a complete list of centrality dependent global errors. A weighted average was taken to determine the uncertainties for the 40-88 range in Run14HeAu as well as the 0-20 range in Run15pAl (see section 17.1: Rebinning Centralities for more details).

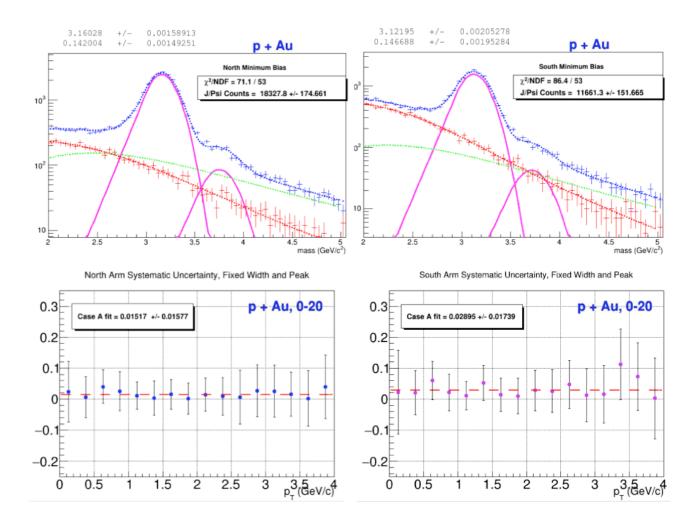



Figure 60: Top: Run15pAu MB fit for the North and South Arms. The bestfit values for the  $J/\psi$  width and the center of the peak are shown. Bottom: Run14HeAu systematic uncertainty results for fixing the width and the center of the  $J/\psi$  peak. Run15pAu data was used for more reliable statistics.

Table 3: Run15pP, Run15pAu, Run15pAl and Run14HeAu Type B systematic uncertainties included in the nuclear modification factor  $R_{AB}$ . Results for all centralities and transverse momenta shown as a range.

| System              | Corr. BG   | Run Var. | Initial Shape | Trigger eff. | BG Norm | Lineshape |
|---------------------|------------|----------|---------------|--------------|---------|-----------|
| Run15pp N           | 1.4%       | 4.0%     | 2.0%          | 1.0 - 1.7%   | neg     | -         |
| Run15pp S           | 1.7%       | 4.7%     | 2.0%          | 1.0 - 2.6%   | neg     | -         |
| Run15pAu N          | 1.9 - 2.7% | 1.6%     | 2.0%          | 1.0 - 1.7%   | 1.0%    | -         |
| Run15pAu S          | 1.4 - 2.8% | 3.5%     | 2.0%          | 1.0 - 4.8%   | 4.4%    | -         |
| Run15pAl N          | 1.40%      | 2.8%     | 2.0%          | 1.0 - 1.8%   | 1.0%    | 1.1%      |
| Run15pAl S          | 1.79%      | 3.3%     | 2.0%          | 2.0 - 4.6%   | 1.0%    | 1.1%      |
| Run14HeAu N         | 2.3 - 2.4% | 1.5%     | 2.0%          | 1.0 - 2.4%   | 1.0%    | 1.5%      |
| Run14HeAu S         | 1.4 - 2.8% | 5.0%     | 2.0%          | 1.0 - 2.4%   | 2.7%    | 2.9%      |
| p+Au N (0-5-10-20%) | 1.9 - 2.7% | 1.6%     | 2.0%          | 1.0 - 1.7%   | 1.0%    | 1.5%      |
| p+Au S (0-5-10-20%) | 1.4 - 2.8% | 3.5%     | 2.0%          | 1.0 - 4.8%   | 4.4%    | 2.9%      |

Table 4: Type C fractional systematic uncertainties for all centralities.

| Centrality | System    | $N_{coll}$ | bias correction | Reference | BBC (Ref: AN1354) | Total  |
|------------|-----------|------------|-----------------|-----------|-------------------|--------|
| 0-100      | Run15pp   | -          | -               | -         | 10%               | 10%    |
| 0-5        | Run15pAu  | 6.19%      | 1.16%           | AN1265    | 10%               | 11.82% |
| 5-10       |           | 5.95%      | 1.11%           | AN1265    | 10%               | 11.69% |
| 10-20      |           | 6.76%      | 1.06%           | AN1265    | 10%               | 12.12% |
| 0-20       |           | 6.10%      | 1.11%           | AN1265    | 10%               | 11.77% |
| 20-40      |           | 6.56%      | 1.02%           | AN1265    | 10%               | 12.00% |
| 40-60      |           | 6.82%      | 0.98%           | AN1265    | 10%               | 12.14% |
| 60-84      |           | 7.69%      | 6.00%           | AN1265    | 10%               | 13.97% |
| 0-84       |           | 6.38%      | 1.63%           | AN1265    | 10%               | 11.97% |
| 0-20       | Run15pAl  | 7.42%      | 1.24%           | AN1290    | 10%               | 12.51% |
| 20-40      |           | 4.35%      | 2.22%           | AN1290    | 10%               | 11.13% |
| 40-72      |           | 5.88%      | 3.96%           | AN1290    | 10%               | 12.26% |
| 0-72       |           | 4.76%      | 2.50%           | AN1290    | 10%               | 11.35% |
| 0-20       | Run14HeAu | 7.62%      | 1.05%           | AN1207    | 10%               | 12.62% |
| 20-40      |           | 7.43%      | 0.99%           | AN1207    | 10%               | 12.50% |
| 40-88      |           | 8.12%      | 3.24 %          | AN1207    | 10%               | 13.28% |
| 0-88       |           | 6.73%      | 1.12%           | AN1207    | 10%               | 12.11% |

# 17 Trigger and Acceptance Reconstruction Efficiencies

Trigger efficiencies and acceptance reconstruction efficiencies in all systems were generated by Sanghoon Lim. This includes centrality/rapidity integrated Run15pAu, Run15pAl and Run14HeAu, and rapidity integrated Run15pp for the preliminary results presented in AN 1391. It also includes all centralities for Run15pAu, Run15pAl and Run14HeAu presented in this note.

In total, 36 efficiency files were needed for the analysis of  $J/\psi$  as a function of  $p_T$ . Sanghoon fit all efficiency histograms aside from Run15pp, as the  $p_T$  binning used was exactly the same. The figures below show Run15pAu acceptance and trigger efficiencies and their corresponding fits for the 0-20 centrality range in the North and South Arms. For a complete description of the methods Sanghoon used, see AN 1354 section 3.

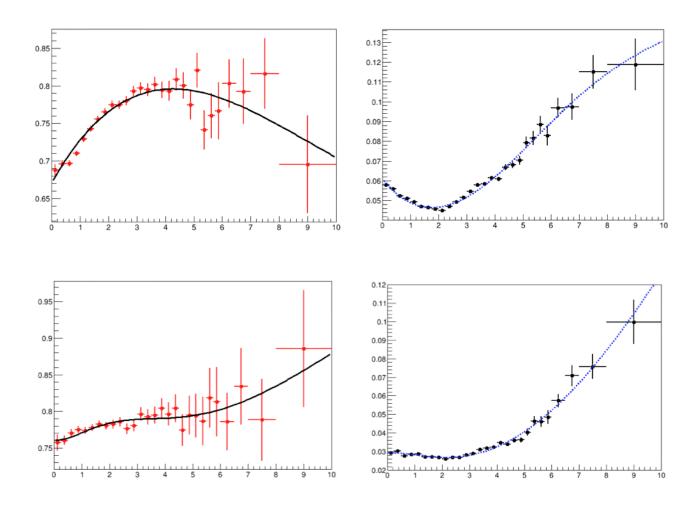



Figure 61: North Run15pAu efficiencies, top, and South for the 0-20 centrality range, with trigger efficiencies shown on the left and acceptance reconstruction efficiencies on the right. Generated by Sanghoon Lim.

# 18 Run15pp Results

The Run15pp results for J/ $\psi$  vs.  $p_T$  include the invariant cross section vs.  $p_T$ , the North to South invariant cross section ratio and comparison with PPG 104 results.

### 18.1 GEANT3/GEANT4 Discrepancy

Sanghoon Lim discovered a discrepancy between simulation results for GEANT3 as compared to GEANT4, which is the basis for the discrepancies between Run15pp and PPG104. These results were presented in the HI PWG meeting (April 4, 2019), and it was determined GEANT4 should be used. A summary of his study can be found in section 3.8 of AN 1354, and the link to his presentation is included below.

#### 18.1.1 Sanghoon's HI PWG Presentation

Comparison between G3 and G4

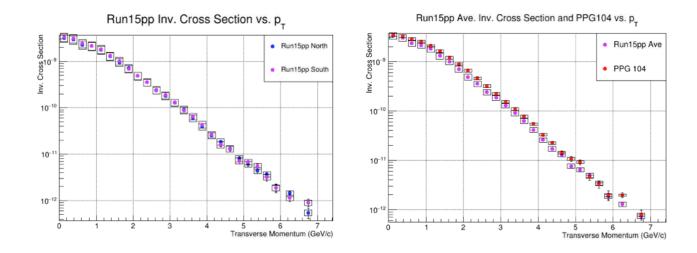



Figure 62: Invariant cross section results for Run15pp in both arms, left. Right: Average Run15pp cross sections compared with PPG104.

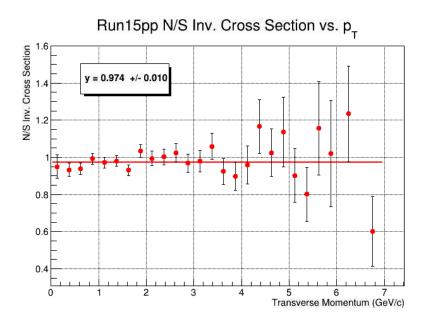



Figure 63: Ratio of the Run15pp North arm invariant cross section to the South arm invariant cross section.

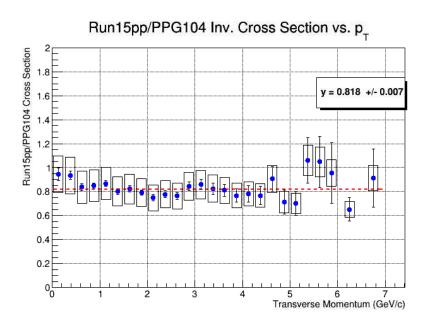



Figure 64: Ratio of the average of the Run15pp North and South arm invariant yields to PPG 104 results. Please see section 13.1 for more details.

## 19 Run15pAu Results

The Run15pAu results show  $R_{AB}$  as a function of  $p_T$  and centrality, and are compared with Run08dAu. Additional plots include  $R_{AB}$  vs.  $N_{coll}$  and the ratios of  $R_{pAu}/R_{dAu}$  per centrality range. Each pp yield in the nuclear modification factor was fit individually, and a binshift correction was applied.

### 19.1 Fraction of Events per Centrality Range

Sanghoon Lim found and corrected an error in the preliminary results concerning the fraction of events per centrality range.

According to AN 1265, "Note that the distribution is not perfectly flat due to the BBCLL1 z-vertex resolution dependence on multiplicity. This emphasizes that one must count events in each centrality category explicitly since centrality flattening is done for the unbiased wider range."

In Run15pAu, the MuID 2D trigger was combined with different MB triggers (narrow-z, +/-30 cm, wide-z), so the flat centrality distribution for BBCLL1 trigger of +/-30 (by definition) is not flat for narrow-z. Therefore, to determine the correct fraction of events per centrality range for Run15pAu, we need to count the number of events from three BBCLL1 triggers combined with the 2D trigger in each centrality range. A slide showing the run numbers associated with each trigger combination is shown in Figure 65.

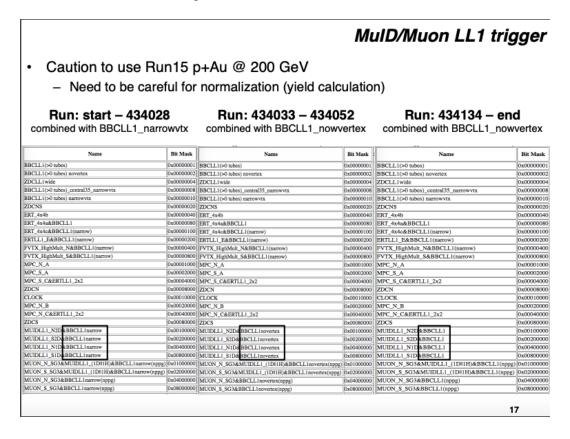



Figure 65: Image credit: Sanghoon Lim. Sanghoon's 2017 PHENIX summer school slides

The fraction of events per centrality range  $\Delta x$  is included in the denominator of the invariant yield, which is needed to determine the nuclear modification factor as a function of centrality 'x':

$$dY_{AB}^{J/\psi}(x) = \frac{c(x)N_{AB}^{J/\psi}(x)}{2\pi p_T \Delta p_T \Delta y \,\epsilon_{trig}(x)\epsilon_{acc}(x)\Delta x N_{MB}}$$
(13)

$$R_{AB}(x) = \frac{dY_{AB}^{J/\psi}(x)}{N_{coll}(x) dY_{pp}^{J/\psi}}$$
(14)

For Run15pAu, Sanghoon directly counted the events and provided the following fraction of events per centrality range, listed in Table 5.

Table 5: Run15pAu fraction of events per centrality range. All values determined by Sanghoon Lim using direct counting, as described in AN 1265.

| Arm   | Centrality | incorrect $\Delta x$ | correct $\Delta x$ |
|-------|------------|----------------------|--------------------|
| North | 0-5        | 0.05                 | 0.06352            |
|       | 5-10       | 0.05                 | 0.06292            |
|       | 10-20      | 0.10                 | 0.1253             |
|       | 0-20       | 0.20                 | 0.2426             |
|       | 20-40      | 0.20                 | 0.2382             |
|       | 40-60      | 0.20                 | 0.2363             |
|       | 60-84      | 0.24                 | 0.2829             |
| South | 0-5        | 0.05                 | 0.06087            |
|       | 5-10       | 0.05                 | 0.06013            |
|       | 10-20      | 0.10                 | 0.1196             |
|       | 0-20       | 0.20                 | 0.2431             |
|       | 20-40      | 0.20                 | 0.2381             |
|       | 40-60      | 0.20                 | 0.2361             |
|       | 60-84      | 0.24                 | 0.2826             |

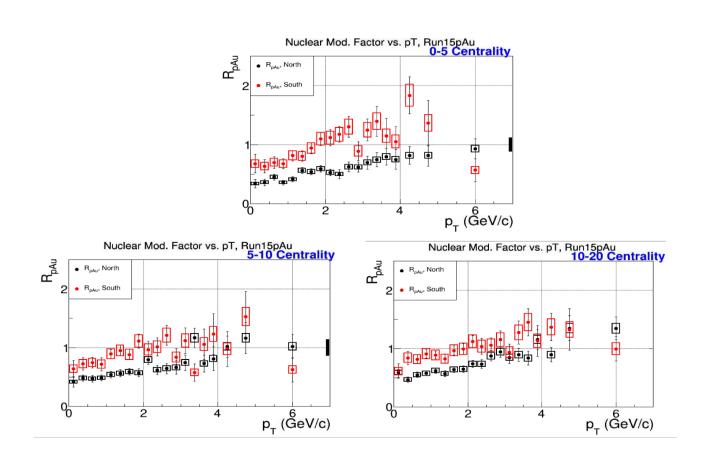



Figure 66: Run15pAu  $R_{pAu}$  vs.  $p_T$  for 0-5, 5-10, and 10-20 in both North and South Arms.

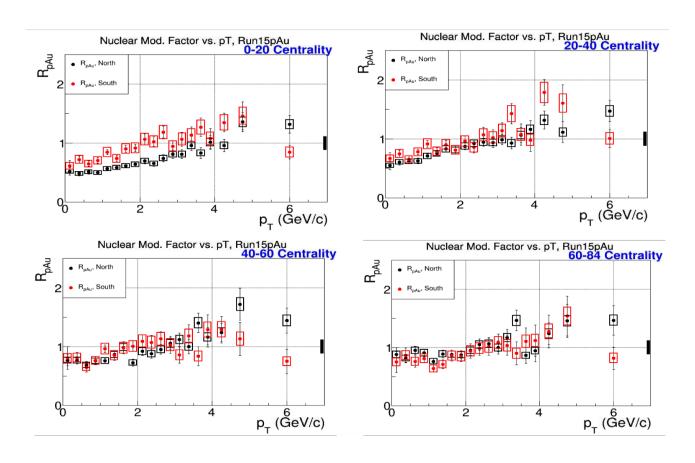



Figure 67: Run15pAu  $R_{pAu}$  vs.  $p_T$  for 0-20, 20-40, 40-60 and 60-84 in both North and South Arms.

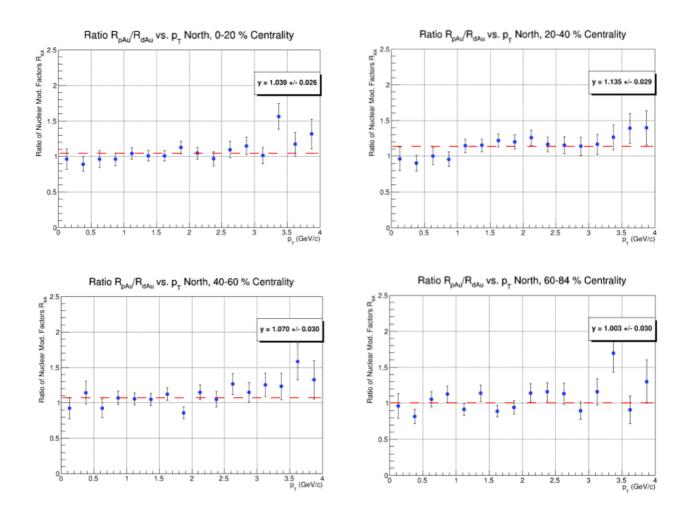



Figure 68: North Arm Results: The ratio of  $R_{pAw}/R_{dAu}$  for 0-20, 20-40, 40-60 and 60-84(60-88).

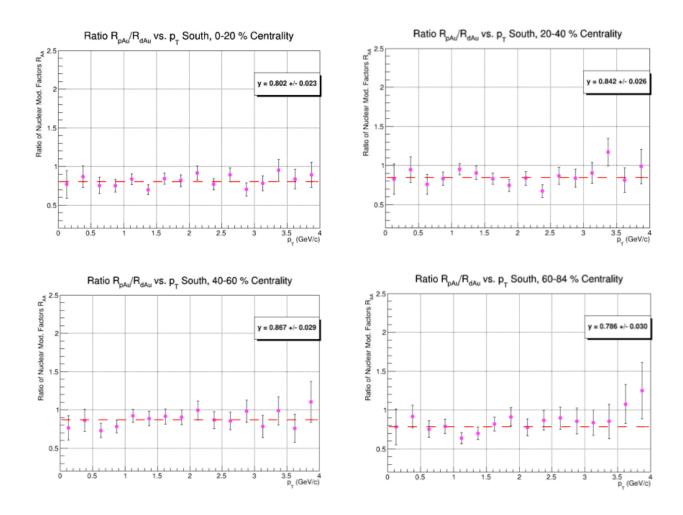



Figure 69: South Arm Results: The ratio of  $R_{pAu}/R_{dAu}$  for 0-20, 20-40, 40-60 and 60-84(60-88).

# 20 Run15pAl Results

The Run15pAu results show  $R_{AB}$  as a function of  $p_T$  and centrality, and are compared with Run08dAu. Additional plots include  $R_{AB}$  vs.  $N_{coll}$ , and the  $R_{AB}$  ratio of pAu to dAu. Each pp yield in the nuclear modification factor was fit individually, and a binshift correction was applied.

### **20.1** Fraction of Events per Centrality Range

Sanghoon Lim found and corrected an error in the preliminary results for Run15pAu and Run14HeAu, which extends to Run15pAl, concerning the fraction of events per centrality range. According to AN 1290, "high luminosity is an issue in the p+Al running." "One normally expects a flat distribution as a function of run number (i.e. the same fraction of events in the 0-20% category for all runs). However, that is not what is observed due to double interactions." "Users will need to check their specific analysis results and the impact of double interactions." The fraction of events per centrality range  $\Delta x$  is included in the denominator of the invariant yield, which is needed to determine the nuclear modification factor as a function of centrality x:

$$Y_{AB}^{J/\psi}(x) = \frac{c(x)N_{AB}^{J/\psi}(x)}{2\pi p_T \Delta p_T \Delta y \epsilon_{trig}(x)\epsilon_{acc}(x)\Delta x N_{MB}}$$
(15)

$$R_{AB}(x) = \frac{dY_{AB}^{J/\psi}(x)}{N_{coll}(x) dY_{pp}^{J/\psi}}$$
(16)

### 20.1.1 Sanghoon's High Luminosity Study of Run15pAl

Sanghoon investigated the effects of double interactions in p+Al on pages 27-28 of AN 1277. Sanghoon provided the following fraction of events per centrality range, listed in Table 6.

| Table 6: Run15 | pAl | fraction o | f events | per centrali | ty range. | All values | determined b | y Sangh | oon Lim. |
|----------------|-----|------------|----------|--------------|-----------|------------|--------------|---------|----------|
|                |     |            |          |              |           |            |              |         |          |

| Arm   | Centrality | incorrect $\Delta x$ | correct $\Delta x$ |
|-------|------------|----------------------|--------------------|
| North | 0-20       | 0.20                 | 0.2899             |
|       | 20-40      | 0.20                 | 0.277              |
|       | 40-72      | 0.32                 | 0.433              |
| South | 0-20       | 0.20                 | 0.29               |
|       | 20-40      | 0.20                 | 0.277              |
|       | 40-72      | 0.32                 | 0.4327             |

## 20.2 Rebinning Centralities

We combined the 40-60 TH2D histogram with the 60-72 TH2D histogram using the same method as Run14HeAu, described in section 17.2.1. Taking a weighted average for the acceptance and MUID trigger efficiencies, the MUID trigger systematic error,  $N_{coll}$  and the bias correction factor were not necessary, as these were already binned in 40-72 centralities (AN 1207).

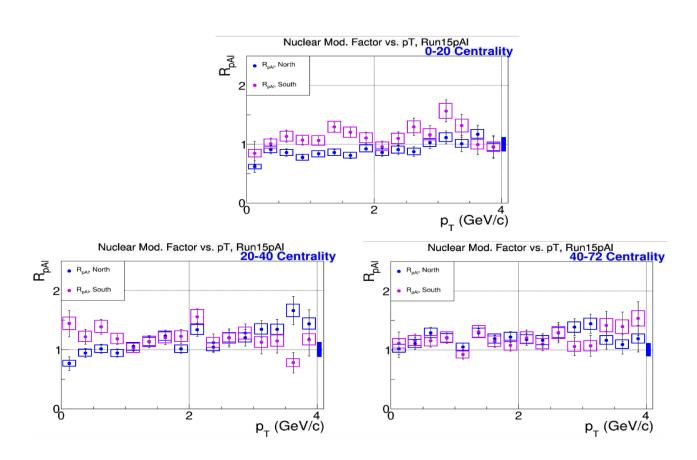



Figure 70: Run15pAl North and South  $R_{AB}$  vs.  $p_T$  . All centralities shown.

#### 21 Run14HeAu Results

The Run14HeAu results show  $R_{AB}$  as a function of  $p_T$  and centrality, and are compared with Run15pAu. Additional plots include  $R_{AB}$  vs.  $N_{coll}$ , and the  $R_{AB}$  ratio of HeAu to pAu. Each pp yield in the nuclear modification factor was fit individually, and a binshift correction was applied. Please see section 14.1 for details on the  $p_T$  integrated  $N_{coll}$  calculation.

#### 21.1 Fraction of Events per Centrality Range

Sanghoon Lim found and corrected an error in the preliminary results concerning the fraction of events per centrality range.

According to AN 1207, the 2D triggers are combined with BBCLL1 +/-30 cm, and the centrality distribution is flat. Therefore we can just take the ratio of centrality percentage between centrality bin and MB, and events do not need to be directly counted, as was necessary for Run15pAu. For example, the 0-20% range centrality for Run14HeAu would correspond to 0.2/0.88 = 0.227.

The fraction of events per centrality range  $\Delta x$  is included in the denominator of the invariant yield, which is needed to determine the nuclear modification factor as a function of centrality x:

$$Y_{AB}^{J/\psi}(x) = \frac{c(x)N_{AB}^{J/\psi}(x)}{2\pi p_T \Delta p_T \Delta y \,\epsilon_{trig}(x)\epsilon_{acc}(x)\Delta x N_{MB}}$$
(17)

$$R_{AB}(x) = \frac{dY_{AB}^{J/\psi}(x)}{N_{coll}(x) dY_{pp}^{J/\psi}}$$
(18)

For Run14HeAu, Sanghoon determined the following fraction of events per centrality range, listed in Table 7.

| Table 7: Run14HeAu | fraction of events | per centrality ran | ge. All values a | letermined by l | Sanghoon Lim. |
|--------------------|--------------------|--------------------|------------------|-----------------|---------------|
|                    |                    |                    |                  |                 |               |

| Arm   | Centrality | incorrect $\Delta x$ | correct $\Delta x$ |
|-------|------------|----------------------|--------------------|
| North | 0-20       | 0.20                 | 0.227              |
|       | 20-40      | 0.20                 | 0.227              |
|       | 40-88      | 0.48                 | 0.545              |
| South | 0-20       | 0.20                 | 0.227              |
|       | 20-40      | 0.20                 | 0.227              |
|       | 40-88      | 0.48                 | 0.545              |

## 21.2 Rebinning Centralities

The statistics were much lower in Run14HeAu than in Run15pAu, and it was necessary to combine the centrality range 40-60 with 60-88. To do this, we took the weighted average of  $N_{coll}$  from both centrality bins, and the weighted average of the bias correction factor from both centrality bins. The weight used in both cases was the centrality binwidth  $\Delta x = 0.2, 0.28$ .

To combine the acceptance and trigger efficiencies that Sanghoon generated, we again took the weighted average. The centrality bins 40-60 and 60-88 had been previously fit, and had their yields extracted. The weight used was then the yield for each  $p_T$  bin. This was also done for the trigger efficiency systematic error as well.

#### 21.2.1 Combining TH2D Histograms

We combined the 40-60 TH2D histogram with the 60-88 TH2D histogram using the following method:

```
TH2D *t1;
TH2D *t2;
rootfile→GetObject("TH2D A", t1);
rootfile→GetObject("TH2D B", t2);
t2→Add(t1, 1);
t2→Write();
```

The combining of two different TH2D histograms was checked by using the ROOT Method TH2D→GetEntries(). We verified that the unlike-sign muon pairs in the North arm for the 40-60 and 60-88 centrality ranges summed to the GetEntries() result of the newly combined TH2D. We verified the same in the South arm and found that all totals matched.

From the newly combined TH2D histogram, we used the ProjectionX() method as described in AN 1391. We then verified that the sum of all projected histograms over the  $p_T$  range 0-12.0 GeV/c (which corresponds to 48 bins of width 0.25 GeV/c) totaled the same result returned using the ROOT Method:

```
TH2D\rightarrowProjectionX("ul", 1, 48)\rightarrowGetEntries();
```

#### 21.3 $p_T$ Integrated $N_{coll}$

For the  $p_T$  integrated  $R_{AB}$  vs.  $N_{coll}$  plots, we took the weighted average over the same  $p_T$  range (0-7 GeV/c) for both Run15pAu  $R_{AB}$  data and Run08dAu  $R_{AB}$  data, the following formula:

$$R_{AB}(N_{coll}) = \frac{\sum_{p_T} R_{AB}(N_{coll}|p_T) dY_{p_T}^{pp}}{\sum_{p_T} dY_{p_T}^{pp}} \pm \frac{\sqrt{\sum_{p_T} \sigma_{p_T}^2 dY_{p_T}^{pp_2}}}{\sum_{p_T} dY_{p_T}^{pp}}$$
(19)

where the weight used was the pp invariant yield. The information to reconstruct the pp invariant yield for Run08pp was found in the plain text tables for PPG125.

# **22** $\langle p_T^2 \rangle$ vs. $N_{coll}$

During an HI PWG meeting, Cesar de Silva requested to see the mean  $p_T^2$  vs.  $N_{coll}$  for pAu and  $^3$ HeAu. Tony had previously published results on  $J/\psi$  nuclear modification in Run08dAu (PPG125), and he calculated the mean pt squared in this paper (PRC). Tony also calculated it here for the requested systems. The two systems are compared up to a maximum  $p_T$  of 4.0 GeV/c.

## 23 Sum Over Centrality vs. Centrality Integrated

As a final cross check after all  $R_{AB}$  results were obtained, we compared the centrality-integrated results with the sum of centrality dependent results from the current analysis. To find the sum of centrality dependent results, we used the following formula:

$$R_{AB}^{sum}(p_T) = \left(\sum_{x} \frac{\Delta x R_{AB}(p_T|x) N_{coll}(x)}{c(x)}\right) \frac{c}{N_{coll}} \pm \sqrt{\left(R_{AB}(p_T|x) \frac{c}{N_{coll}}\right)^2 \left(\sum_{x} \frac{w_x \sigma_x}{R_{AB}(p_T|x)}\right)^2},$$
(20)

where

$$w_x = \frac{\Delta x N_{coll}(x)}{c(x)} \tag{21}$$

where x is the centrality range,  $\Delta x$  is the fraction of events per centrality range and c(x) is the centrality-dependent bias correction factor. The factors 'c' and ' $N_{coll}$ ' are for the 0-100% centrality range.

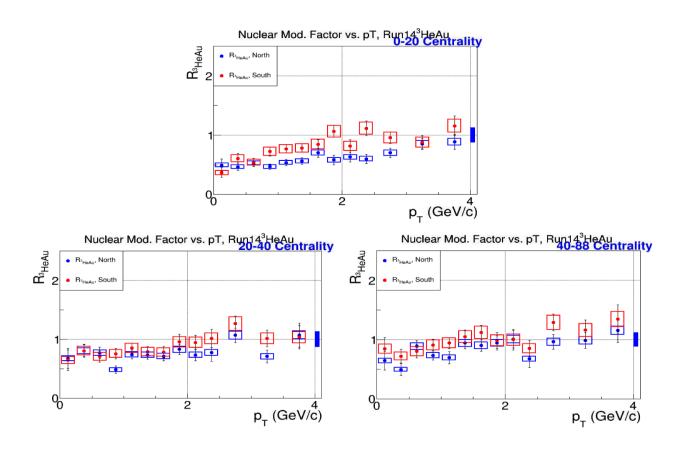



Figure 71: Run14HeAu North and South  $R_{AB}$  vs.  $p_T$ . All centralities shown.

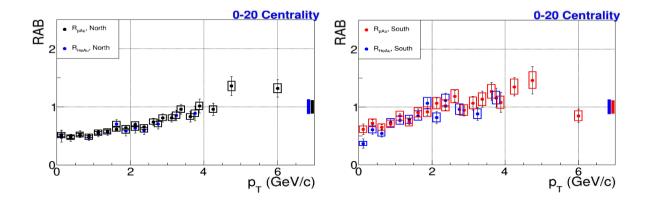



Figure 72: Run14HeAu  $R_{AB}$  vs.  $p_T$ , compared with Run15pAu. Centrality 0-20 shown for the North Arm, left, and South Arm.

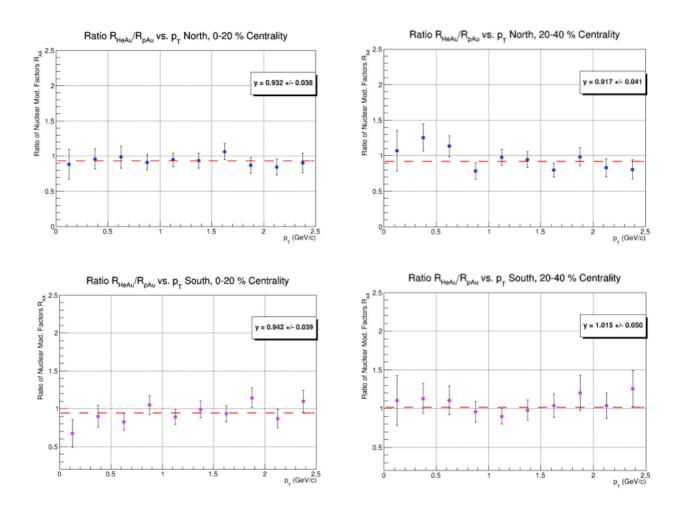



Figure 73: The ratio of  $R_{HeAu}/R_{pAu}$  for 0-20 and 20-40 centralities in the North, top, and South Arms.

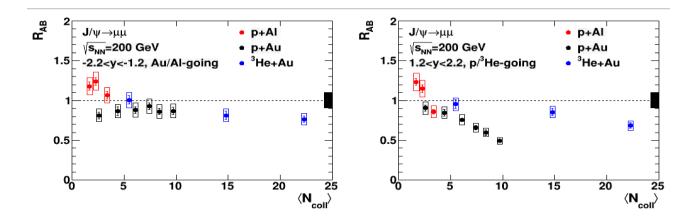



Figure 74:  $p_T$  Integrated  $R_{pAu}$  vs.  $N_{coll}$  for 0-5, 5-10, 10-20, 20-40, 40-60 and 60-84 in both North and South Arms. Also shown are  $p_T$  Integrated  $R_{pAl}$  for 0-20, 20-40, 40-72 and HeAu for 0-20, 20-40, 40-88.

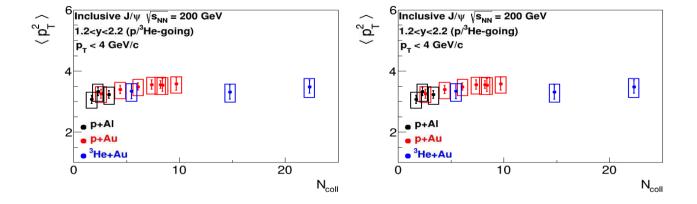



Figure 75:  $\langle p_T^2 \rangle$  vs.  $N_{coll}$  in the North, left, and South Arms for Run15pAl, Run15pAu and Run14HeAu.

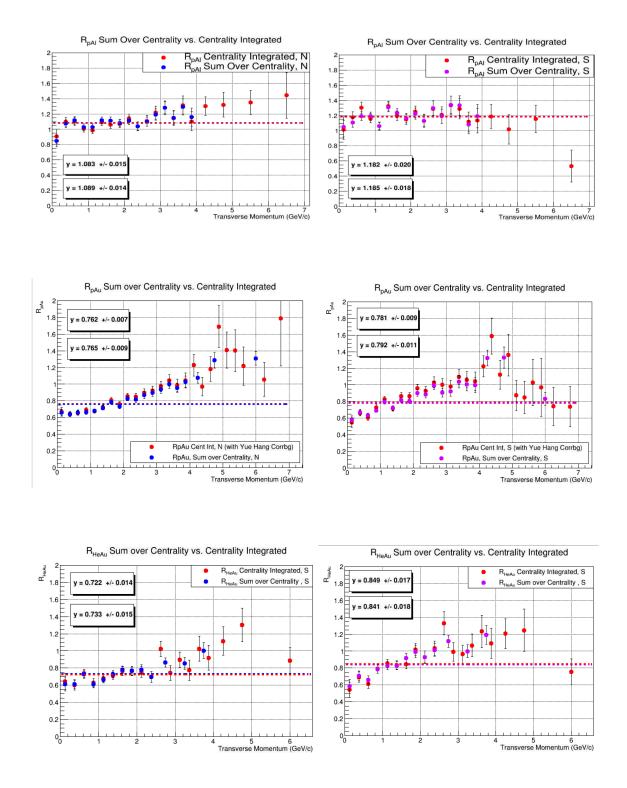



Figure 76: Top:  $R_{pAu}$  centrality integrated compared with the sum over all centralities in the North, left, and South arms. Middle:  $R_{pAl}$  centrality integrated compared with the sum over all centralities. Bottom:  $R_{HeAu}$  centrality integrated compared with the sum over all centralities. All measurements were made using Yue Hang's Correlated Background.

# 24 $\mathbf{R}_{AB}$ vs. y

Preliminary was granted for Matt Durham and Sanghoon Lim for  $R_{AB}$  vs. y prior to the J/ $\psi$  transverse momentum analysis. Their results, shown below, have been updated using Yue Hang's correlated background. Please see AN1354 for more details regarding these measurements.

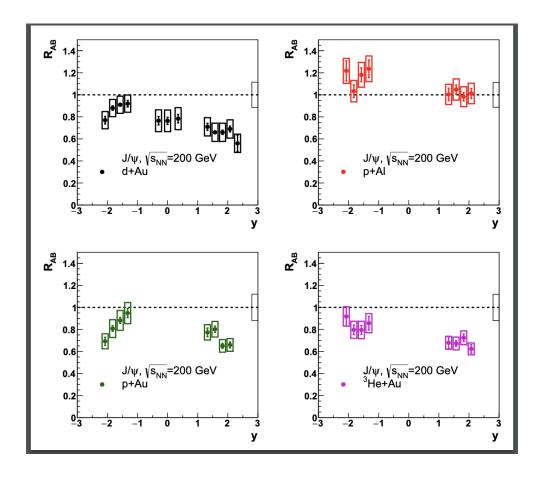



Figure 77:  $R_{AB}$  vs. y for Run15pAl, Run15pAu and Run14HeAu, compared with Run08dAu.

## **25** Rapidity with Centrality Dependence

Sanghoon Lim requested an additional measurement of  $R_{AB}$  vs. y with centrality dependence. All aspects of this measurement were carried out by Sanghoon aside from the yield extraction and systematic uncertainty due to the correlated background.

Yue Hang Leung's correlated background was used for all measurements. The Run15pp correlated background was used for Run15pAl, and the Run15pAu correlated background was used for both Run15pAu and Run14HeAu. This is the same approach that was used for J/ $\psi$  vs.  $p_T$ . Run15pAl Rapidity and Centrality binning matches the centrality and rapidity binning used for other measurements in this analysis. Run15pAl centrality: 0-20, 20-40, 40-72%. Run15pAu centrality: 0-5, 5-10, 10-20, 0-20, 20-40, 40-60, 60-88%. And Run14Heau centrality: 0-20, 20-40, 40-88%.

There were enough statistics to complete these measurements in Run15pAu, Run15pAl and Run14HeAu. The rapidity binning is the same for all systems: 1.2 < |y| < 1.45, 1.45 < |y| < 1.7, 1.7 < |y| < 1.95, 1.95 < |y| < 2.2. Example fits are shown in section 22.4.

#### 25.1 Checks

Here we have also performed the same checks as with  $p_T$  and centrality dependence, comparing the sum over rapidity with the rapidity integrated result. We also take the sum over centrality integrated fits and compare the result with the Minimum Bias fit. The results are shown for all systems.

| 0-20%                            |                 |              |              |             |             |              |
|----------------------------------|-----------------|--------------|--------------|-------------|-------------|--------------|
| Run15pAl                         | NORTH           |              |              |             |             |              |
| rap center                       | Case A          | Ave FGH      | Case F       | Case G      | Case H      | AN 1354      |
| 1.325                            | 358 +/- 22      | 351 +/- 22   | 348 +/- 25   | 354 +/- 21  | 352 +/- 21  | -            |
| 1.575                            | 1544 +/- 49     | 1477 +/- 50  | 1444 +/- 55  | 1432 +/- 46 | 1555 +/- 48 | -            |
| 1.825                            | 1657 +/- 54     | 1661 +/- 52  | 1620 +/- 55  | 1674 +/- 49 | 1689 +/- 53 | -            |
| 2.075                            | 993 +/- 37      | 1000 +/- 38  | 1006 +/- 39  | 983 +/- 38  | 1010 +/- 37 | -            |
| sum:                             | 4552            | 4,489        | 4,418        | 4,443       | 4,606       | -            |
| rap Int                          | 4496 +/- 86     | 4390 +/- 97  | 4300 +/- 117 | 4317 +/- 90 | 4552 +/- 85 | 4289 +/- 118 |
| sum/rap Int % diff               | 1.24%           | 2.23%        | 2.71%        | 2.88%       | 1.18%       |              |
| sum Case A/Case FGH % diff       |                 | 1.42%        |              |             |             |              |
| Case A/Case FGH cent Int % diff: |                 | 2.39%        |              |             |             |              |
| cent Int Case A/ p               | relim % diff:   | 4.71%        |              |             |             |              |
|                                  |                 |              |              |             |             |              |
| Run15pAl                         | SOUTH           |              |              |             |             |              |
| rap center                       | Case A          | Ave Case FGH | Case F       | Case G      | Case H      | AN 1354      |
| -1.325                           | 396 +/- 25      | 384 +/- 26   | 361 +/- 32   | 395 +/- 21  | 396 +/- 24  | -            |
| -1.575                           | 1446 +/- 52     | 1427 +/- 50  | 1366 +/- 50  | 1457 +/- 50 | 1458 +/- 49 | -            |
| -1.825                           | 1114 +/- 47     | 1156 +/- 42  | 1129 +/- 45  | 1155 +/- 47 | 1184 +/- 34 | -            |
| -2.075                           | 329 +/- 25      | 341 +/- 25   | 338 +/- 26   | 342 +/- 25  | 342 +/- 25  | -            |
| sum:                             | 3285            | 3,308        | 3194         | 3,349       | 3,380       | -            |
| rap Int                          | 3286 +/- 82     | 3284 +/- 76  | 3133 +/- 80  | 3338 +/- 73 | 3382 +/- 74 | 3025 +/- 129 |
| sum/rap Int % diff               | -0.03%          | 0.73%        | 1.93%        | 0.33%       | 0.06%       |              |
| sum Case A/Case                  | e FGH % diff    | -0.70%       |              |             |             |              |
| Case A/Case FGH o                | ent Int % diff: | 0.06%        |              |             |             |              |
| cent Int Case A/ p               | relim % diff:   | 8.27%        |              |             |             |              |

| 20-40%                           |                 |              |             |              |             |             |
|----------------------------------|-----------------|--------------|-------------|--------------|-------------|-------------|
| Run15pAl                         | NORTH           |              |             |              |             |             |
| rap center                       | Case A          | Ave FGH      | Case F      | Case G       | Case H      | AN 1354     |
| 1.325                            | 230 +/- 18      | 218 +/- 17   | 204 +/- 17  | 225 +/- 16   | 226 +/- 17  | -           |
| 1.575                            | 1272 +/- 42     | 1240 +/- 52  | 1251 +/- 46 | 1193 +/- 68  | 1276 +/- 41 | -           |
| 1.825                            | 1388 +/- 44     | 1361 +/- 61  | 1363 +/- 51 | 1318 +/- 87  | 1403 +/- 44 | -           |
| 2.075                            | 747 +/- 34      | 770 +/- 47   | 782 +/- 37  | 738 +/- 68   | 791 +/- 35  | -           |
| sum:                             | 3637            | 3,589        | 3,600       | 3,474        | 3,696       | -           |
| rap Int                          | 3600 +/- 76     | 3495 +/- 85  | 3488 +/- 76 | 3363 +/- 100 | 3636 +/- 74 | 3257 +/- 95 |
| sum/rap Int % diff 1.02%         |                 | 2.65%        | 3.16%       | 3.25%        | 1.64%       |             |
| sum Case A/Case FGH % diff       |                 | 1.25%        |             |              |             |             |
| Case A/Case FGH cent Int % diff: |                 | 2.96%        |             |              |             |             |
| cent Int Case A/ p               | relim % diff:   | 10.00%       |             |              |             |             |
|                                  |                 |              |             |              |             |             |
| Run15pAl                         | SOUTH           |              |             |              |             |             |
| rap center                       | Case A          | Ave Case FGH | Case F      | Case G       | Case H      | AN 1354     |
| -1.325                           | 302 +/- 19      | 295 +/- 20   | 281 +/- 22  | 302 +/- 19   | 302 +/- 19  | -           |
| -1.575                           | 999 +/- 37      | 989 +/- 42   | 916 +/- 47  | 1025 +/- 39  | 1026 +/- 39 | -           |
| -1.825                           | 715 +/- 36      | 733 +/- 36   | 722 +/- 41  | 737 +/- 33   | 739 +/- 33  | -           |
| -2.075                           | 207 +/- 17      | 207 +/- 18   | 198 +/- 14  | 212 +/- 20   | 212 +/- 19  | -           |
| sum:                             | 2223            | 2,224        | 2117        | 2,276        | 2,279       | -           |
| rap Int                          | 2208 +/- 57     | 2188 +/- 57  | 2100 +/- 59 | 2231 +/- 56  | 2234 +/- 56 | 1821 +/- 84 |
| sum/rap Int % diff               | 0.68%           | 1.63%        | 0.81%       | 2.00%        | 1.99%       |             |
| sum Case A/Case                  | e FGH % diff    | 0.72%        |             |              |             |             |
| Case A/Case FGH o                | ent Int % diff: | 0.91%        |             |              |             |             |
| cent Int Case A/ prelim % diff:  |                 | 19.20%       |             |              |             |             |

| 40-72%                          |                 |               |               |             |              |               |
|---------------------------------|-----------------|---------------|---------------|-------------|--------------|---------------|
| Run15pAl                        | NORTH           |               |               |             |              |               |
| rap center                      | Case A          | Ave FGH       | Case F        | Case G      | Case H       | AN 1354       |
| 1.325                           | 294 +/- 20      | 281 +/- 22    | 258 +/- 27    | 293 +/- 20  | 291 +/- 19   | -             |
| 1.575                           | 1290 +/- 42     | 1262 +/- 45   | 1228 +/- 48   | 1262 +/- 44 | 1297 +/- 43  | -             |
| 1.825                           | 1452 +/- 45     | 1450 +/- 45   | 1435 +/- 40   | 1433 +/- 46 | 1481 +/- 48  | -             |
| 2.075                           | 929 +/- 39      | 935 +/- 40    | 956 +/- 41    | 914 +/- 43  | 934 +/- 36   | -             |
| sum:                            | 3961            | 3,928         | 3,877         | 3,902       | 4,003        | -             |
| rap Int                         | 3916 +/- 79     | 3843 +/- 81   | 3770 +/- 84   | 3799 +/- 85 | 3960 +/- 74  | 3610 +/- 109  |
| sum/rap Int % diff              | 1.14%           | 2.19%         | 2.79%         | 2.67%       | 1.08%        |               |
| sum Case A/Case                 | FGH % diff      | 0.84%         |               |             |              |               |
| Case A/Case FGH c               | ent Int % diff: | 1.88%         |               |             |              |               |
| cent Int Case A/ prelim % diff: |                 | 8.13%         |               |             |              |               |
|                                 |                 |               |               |             |              |               |
| Run15pAl                        | SOUTH           |               |               |             |              |               |
| rap center                      | Case A          | Ave Case FGH  | Case F        | Case G      | Case H       | AN 1354       |
| -1.325                          | 245 +/- 18      | 244 +/- 19    | 241 +/- 22    | 245 +/- 18  | 245 +/- 18   | -             |
| -1.575                          | 917 +/- 30      | 923 +/- 35    | 920 +/- 35    | 923 +/- 35  | 925 +/- 36   | -             |
| -1.825                          | 714 +/- 31      | 740 +/- 31    | 738 +/- 32    | 733 +/- 31  | 750 +/- 31   | -             |
| -2.075                          | 206 +/- 18      | 216 +/- 18    | 215 +/- 18    | 214 +/- 18  | 220 +/- 17   | -             |
| sum:                            | 2082            | 2,123         | 2114          | 2,115       | 2,140        | -             |
| rap Int                         | 2073 +/- 48     | 2109 +/- 50   | 2082 +/- 55   | 2107 +/- 43 | 2138 +/- 52  | 1968 +/- 74   |
| sum/rap Int % diff              | 0.43%           | 0.66%         | 1.52%         | 0.39%       | 0.09%        |               |
| sum Case A/Case                 | FGH % diff      | -1.71%        |               |             |              |               |
| Case A/Case FGH c               | ent Int % diff: | -1.72%        |               |             |              |               |
| cent Int Case A/ p              | relim % diff:   | 5.20%         |               |             |              |               |
|                                 |                 |               |               |             |              |               |
| SUMMARY                         | North Sum       | MinBias, N    | MB/Sum % diff | South Sum   | MinBias, S   | MB/Sum % diff |
| Sum cent Int                    | 12012           | 11738 +/- 138 | 2.31%         | 7567        | 7455 +/- 115 | 1.49%         |
| AN1354 sum cent Int             | 11156           | 11085 +/- 190 | 0.64%         | 6814        | 6567 +/- 206 | 3.69%         |

| 0-5%       |                            |             |              |             |             |             |         |
|------------|----------------------------|-------------|--------------|-------------|-------------|-------------|---------|
| Run15pAu   |                            | NORTH       |              |             |             |             |         |
| rap center | Fixed Case A               | Case A      | Ave FGH      | Case F      | Case G      | Case H      | AN 1354 |
| 1.325      | 155 +/- 14                 | 149 +/- 14  | 149          | 150 +/- 15  | 145 +/- 14  | 151 +/- 19  | -       |
| 1.575      | 643 +/- 28                 | 624 +/- 29  | 604          | 610 +/- 34  | 603 +/- 30  | 600 +/- 36  | -       |
| 1.825      | 562 +/- 28                 | 561 +/- 30  | 548          | 555 +/- 31  | 547 +/- 37  | 543 +/- 41  | -       |
| 2.075      | 277 +/- 20                 | 274 +/- 22  | 272          | 282 +/- 25  | 267 +/- 27  | 267 +/- 24  | -       |
| sum:       | 1637                       | 1608        | 1,573        | 1,597       | 1,562       | 1,561       | -       |
| rap Int    | 1632 +/- 47                | 1595 +/- 49 | 1557 +/- 63  | 1569 +/- 58 | 1556 +/- 60 | 1545 +/- 71 |         |
| sum/rap li | sum/rap Int % diff 0.81%   |             | 1.28%        | 1.77%       | 0.38%       | 1.03%       |         |
| sum Ca     | sum Case A/Case FGH % diff |             | 2.20%        |             |             |             |         |
| Case A/C   | ase FGH cent Int 9         | % diff:     | 2.54%        |             |             |             |         |
|            |                            |             |              |             |             |             |         |
| Run15pAu   |                            | SOUTH       |              |             |             |             |         |
| rap center | Fixed Case A               | Case A      | Ave Case FGH | Case F      | Case G      | Case H      | AN 1354 |
| -1.325     | 247 +/- 25                 | 240 +/- 21  | 241 +/- 20   | 240 +/- 20  | 241 +/- 20  | 241 +/- 20  | -       |
| -1.575     | 718 +/- 33                 | 703 +/- 39  | 663 +/- 48   | 658 +/- 49  | 644 +/- 55  | 687 +/- 41  | -       |
| -1.825     | 474 +/- 29                 | 487 +/- 33  | 513 +/- 29   | 525 +/- 29  | 507 +/- 30  | 507 +/- 27  | -       |
| -2.075     | 111 +/- 14                 | 109 +/- 17  | 120 +/- 16   | 119 +/- 16  | 120 +/-16   | 120 +/- 16  | -       |
| sum:       | 1550                       | 1545        | 1,537        | 1542        | 1,499       | 1,555       | -       |
| rap Int    | 1537 +/- 50                | 1536 +/- 55 | 1576 +/- 53  | 1569 +/- 54 | 1579 +/- 52 | 1579 +/- 52 | -       |
| sum/rap I  | nt % diff                  | 0.58%       | 2.51%        | 1.74%       | 4.34%       | 1.23%       |         |
| sum Ca     | se A/Case FGH %            | diff        | 0.52%        |             |             |             |         |
| C A/C      | ase FGH cent Int 9         | v Jiee.     | -2.57%       |             |             |             |         |

| 5-10%      |                            |             |              |             |             |             |         |
|------------|----------------------------|-------------|--------------|-------------|-------------|-------------|---------|
| Run15pAu   |                            | NORTH       |              |             |             |             |         |
| rap center | Fixed Case A               | Case A      | Ave FGH      | Case F      | Case G      | Case H      | AN 1354 |
| 1.325      | 149 +/- 14                 | 144 +/- 15  | 133 +/- 16   | 133 +/- 15  | 133 +/- 17  | 132 +/- 18  | -       |
| 1.575      | 593 +/- 28                 | 588 +/- 40  | 532 +/- 40   | 502 +/- 35  | 559 +/- 48  | 559 +/- 48  | -       |
| 1.825      | 554 +/- 28                 | 535 +/- 33  | 507 +/- 51   | 516 +/- 78  | 503 +/- 35  | 503 +/- 35  | -       |
| 2.075      | 267 +/- 20                 | 264 +/- 21  | 275 +/- 24   | 290 +/- 20  | 267 +/- 25  | 267 +/- 25  | -       |
| sum:       | 1563                       | 1531        | 1,447        | 1,441       | 1,438       | 1,461       | -       |
| rap Int    | 1561 +/- 53                | 1539 +/- 54 | 1447 +/- 77  | 1441 +/- 71 | 1508 +/- 70 | 1447 +/- 77 | -       |
| sum/rap li | sum/rap Int % diff 0.52%   |             | 0.00%        | 0.00%       | 4.75%       | 5.85%       |         |
| sum Ca     | sum Case A/Case FGH % diff |             | 6.51%        |             |             |             |         |
| Case A/C   | se FGH cent Int 9          | % diff:     | 6.16%        |             |             |             |         |
|            |                            |             |              |             |             |             |         |
| Run15pAu   |                            | SOUTH       |              |             |             |             |         |
| rap center | Fixed Case A               | Case A      | Ave Case FGH | Case F      | Case G      | Case H      | AN 1354 |
| -1.325     | 194 +/- 16                 | 189 +/- 17  | 175 +/- 23   | 168 +/- 26  | 170 +/- 21  | 187 +/- 23  | -       |
| -1.575     | 590 +/- 29                 | 573 +/- 33  | 556 +/- 49   | 566 +/- 41  | 549 +/- 71  | 552 +/- 35  | -       |
| -1.825     | 424 +/- 29                 | 420 +/- 26  | 427 +/- 34   | 438 +/- 26  | 421 +/- 39  | 422 +/- 37  | -       |
| -2.075     | 130 +/- 16                 | 138 +/- 20  | 128 +/- 18   | 128 +/- 19  | 129 +/- 18  | 127 +/- 18  |         |
| sum:       | 1338                       | 1320        | 1,286        | 1300        | 1,269       | 1,288       | -       |
| rap Int    | 1328 +/- 44                | 1289 +/- 48 | 1279 +/- 71  | 1292 +/- 55 | 1278 +/- 59 | 1268 +/- 99 | -       |
| sum/rap li | nt % diff                  | 2.38%       | 0.55%        | 0.62%       | -0.71%      | 1.56%       |         |
| sum Ca     | se A/Case FGH %            | diff        | 2.61%        |             |             |             |         |
| Caro M/C   | se FGH cent Int 9          | K diff:     | 0.79%        |             |             |             |         |

| 10-20%                   |                    |             |              |             |              |              |         |
|--------------------------|--------------------|-------------|--------------|-------------|--------------|--------------|---------|
| Run15pAu                 |                    | NORTH       |              |             |              |              |         |
| rap center               | Fixed Case A       | Case A      | Ave FGH      | Case F      | Case G       | Case H       | AN 1354 |
| 1.325                    | 220 +/- 18         | 224 +/- 18  | 222 +/- 18   | 222 +/- 18  | 222 +/- 18   | 219 +/- 17   | -       |
| 1.575                    | 1095 +/- 37        | 1074 +/- 38 | 1065 +/- 45  | 1061 +/- 41 | 1065 +/- 46  | 1069 +/- 48  | -       |
| 1.825                    | 1091 +/- 45        | 1082 +/- 59 | 1017 +/- 68  | 1057 +/- 78 | 1002 +/- 59  | 993 +/- 66   | -       |
| 2.075                    | 593 +/- 28         | 584 +/- 31  | 606 +/- 35   | 605 +/- 31  | 606 +/- 37   | 608 +/- 37   | -       |
| sum:                     | 2999               | 2964        | 2,910        | 2,945       | 2,895        | 2,889        | -       |
| rap Int                  | 2987 +/- 63        | 2931 +/- 66 | 2909 +/- 70  | 2891 +/- 66 | 2909 +/- 64  | 2927 +/- 81  | -       |
| sum/rap Int % diff 1.12% |                    | 0.03%       | 1.85%        | 0.48%       | 1.31%        |              |         |
| sum Ca                   | se A/Case FGH %    | diff        | 1.74%        |             |              |              |         |
| Case A/C                 | ase FGH cent Int S | % diff:     | 0.75%        |             |              |              |         |
|                          |                    |             |              |             |              |              |         |
| Run15pAu                 |                    | SOUTH       |              |             |              |              |         |
| rap center               | Fixed Case A       | Case A      | Ave Case FGH | Case F      | Case G       | Case H       | AN 1354 |
| -1.325                   | 269 +/- 19         | 264 +/- 20  | 258 +/- 37   | 251 +/- 22  | 259 +/- 65   | 263 +/- 24   | -       |
| -1.575                   | 937 +/- 37         | 921 +/- 42  | 878 +/- 58   | 889 +/- 48  | 855 +/- 78   | 890 +/- 47   | -       |
| -1.825                   | 747 +/- 31         | 743 +/- 36  | 726 +/- 38   | 732 =/- 36  | 726 +/- 37   | 720 +/- 40   | -       |
| -2.075                   | 181 +/- 17         | 186 +/- 20  | 186 +/- 22   | 187 +/- 21  | 186 +/- 23   | 185 +/- 22   | -       |
| sum:                     | 2134               | 2114        | 2,048        | 2059        | 2,026        | 2,058        | -       |
| rap Int                  | 2131 +/- 66        | 2124 +/- 65 | 2093 +/- 99  | 2096 +/- 66 | 2087 +/- 114 | 2096 +/- 116 | -       |
| sum/rap I                | nt % diff          | -0.47%      | -2.17%       | -1.78%      | -2.97%       | -1.83%       |         |
| sum Ca                   | ise A/Case FGH %   | diff        | 3.17%        |             |              |              |         |
| C 1/C                    | ase FGH cent Int 9 | v 4:66.     | 1.47%        |             |              |              |         |

| 0.200/     |                              |              |              |              |              |              |             |
|------------|------------------------------|--------------|--------------|--------------|--------------|--------------|-------------|
| 0-20%      |                              |              |              |              |              |              |             |
| Run15pAu   |                              | NORTH        |              |              |              |              |             |
| rap center | Fixed Case A                 | Case A       | Ave FGH      | Case F       | Case G       | Case H       | AN 1354     |
| 1.325      | 520 +/- 26                   | 513 +/- 27   | 514 +/- 26   | 513 +/- 26   | 514 +/- 26   | 514 +/- 26   | -           |
| 1.575      | 2336 +/- 54                  | 2288 +/- 57  | 2227 +/- 72  | 2223 +/- 72  | 2229 +/- 73  | 2229 +/- 70  | -           |
| 1.825      | 2196 +/- 65                  | 2178 +/- 64  | 2063 +/- 75  | 2124 +/- 66  | 2047 +/- 77  | 2018 +/- 81  | -           |
| 2.075      | 1143 +/- 48                  | 1125 +/- 60  | 1158 +/- 49  | 1169 +/- 46  | 1152 +/- 49  | 1154 +/- 52  | -           |
| sum:       | 6195                         | 6104         | 5,962        | 6,029        | 5,942        | 5,915        | -           |
| rap Int    | 6191 +/- 91                  | 6078 +/- 129 | 5960 +/- 126 | 5962 +/- 119 | 5965 +/- 124 | 5952 +/- 134 | 6026 +/- 13 |
| sum/rap In | it % diff                    | 0.43%        | 0.03%        | 1.12%        | -0.39%       | -0.62%       |             |
| sum Ca:    | sum Case A/Case FGH % diff   |              | 2.35%        |              |              |              |             |
| Case A/Ca  | se FGH cent Int              | % diff:      | 1.96%        |              |              |              |             |
|            |                              |              |              |              |              |              |             |
| Run15pAu   |                              | SOUTH        |              |              |              |              |             |
| rap center | Fixed Case A                 | Case A       | Ave Case FGH | Case F       | Case G       | Case H       | AN 1354     |
| -1.325     | 706 +/- 36                   | 690 +/- 34   | 659 +/- 33   | 695 +/- 33   | 697 +./- 32  | 695 +/- 33   | -           |
| -1.575     | 2245 +/- 64                  | 2207 +/- 80  | 2115 +/- 87  | 2148 +/- 82  | 2054 +/- 102 | 2143 +/- 76  | -           |
| -1.825     | 1674 +/- 74                  | 1606 +/- 56  | 1592 +/- 75  | 1603 +/- 62  | 1586 +/- 80  | 1587 +/- 84  | -           |
| -2.075     | 410 +/- 25                   | 416 +/- 28   | 442 +/- 28   | 440 +/- 29   | 443 +/- 27   | 443 +/- 27   | -           |
| sum:       | 5035                         | 4919         | 4,808        | 4886         | 47,890       | 4,868        | -           |
| rap Int    | 4968 +/- 85                  | 4916 +/- 105 | 4883 +/- 157 | 4876 +/- 153 | 4882 +/- 162 | 4890 +/- 155 | 5002 +/- 95 |
|            |                              |              | -1.55%       | 0.20%        | 2.11%        | 0.45%        |             |
| sum/rap Ir | it % diff                    | 0.06%        | -1.55%       |              |              |              |             |
| sum/rap Ir | it % diff<br>se A/Case FGH % |              | 2.28%        | 0.2070       | LIZZ/V       | 011070       |             |

| 20-40%     |                          |             |              |              |              |              |              |
|------------|--------------------------|-------------|--------------|--------------|--------------|--------------|--------------|
| Run15pAu   |                          | NORTH       |              |              |              |              |              |
| rap center | Fixed Case A             | Case A      | Ave FGH      | Case F       | Case G       | Case H       | AN 1354      |
| 1.325      | 401 +/- 23               | 403 +/- 23  | 401 +/- 30   | 401 +/- 27   | 402 +/- 30   | 401 +/- 33   | -            |
| 1.575      | 1893 +/- 54              | 1842 +/- 46 | 1688 +/- 83  | 1738 +/- 87  | 1662 +/- 84  | 1665 +/- 79  | -            |
| 1.825      | 1922 +/- 55              | 1915 +/- 53 | 1908 +/- 57  | 1908 +/- 60  | 1909 +/- 59  | 1907 +/- 52  |              |
| 2.075      | 994 +/- 40               | 964 +/- 41  | 1015 +/- 54  | 1036 +/- 41  | 1005 +/- 59  | 1003 +/- 61  | -            |
| sum:       | 5210                     | 5112        | 5052 +/- 119 | 5,083        | 4,978        | 4,976        | -            |
| rap Int    | 5162 +/- 89              | 5124        | 5012         | 5086 +/- 127 | 5049 +/- 77  | 5021 +/- 154 | 5077 +/- 120 |
| sum/rap Ir | sum/rap Int % diff 0.23% |             | 0.79%        | 0.06%        | 1.42%        | 0.90%        |              |
| sum Ca:    | se A/Case FGH %          | diff        | 2.21%        |              |              |              |              |
| Case A/Ca  | se FGH cent Int          | 6 diff:     | 1.18%        |              |              |              |              |
| Run15pAu   |                          | SOUTH       |              |              |              |              |              |
| rap center | Fixed Case A             | Case A      | Ave Case FGH | Case F       | Case G       | Case H       | AN 1354      |
| -1.325     | 427 +/- 26               | 428 +/- 26  | 425 +/- 27   | 425 +/- 27   | 424 +/- 29   | 427 +/- 26   | -            |
| -1.575     | 1435 +/- 51              | 1427 +/- 46 | 1392 +/- 54  | 1396 +/- 53  | 1382 +/- 61  | 1399 +/- 49  | -            |
| -1.825     | 1112 +/- 46              | 1112 +/- 42 | 1065 +/- 48  | 1088 +/- 40  | 1057 +/- 58  | 1051 +/- 46  | -            |
| -2.075     | 256 +/- 22               | 235 +/- 22  | 256 +/- 22   | 255 +/- 19   | 256 +/- 23   | 258 +/- 23   | -            |
| sum:       | 3230                     | 3202        | 3,138        | 3164         | 3,119        | 3,135        | -            |
| rap Int    | 3203 +/- 80              | 3173 +/- 79 | 3100 +/- 88  | 3087 +/- 82  | 3040 +/- 104 | 3173 +/- 79  | 3082 +/- 105 |
| sum/rap Ir | nt % diff                | 0.91%       | 1.22%        | 4.12%        | 2.57%        | 1.20%        |              |
| sum Ca:    | se A/Case FGH %          | diff        | 2.02%        |              |              |              |              |
| Coco A/Co  | se FGH cent Int          | k diff:     | 2.33%        |              |              |              |              |

| 40-60%     |                            |             |              |             |             |              |              |
|------------|----------------------------|-------------|--------------|-------------|-------------|--------------|--------------|
| Run15pAu   |                            | NORTH       |              |             |             |              |              |
| rap center | Fixed Case A               | Case A      | Ave FGH      | Case F      | Case G      | Case H       | AN 1354      |
| 1.325      | 295 +/- 19                 | 290 +/- 20  | 265 +/- 27   | 268 +/- 26  | 265 +/- 25  | 262 +/- 30   | -            |
| 1.575      | 1402 +/- 45                | 1400 +/- 44 | 1351 +/- 56  | 1370 +/- 48 | 1345 +/- 61 | 1337 +/- 58  |              |
| 1.825      | 1467 +/- 41                | 1454 +/- 68 | 1526 +/- 60  | 1515 +/- 93 | 1531 +/- 44 | 1531 +/- 44  | -            |
| 2.075      | 849 +/- 39                 | 832 +/- 35  | 880 +/- 34   | 876 +/- 34  | 882 +/- 34  | 882 +/- 34   |              |
| sum:       | 4013                       | 3976        | 4,022        | 4,029       | 4,023       | 4,012        | -            |
| rap Int    | 3944 /- 80                 | 3949 +/- 77 | 3948 +/- 108 | 3956 +/- 98 | 3961 +/- 98 | 3926 +/- 138 | 4022 +/- 152 |
| sum/rap l  | sum/rap Int % diff 1.29%   |             | 1.86%        | 1.83%       | 1.55%       | 2.17%        |              |
| sum Ca     | sum Case A/Case FGH % diff |             | -1.15%       |             |             |              |              |
| Case A/C   | ase FGH cent Int 5         | % diff:     | 0.03%        |             |             |              |              |
| Run15pAu   |                            | SOUTH       |              |             |             |              |              |
| rap center | Fixed Case A               | Case A      | Ave Case FGH | Case F      | Case G      | Case H       | AN 1354      |
| -1.325     | 271 +/- 20                 | 269 +/- 19  | 262 +/- 21   | 262 +/- 20  | 262 +/- 23  | 262 +/- 19   | -            |
| -1.575     | 992 +/- 41                 | 994 +/- 40  | 921 +/- 47   | 960 +/- 45  | 896 +/- 56  | 908 +/- 41   |              |
| -1.825     | 653 +/- 29                 | 654 +/- 28  | 687 +/- 34   | 685 +/- 32  | 687 +/- 35  | 689 +/- 34   |              |
| -2.075     | 150 +/- 15                 | 153 +/- 17  | 172 +/- 23   | 174 +/- 19  | 169 +/- 27  | 174 +/- 22   | -            |
| sum:       | 2066                       | 2070        | 2,042        | 2081        | 2,014       | 2,033        | -            |
| rap Int    | 2063 +/- 51                | 2034 +/- 55 | 2030 +/- 69  | 2056 +/- 58 | 2020 +/- 74 | 2014 +/- 74  | 2026 +/- 98  |
| sum/rap I  | nt % diff                  | 1.75%       | 0.59%        | 1.21%       | 0.30%       | 0.94%        |              |
| sum Ca     | se A/Case FGH %            | diff        | 1.36%        |             |             |              |              |
| Cose N/C   | ase FGH cent Int 9         | v 4:66.     | 0.20%        |             |             |              |              |

| 60-84%                           |                  |               |               |             |               |               |             |
|----------------------------------|------------------|---------------|---------------|-------------|---------------|---------------|-------------|
| Run15pAu                         |                  | NORTH         |               |             |               |               |             |
| rap center                       | Fixed Case A     | Case A        | Ave FGH       | Case F      | Case G        | Case H        | AN 1354     |
| 1.325                            | 202 +/- 16       | 198 +/- 17    | 185 +/- 21    | 185 +/- 21  | 184 +/- 25    | 185 +/- 17    | -           |
| 1.575                            | 1004 +/- 35      | 1023 +/- 37   | 1021 +/- 39   | 1019 +/- 41 | 1024 +/- 36   | 1020 +/- 39   | -           |
| 1.825                            | 1160 +/- 43      | 1141 +/- 42   | 1127 +/- 54   | 1127 +/- 48 | 1127 +/- 58   | 1127 +/- 56   | -           |
| 2.075                            | 716 +/- 34       | 714 +/- 38    | 724 +/- 58    | 722 +/- 35  | 725 +/- 73    | 725 +/- 65    | -           |
| sum:                             | 3081             | 3076          | 3,057         | 3,053       | 3,060         | 3,057         | -           |
| rap Int                          | 3058 +/- 63      | 3031 +/- 65   | 3056 +/- 76   | 3052 +/- 75 | 3059 +/- 76   | 3058 +/- 77   | 3146 +/- 81 |
| sum/rap Int                      | % diff           | 1.47%         | 0.03%         | 0.03%       | 0.03%         | 0.03%         |             |
| sum Case                         | e A/Case FGH %   | diff          | 0.62%         |             |               |               |             |
| Case A/Case FGH cent Int % diff: |                  |               | -0.82%        |             |               |               |             |
|                                  |                  |               |               |             |               |               |             |
| Run15pAu                         |                  | SOUTH         |               |             |               |               |             |
| rap center                       | Fixed Case A     | Case A        | Ave Case FGH  | Case F      | Case G        | Case H        | AN 1354     |
| -1.325                           | 183 +/- 14       | 181 +/- 15    | 182 +/- 15    | 182 +/- 15  | 182 +/- 15    | 182 +/- 15    | -           |
| -1.575                           | 620 +/- 31       | 615 +/- 26    | 629 +/- 36    | 629 +/- 34  | 629 +/- 37    | 629 +/- 36    | -           |
| -1.825                           | 474 +/- 25       | 474 +/- 25    | 500 +/- 25    | 498 +/- 26  | 500 +/- 25    | 500 +/- 25    | -           |
| -2.075                           | 106 +/- 12       | 112 +/- 24    | 104 +/- 15    | 102 +/- 14  | 93 +/- 19     | 117 +/- 12    |             |
| sum:                             | 1383             | 1382          | 1,415         | 1411        | 1,404         | 1,428         | -           |
| rap Int                          | 1363 +/- 42      | 1355 +/- 43   | 1398 +/- 50   | 1412 +/- 59 | 1356 +/- 48   | 1426 +/- 44   | 1438 +/- 43 |
| sum/rap Int                      | % diff           | 1.83%         | 1.21%         | 0.07%       | 3.48%         | 0.14%         |             |
| sum Case                         | e A/Case FGH %   | diff          | -2.34%        |             |               |               |             |
| Case A/Cas                       | e FGH cent Int 9 | % diff:       | -3.12%        |             |               |               |             |
|                                  |                  |               |               |             |               |               |             |
|                                  |                  |               |               |             |               |               |             |
| SUMMARY                          | North Sum        | MinBias, N    | MB/Sum % diff | South Sum   | MinBias, S    | MB/Sum % diff | -           |
| Sum cent Int                     | 18229            | 18328 +/- 175 | 0.54%         | 11578       | 11661 +/- 152 | 0.71%         | -0.55%      |
| AN1354 sum cent Int              | 18371            | 18194 +/- 224 | 1.09%         | 11548       | 11602 +/- 193 | 0.47%         | 0.47%       |

| 0-20%              |                 |              |             |             |             |             |
|--------------------|-----------------|--------------|-------------|-------------|-------------|-------------|
| Run14HeAu          | NORTH           |              |             |             |             |             |
| rap center         | Case A          | Ave FGH      | Case F      | Case G      | Case H      | AN 1354     |
| 1.325              | 122 +/- 14      | 116 +/- 15   | 116 +/- 14  | 116 +/- 15  | 116 +/- 16  | -           |
| 1.575              | 556 +/- 29      | 546 +/- 39   | 550 +/- 35  | 546 +/- 35  | 537 +/- 46  |             |
| 1.825              | 560 +/- 34      | 533 +/- 37   | 529 +/- 32  | 532 +/- 35  | 539 +/- 44  | -           |
| 2.075              | 281 +/- 25      | 280 +/- 20   | 284 +/- 19  | 280 +/- 20  | 275 +/- 22  | -           |
| sum:               | 1519            | 1,475        | 1,479       | 1,474       | 1,467       | -           |
| rap Int            | 1509 +/- 51     | 1471 +/- 53  | 1486 +/- 48 | 1470 +/- 57 | 1476 +/- 55 | 1517 +/- 64 |
| sum/rap Int % diff | 1.25%           | 0.27%        | -0.47%      | 0.27%       | -0.61%      |             |
| sum Case A/Case    | FGH % diff      | 2.94%        |             |             |             |             |
| Case A/Case FGH ce | ent Int % diff: | -2.55%       |             |             |             |             |
| cent Int Case A/ p | relim % diff:   | -0.53%       |             |             |             |             |
|                    |                 |              |             |             |             |             |
| Run14HeAu          | SOUTH           |              |             |             |             |             |
| rap center         | Case A          | Ave Case FGH | Case F      | Case G      | Case H      | AN 1354     |
| -1.325             | 240 +/- 24      | 240 +/- 27   | 236 +/- 30  | 242 +/- 22  | 241 +/- 30  | -           |
| -1.575             | 732 +/- 38      | 725 +/- 45   | 725 +/- 39  | 721 +/- 40  | 728 +/- 55  | -           |
| -1.825             | 658 +/- 43      | 653 +/- 46   | 660 +/- 43  | 667 +/- 41  | 703 +/- 65  | -           |
| -2.075             | 196 +/- 23      | 196 +/- 23   | 196 +/- 21  | 196 +/- 23  | 196 +/- 25  | -           |
| sum:               | 1826            | 1,814        | 1,817       | 1,826       | 1,877       | -           |
| rap Int            | 1814 +/- 79     | 1829 +/- 80  | 1778 +/- 66 | 1852 +/- 77 | 1857 +/- 97 | 1837 +/- 83 |
| sum/rap Int % diff | 0.66%           | -0.82%       | 2.17%       | -1.41%      | 1.07%       |             |
| sum Case A/Case    | FGH % diff      | 0.38%        |             |             |             |             |
| Case A/Case FGH ce | ent Int % diff: | 0.66%        |             |             |             |             |
| cent Int Case A/ p | relim % diff:   | -0.82%       |             |             |             |             |

| 20-40%             |                 |              |             |             |             |             |
|--------------------|-----------------|--------------|-------------|-------------|-------------|-------------|
| Run14HeAu          | NORTH           |              |             |             |             |             |
| rap center         | Case A          | Ave FGH      | Case F      | Case G      | Case H      | AN 1354     |
| 1.325              | 92 +/- 11       | 95 +/- 10    | 95 +/- 10   | 95 +/- 10   | 95 +/- 10   | -           |
| 1.575              | 370 +/- 25      | 371 +/- 29   | 366 +/- 27  | 373 +/- 25  | 374 +/- 35  | -           |
| 1.825              | 493 +/- 31      | 494 +/- 26   | 494 +/- 26  | 494 +/- 26  | 494 +/- 27  | -           |
| 2.075              | 188 +/- 16      | 202 +/- 16   | 205 +/- 16  | 200 +/- 17  | 200 +/- 16  | -           |
| sum:               | 1143            | 1,162        | 1,160       | 1,162       | 1,163       | -           |
| rap Int            | 1154 +/- 47     | 1186 +/- 43  | 1183 +/- 41 | 1189 +/- 41 | 1185 +/- 47 | 1182 +/- 40 |
| sum/rap Int % diff | -0.96%          | -2.04%       | -1.96%      | -2.30%      | -1.87%      |             |
| sum Case A/Case    | FGH % diff      | -1.65%       |             |             |             |             |
| Case A/Case FGH ce | ent Int % diff: | -2.74%       |             |             |             |             |
| cent Int Case A/ p | relim % diff:   | -2.40%       |             |             |             |             |
|                    |                 |              |             |             |             |             |
| Run14HeAu          | SOUTH           |              |             |             |             |             |
| rap center         | Case A          | Ave Case FGH | Case F      | Case G      | Case H      | AN 1354     |
| -1.325             | 133 +/- 16      | 136 +/- 14   | 137 +/- 14  | 138 +/- 14  | 132 +/- 14  | -           |
| -1.575             | 450 +/- 30      | 406 +/- 34   | 392 +/- 34  | 412 +/- 37  | 413 +/- 31  | -           |
| -1.825             | 441 +/- 25      | 438 +/- 28   | 432 +/- 31  | 441 +/- 27  | 441 +/- 25  | -           |
| -2.075             | 150 +/- 17      | 146 +/- 18   | 150 +/- 15  | 138 +/- 24  | 150 +/- 15  | -           |
| sum:               | 1170            | 1,126        | 1111        | 1,129       | 1,136       | -           |
| rap Int            | 1158 +/- 45     | 1117 +/- 53  | 1122 +/- 56 | 1137 +/- 51 | 1093 +/- 56 | 1116 +/- 49 |
| sum/rap Int % diff | 1.09%           | 0.80%        | -0.99%      | -0.71%      | 3.86%       |             |
| sum Case A/Case    | FGH % diff      | 3.83%        |             |             |             |             |
| Case A/Case FGH ce | ent Int % diff: | 3.60%        |             |             |             |             |
| cent Int Case A/ p | relim % diff:   | 3.69%        |             |             |             |             |

| 40-88%               |                   |                           |                         |                   |                            |               |
|----------------------|-------------------|---------------------------|-------------------------|-------------------|----------------------------|---------------|
| Run14HeAu            | NORTH             |                           |                         |                   |                            |               |
| rap center           | Case A            | Ave FGH                   | Case F                  | Case G            | Case H                     | AN 1354       |
| 1.325                | 116 +/- 12        | 114 +/- 14                | 114 +/- 13              | 115 +/- 17        | 114 +/- 13                 | -             |
| 1.575                | 389 +/- 24        | 382 +/- 37                | 377 +/- 27              | 383 +/- 43        | 386 +/- 41                 | -             |
| 1.825                | 454 +/- 28        | 433 +/- 37                | 448 +/- 26              | 427 +/- 44        | 424 +/- 41                 | -             |
| 2.075                | 183 +/- 16        | 188 +/- 16                | 190 +/- 17              | 188 +/- 16        | 185 +/- 14                 | -             |
| sum:                 | 1151              | 1,117                     | 1,129                   | 1,113             | 1,109                      | -             |
| rap Int              | 1123 +/- 46       | 1099 +/- 55               | 1105 +/- 46             | 1104 +/- 46       | 1087 +/- 74                | 1161 +/- 86   |
| sum/rap Int % diff   | 2.46%             | 1.62%                     | 2.15%                   | 0.81%             | 2.00%                      |               |
| sum Case A/Case      | FGH % diff        | 2.65%                     |                         |                   |                            |               |
| Case A/Case FGH ce   | ent Int % diff:   | 2.16%                     |                         |                   |                            |               |
| cent Int Case A/ pr  | relim % diff:     | -3.33%                    |                         |                   |                            |               |
|                      |                   |                           |                         |                   |                            |               |
| Run14HeAu            | SOUTH             |                           |                         |                   |                            |               |
| rap center           | Case A            | Ave Case FGH              | Case F                  | Case G            | Case H                     | AN 1354       |
| -1.325               | 140 +/- 15        | 139 +/- 20                | 135 +/- 29              | 144 +/- 14        | 138 +/- 16                 | -             |
| -1.575               | 489 +/- 28        | 488 +/- 32                | 489 +/- 31              | 485 +/- 33        | 489 +/- 33                 | -             |
| -1.825               | 393 +/- 31        | 404 +/- 25                | 403 +/- 25              | 405 +/- 25        | 405 +/- 25                 | -             |
| -2.075               | 122 +/- 14        | 129 +/- 16                | 129 +/- 15              | 129 +/- 15        | 129 +/- 17                 | -             |
| sum:                 | 1144              | 1,160                     | 1156                    | 1,163             | 1,161                      | -             |
| rap Int              | 1128 +/- 46       | 1153 +/- 41               | 1150 +/- 42             | 1155 +/- 41       | 1155 +/- 41                | 1126 +/- 112  |
| sum/rap Int % diff   | 1.41%             | 0.61%                     | 0.52%                   | 0.69%             | 0.52%                      |               |
| sum Case A/Case      | FGH % diff        | 1.29%                     |                         |                   |                            |               |
| Case A/Case FGH ce   | ent Int % diff:   | -2.19%                    |                         |                   |                            |               |
| cont Int Case A / no | relim % diff:     | 0.18%                     |                         |                   |                            |               |
| cent int case A/ pi  |                   |                           |                         |                   |                            |               |
| cent int case Ay pi  |                   |                           |                         |                   |                            |               |
| SUMMARY              | North Sum         | MinBias, N                | MB/Sum % diff           | South Sum         | MinBias, S                 | MB/Sum % diff |
|                      | North Sum<br>3786 | MinBias, N<br>3804 +/- 88 | MB/Sum % diff<br>-0.47% | South Sum<br>4100 | MinBias, S<br>4069 +/- 103 | MB/Sum % diff |

# 25.2 Corrbg Systematic Uncertainty

To calculate the systematic uncertainty due to the correlated background, we used Sanghoon's Method (described in section 6.1). Here we have included the calculations for Run15pAl as an example.

| 0-20%   |              |            |                                          |                            |                 |
|---------|--------------|------------|------------------------------------------|----------------------------|-----------------|
| NORTH   |              |            |                                          |                            |                 |
| Ave FGH | Case A       | Case A err | delta  counts_FGH - counts_A  / counts_A | sigma ( err_A / counts_A ) | delta - sigma   |
| 351     | 355          | 22         | 0.01126760563                            | 0.06197183099              | -0.05070422535  |
| 1473    | 1544         | 49         | 0.04598445596                            | 0.0317357513               | 0.01424870466   |
| 1661    | 1657         | 54         | 0.002414001207                           | 0.03258901629              | -0.03017501509  |
| 1000    | 993          | 37         | 0.007049345418                           | 0.03726082578              | -0.03021148036  |
| ave     | sigma_corrb  | g:         | 0.01667885205                            |                            |                 |
|         |              |            |                                          |                            |                 |
| SOUTH   |              |            |                                          |                            |                 |
| Ave FGH | Case A       | Case A err | delta  counts_FGH - counts_A  / counts_A | sigma ( err_A / counts_A ) | delta - sigma   |
| 384     | 396          | 25         | 0.0303030303                             | 0.06313131313              | -0.03282828283  |
| 1,427   | 1446         | 52         | 0.01313969571                            | 0.03596127248              | -0.02282157676  |
| 1,156   | 1114         | 47         | 0.03770197487                            | 0.04219030521              | -0.004488330341 |
| 364     | 348          | 35         | 0.04597701149                            | 0.1005747126               | -0.05459770115  |
|         | sigma_corrbg | •          | 0.03178042809                            |                            |                 |

| 20-40%  |              |            |                                           |                            |                |
|---------|--------------|------------|-------------------------------------------|----------------------------|----------------|
| NORTH   |              |            |                                           |                            |                |
| Ave FGH | Case A       | Case A err | delta   counts_FGH - counts_A  / counts_A | sigma ( err_A / counts_A ) | delta - sigma  |
| 218     | 227          | 17         | 0.03964757709                             | 0.07488986784              | -0.03524229075 |
| 1240    | 1272         | 42         | 0.0251572327                              | 0.03301886792              | -0.00786163522 |
| 1361    | 1388         | 44         | 0.01945244957                             | 0.03170028818              | -0.01224783862 |
| 770     | 747          | 34         | 0.03078982597                             | 0.04551539491              | -0.01472556894 |
| ave     | sigma_corrbe | ;          | 0.02876177133                             |                            |                |
|         |              |            |                                           |                            |                |
| SOUTH   |              |            |                                           |                            |                |
| Ave FGH | Case A       | Case A err | delta  counts_FGH - counts_A  / counts_A  | sigma ( err_A / counts_A ) | delta - sigma  |
| 295     | 302          | 19         | 0.02317880795                             | 0.06291390728              | -0.0397350993  |
| 989     | 999          | 37         | 0.01001001001                             | 0.03703703704              | -0.0270270270  |
| 748     | 715          | 36         | 0.04615384615                             | 0.05034965035              | -0.00419580419 |
| 207     | 207          | 17         | 0                                         | 0.08212560386              | -0.0821256038  |
|         | sigma_corrbe |            | 0.01983566603                             |                            |                |

| 40-72%  |              |            |                                          |                            |                |
|---------|--------------|------------|------------------------------------------|----------------------------|----------------|
| NORTH   |              |            |                                          |                            |                |
| Ave FGH | Case A       | Case A err | delta  counts_FGH - counts_A  / counts_A | sigma ( err_A / counts_A ) | delta - sigma  |
| 281     | 292          | 19         | 0.03767123288                            | 0.06506849315              | -0.02739726027 |
| 1262    | 1290         | 42         | 0.02170542636                            | 0.03255813953              | -0.01085271318 |
| 1450    | 1450         | 48         | 0                                        | 0.03310344828              | -0.03310344828 |
| 935     | 929          | 39         | 0.006458557589                           | 0.04198062433              | -0.03552206674 |
| ave     | sigma_corrbe | ;:         | 0.01645880421                            |                            |                |
|         |              |            |                                          |                            |                |
| SOUTH   |              |            |                                          |                            |                |
| Ave FGH | Case A       | Case A err | delta  counts_FGH - counts_A  / counts_A | sigma ( err_A / counts_A ) | delta - sigma  |
| 244     | 250          | 18         | 0.024                                    | 0.072                      | -0.048         |
| 923     | 917          | 30         | 0.006543075245                           | 0.03271537623              | -0.0261723009  |
| 740     | 714          | 31         | 0.03641456583                            | 0.04341736695              | -0.0070028011  |
| 216     | 206          | 18         | 0.04854368932                            | 0.08737864078              | -0.0388349514  |
|         |              |            |                                          |                            |                |

# 25.3 Example Fits

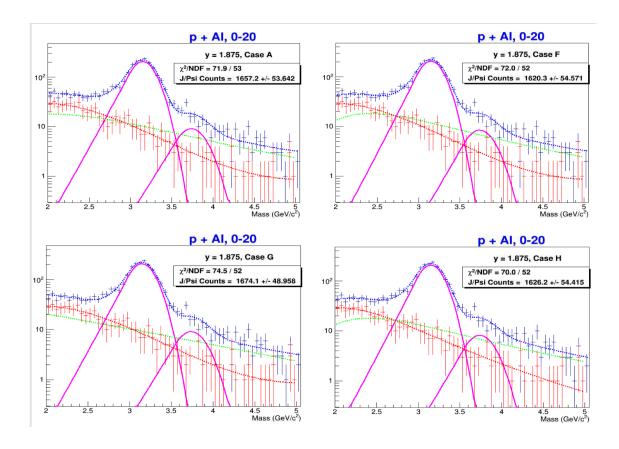
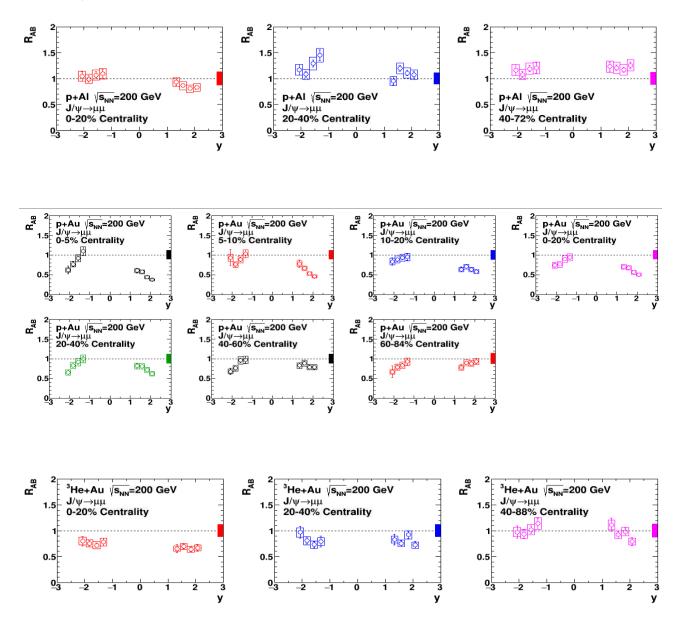




Figure 78: Top Left: pAl at forward rapidity 1.7 < y < 1.95 and 0-20% centrality for Case A compared with the corresponding Case F, G and H fits.

#### 25.4 Results

The J/ $\psi$  lineshape in Run15pAl was not fixed for the rapidity with centrality dependence as was done for  $p_T$  with centrality dependence because the fits were stable having more statistics (larger binwidths).



## **26** First and Second Release Updates

A few new plots were added after the paper's first and second release (PPG 228):

- 1.  $R_{AB}$  vs.  $\langle T_A \rangle$ , the nuclear modification factor as a function of nuclear thickness, was calculated by Tony Frawley, and is discussed in AN 1418. The macros used are included in the github repository listed on the last page of this note.
- 2. The ratio of  ${}^{3}\text{He+Au}$  to p+Au was determined after combining finer  $p_{T}$  binning in pAu to match the wider  ${}^{3}\text{He+Au}$  binning between 2.5 GeV/c 5.0 GeV/c. To combine  $p_{T}$  bins in pAu, a weighted average was used, where the weight was the pp invariant yield.

The statistical uncertainty for the ratio was determined by adding the pAu invariant yield statistical uncertainty in quadrature with the <sup>3</sup>HeAu invariant yield statistical uncertainty, since the pp statistical uncertainty cancels in the ratio. The systematic uncertainty for the ratio was determined by adding in quadrature all uncertainties for pAu and <sup>3</sup>HeAu listed in Table 3 except for the uncertainty related to the initial shape, which cancels. We also excluded all systematic uncertainties stemming from pp, which again cancels in the ratio.

The ratio was then fit with a zero degree polynomial. The fit results for backward rapidity are: fit =  $0.89 \pm 0.03 \pm 0.08$  and at forward rapidity, fit =  $0.96 \pm 0.03 \pm 0.05$ . The systematic uncertainties reported in these fits were determined by remaking the fit with all points moved to the upper or lower limits of their systematic uncertainty. The difference between the new and central means were taken as the upper and lower systematic errors, which ended up being symmetric. The probability  $^3$ HeAu is more suppressed than pAu was determined to be 90%:

$$\sigma = \sqrt{\sigma_{stat}^2 + \sigma_{syst}^2} = \sqrt{(0.026)^2 + (0.082)^2} = 0.086$$

$$\sigma = 0.086, \quad \mu = 0.89, \quad x = 1.00$$

$$z = \frac{|x - \mu|}{\sigma} = \frac{1.00 - 0.89}{0.086} = 1.28$$

Looking up the value of 1.28 in a standard normal distribution table (where the table values are listed such that they represent the area to the left of the z value), the probability is given as P = 0.89973, or 90%.

- 3. The 2008 dAu data (PPG125) and 2015 pAu data 0-20% centrality comparison was added to show PHENIX results for small systems  $J/\psi$  modification in p/d/ $^3$ He+Au
- 4.  $R_{pAu}$  vs.  $N_{coll}$ . We received centrality dependent predictions only for the pAu system. The predictions are given for 0-10% centrality, while PHENIX measured the most central collisions in 0-5% and 5-10% centrality. This is the why the curve does not extend as far as the data points.

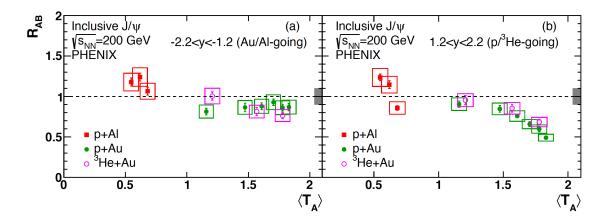



Figure 79: Nuclear modification as a function of nuclear thickness. See AN1418 for these calcualtions.



Figure 80: Ratio of <sup>3</sup>HeAu to pAu in 0-20% centrality. See previous page for details on the combined systematics and fit method. The probability that <sup>3</sup>HeAu is more suppressed than pAu is 90%.

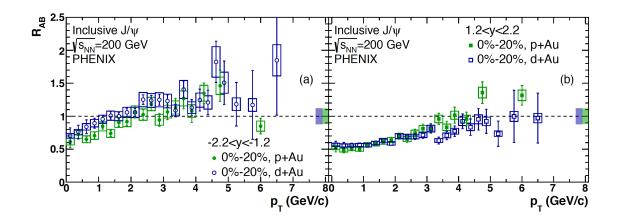



Figure 81: 2008 dAu data from PPG125 is shown with 2015 pAu.

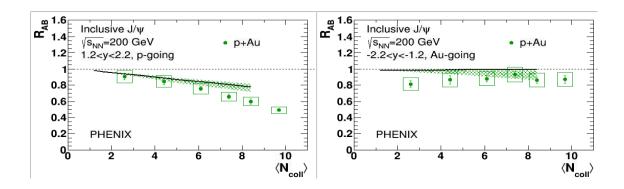



Figure 82: Black curve is cold nuclear matter(cold nuclear matter+absorption) at fwd(bkwd) rapidity and green curve is Du & Rapp Transport model. Centrality range is 0-10% for theory curves while data is 0-5% and 5-10%. EPS09 NLO was used for CNM effects.

# A Raw J/ $\psi$ Counts:

# $p_T$ /Rapidity/Centrality Integrated

Table 8:  $p_T$  integrated raw  $J/\psi$  counts for Run15pp.  $p_T$ /centrality integrated (Minimium Bias) counts for Run15pAl, Run15pAu and Run14HeAu.

| Arm   | System    | Raw J/ψ Counts   |
|-------|-----------|------------------|
| North | Run15pp   | $31,452 \pm 215$ |
|       | Run15pAl  | $11,738 \pm 138$ |
|       | Run15pAu  | $18,328 \pm 175$ |
|       | Run14HeAu | $3,804 \pm 88$   |
| South | Run15pp   | $28,511 \pm 205$ |
|       | Run15pAl  | $7,455 \pm 115$  |
|       | Run15pAu  | $11,661 \pm 152$ |
|       | Run14HeAu | $4,069 \pm 103$  |

#### Raw J/ $\psi$ Counts:

## **Rapidity Dependent** ( $p_T$ /Centrality Integrated)

For p+p, see p. 37

For p+Au, see p. 39

For p+Al, see p. 43

For <sup>3</sup>He+Au, see p. 45

### Raw J/ $\psi$ Counts:

## **Rapidity and Centrality Dependence** ( $p_T$ Integrated)

See Section 25

# B Raw J/ $\psi$ Counts:

# $p_T$ Dependent (Centrality Integrated)

Table 9: North arm raw  $J/\psi$  counts with statistical uncertainties obtained from the small systems study.

| $p_T$ [GeV/c] | Run15pp, N       | Run15pAu, N      | Run15pAl, N      | Run14HeAu, N   |
|---------------|------------------|------------------|------------------|----------------|
| 0.0 - 0.25    | $832 \pm 51$     | $421 \pm 24$     | $258 \pm 22$     | $78 \pm 11$    |
| 0.25 - 0.5    | $2246 \pm 59$    | $1074 \pm 43$    | $831 \pm 38$     | $196 \pm 17$   |
| 0.5 - 0.75    | $2848 \pm 74$    | $1393 \pm 4$     | $1056 \pm 43$    | $323 \pm 21$   |
| 0.75 - 1.0    | $3680 \pm 78$    | $1818 \pm 56$    | $1251 \pm 45$    | $347 \pm 25$   |
| 1.0 - 1.25    | $3687 \pm 82$    | $1873 \pm 51$    | $1231 \pm 45$    | $406 \pm 25$   |
| 1.25 - 1.5    | $3237 \pm 71$    | $1775 \pm 51$    | $1208 \pm 42$    | $381 \pm 22$   |
| 1.5 - 1.75    | $2877 \pm 64$    | $1732 \pm 78$    | $1050 \pm 40$    | $364 \pm 24$   |
| 1.75 - 2.0    | $2512 \pm 59$    | $1433 \pm 49$    | $934 \pm 38$     | $322 \pm 21$   |
| 2.0 - 2.25    | $1966 \pm 54$    | $1270 \pm 37$    | $783 \pm 32$     | $250 \pm 20$   |
| 2.25 - 2.5    | $1638 \pm 48$    | $1053 \pm 36$    | $597 \pm 29$     | $193 \pm 17$   |
| 2.5 - 2.75    | $1284 \pm 42$    | $875 \pm 36$     | $501 \pm 28$     | $214 \pm 17$   |
| 2.75 - 3.0    | $1086 \pm 38$    | $769 \pm 45$     | $466 \pm 28$     | $135 \pm 15$   |
| 3.0 - 3.25    | $868 \pm 34$     | $646 \pm 30$     | $392 \pm 23$     | $128 \pm 12$   |
| 3.25 - 3.5    | $704 \pm 31$     | $566 \pm 28$     | $284 \pm 20$     | $89 \pm 13$    |
| 3.5 - 3.75    | $520 \pm 27$     | $389 \pm 22$     | $240 \pm 18$     | $85 \pm 11$    |
| 3.75 - 4.0    | $378 \pm 23$     | $310 \pm 20$     | $146 \pm 14$     | 55 ± 8         |
| 4.0 - 4.25    | $275 \pm 21$     | $252 \pm 18$     | -                | -              |
| 4.25 - 4.5    | $231 \pm 17$     | $168 \pm 14$     | -                | -              |
| 4.0 - 4.5     | -                | -                | $226 \pm 17$     | $86 \pm 12$    |
| 4.5 - 4.75    | $180 \pm 15$     | -                | -                | -              |
| 4.75 - 5.0    | $125 \pm 13$     | $161 \pm 15$     | -                | -              |
| 4.5 - 5.0     | -                | -                | $144 \pm 13$     | $60 \pm 8$     |
| 5.0 - 5.25    | $105 \pm 12$     | $107 \pm 11$     | -                |                |
| 5.25 - 5.5    | $91 \pm 12$      | $86 \pm 10$      | -                | -              |
| 5.5 - 5.75    | $75 \pm 10$      | $68 \pm 9$       | -                | -              |
| 5.75 - 6.0    | $44 \pm 9$       | $57 \pm 8$       | -                | -              |
| 5.0 - 6.0     | -                | -                | $139 \pm 13$     | -              |
| 5.0 - 7.0     | -                | -                | -                | 55 ± 8         |
| 6.0 - 6.5     | $72 \pm 9$       | $55\pm8$         | -                | -              |
| 6.5 - 7.0     | $32 \pm 7$       | $41 \pm 8$       | -                | -              |
| 6.0 - 7.0     | -                | -                | $50 \pm 8$       | -              |
| $p_T$ Sum     | 31,593           | 18,535           | 11,780           | 3,769          |
| Min Bias      | $31,452 \pm 215$ | $18,328 \pm 175$ | $11,738 \pm 138$ | $3,804 \pm 88$ |
| % diff        | 0.45%            | 1.12%            | 0.36%            | 0.92%          |

Table 10: South arm raw J/ $\psi$  counts with statistical uncertainties obtained from the small systems study.

| $p_T$ [GeV/c] | Run15pp, S       | Run15pAu, S      | Run15pAl, S     | Run14HeAu, S    |
|---------------|------------------|------------------|-----------------|-----------------|
| 0.0 - 0.25    | $720 \pm 33$     | $218 \pm 19$     | $164 \pm 19$    | $68 \pm 11$     |
| 0.25 - 0.5    | $2048 \pm 54$    | $723 \pm 33$     | $523 \pm 31$    | $241 \pm 20$    |
| 0.5 - 0.75    | $2690 \pm 60$    | $841 \pm 40$     | $750 \pm 40$    | $273 \pm 22$    |
| 0.75 - 1.0    | $3299 \pm 77$    | $1196 \pm 46$    | $818 \pm 38$    | $433 \pm 48$    |
| 1.0 - 1.25    | $3528 \pm 70$    | $1439 \pm 46$    | $801 \pm 37$    | $501 \pm 27$    |
| 1.25 - 1.5    | $3066 \pm 70$    | $1118 \pm 45$    | $882 \pm 36$    | $447 \pm 23$    |
| 1.5 - 1.75    | $2796 \pm 64$    | $1195 \pm 68$    | $736 \pm 35$    | $391 \pm 24$    |
| 1.75 - 2.0    | $2185 \pm 55$    | $928 \pm 40$     | $560 \pm 30$    | $366 \pm 24$    |
| 2.0 - 2.25    | $1743 \pm 44$    | $819 \pm 37$     | $491 \pm 28$    | $265 \pm 19$    |
| 2.25 - 2.5    | $1424 \pm 44$    | $663 \pm 31$     | $367 \pm 26$    | $239 \pm 18$    |
| 2.5 - 2.75    | $1073 \pm 38$    | $552 \pm 28$     | $317 \pm 24$    | $238 \pm 18$    |
| 2.75 - 3.0    | $961 \pm 35$     | $464 \pm 26$     | $266 \pm 22$    | $151 \pm 16$    |
| 3.0 - 3.25    | $737 \pm 31$     | $357 \pm 22$     | $227 \pm 18$    | $113 \pm 12$    |
| 3.25 - 3.5    | $542 \pm 27$     | $304 \pm 21$     | $161 \pm 15$    | $93 \pm 11$     |
| 3.5 - 3.75    | $457 \pm 24$     | $245 \pm 18$     | $117 \pm 12$    | $89 \pm 13$     |
| 3.75 - 4.0    | $342 \pm 21$     | $179 \pm 16$     | $88 \pm 11$     | 59 ± 9          |
| 4.0 - 4.25    | $231 \pm 17$     | $142 \pm 10$     | -               | -               |
| 4.25 - 4.5    | $154 \pm 15$     | $125 \pm 13$     | -               | -               |
| 4.0 - 4.5     | -                | -                | $102 \pm 13$    | $73 \pm 10$     |
| 4.5 - 4.75    | $145 \pm 13$     | $82 \pm 11$      | -               | -               |
| 4.75 - 5.0    | $86 \pm 10$      | $61 \pm 9$       | -               | -               |
| 4.5 - 5.0     | -                | -                | $51\pm8$        | 45 ± 8          |
| 5.0 - 5.25    | $92 \pm 11$      | $41\pm7$         | -               | -               |
| 5.25 - 5.5    | $83 \pm 11$      | $36 \pm 7$       | -               | -               |
| 5.5 - 5.75    | $53 \pm 9$       | $28 \pm 6$       | -               | -               |
| 5.75 - 6.0    | $34 \pm 7$       | $17 \pm 5$       | -               | -               |
| 5.0 - 6.0     | -                | -                | $67 \pm 9$      | -               |
| 5.0 - 7.0     | -                | -                | -               | 52 ± 9          |
| 6.0 - 6.5     | $49\pm8$         | $19 \pm 5$       | -               | -               |
| 6.5 - 7.0     | $46 \pm 8$       | $18 \pm 5$       | -               | -               |
| 6.0 - 7.0     | -                | -                | $11 \pm 4$      | -               |
| $p_T$ Sum     | 28,583           | 11,810           | 7,500           | 4,138           |
| Min Bias      | $28,511 \pm 203$ | $11,661 \pm 152$ | $7,455 \pm 115$ | $4,069 \pm 103$ |
| % diff        | 0.25%            | 1.65%            | 0.61%           | 1.68%           |

# C Raw J/ $\psi$ Counts: $p_T$ /Centrality Dependent

| NORTH      |            | centrality 0-20 |            | 1 | NORTH      |            | centrality 20-40 | )          | 1 | NORTH      |            | centrali  | ty 40-88  |            |
|------------|------------|-----------------|------------|---|------------|------------|------------------|------------|---|------------|------------|-----------|-----------|------------|
| pt [GeV/c] | pAl        | pAu             | HeAu       |   | pt [GeV/c] | pAl        | pAu              | HeAu       |   | pt [GeV/c] | pAl        | pAu 40-60 | pAu 60-84 | HeAu       |
| 0.125      | 88 +/- 13  | 139 +/-15       | 30 +/- 6   |   | 0.125      | 64 +/- 9   | 100 +/-12        | 25 +/- 6   |   | 0.125      | 87 +/- 12  | 96 +/-10  | 81 +/-10  | 21 +/- 5   |
| 0.375      | 343 +/- 24 | 345 +/-26       | 78 +/- 10  | 1 | 0.375      | 214 +/- 17 | 294 +/-23        | 82 +/- 10  |   | 0.375      | 252 +/- 22 | 254 +/-19 | 197 +/-17 | 45 +/- 9   |
| 0.625      | 406 +/- 28 | 461 +/-31       | 115 +/- 12 |   | 0.625      | 289 +/- 22 | 377 +/-24        | 102 +/- 12 |   | 0.625      | 370 +/- 24 | 286 +/-23 | 287 +/-20 | 104 +/- 12 |
| 0.875      | 473 +/- 25 | 577 +/-35       | 134 +/- 13 |   | 0.875      | 345 +/- 24 | 491 +/-36        | 85 +/- 11  |   | 0.875      | 444 +/- 27 | 406 +/-27 | 352 +/-24 | 114 +/- 11 |
| 1.125      | 510 +/- 33 | 655 +/-31       | 157 +/- 15 |   | 1.125      | 384 +/- 25 | 556 +/-28        | 133 +/- 13 |   | 1.125      | 387 +/- 25 | 407 +/-23 | 295 +/-21 | 110 +/- 16 |
| 1.375      | 460 +/- 24 | 595 +/-32       | 146 +/- 14 |   | 1.375      | 362 +/- 25 | 517 +/-27        | 118 +/- 12 |   | 1.375      | 416 +/- 23 | 407 +/-25 | 303 +/-22 | 133 +/- 13 |
| 1.625      | 386 +/- 26 | 555 +/-30       | 164 +/- 17 |   | 1.625      | 349 +/- 21 | 505 +/-27        | 103 +/- 11 |   | 1.625      | 342 +/- 21 | 414 +/-24 | 268 +/-21 | 114 +/- 12 |
| 1.875      | 385 +/- 24 | 506 +/-29       | 119 +/- 16 | 1 | 1.875      | 253 +/- 22 | 429 +/-25        | 105 +/- 11 |   | 1.875      | 305 +/- 22 | 267 +/-21 | 233 +/-17 | 105 +/- 13 |
| 2.125      | 281 +/- 21 | 432 +/-25       | 101 +/- 13 |   | 2.125      | 257 +/- 21 | 363 +/-22        | 73 +/- 10  |   | 2.125      | 231 +/- 19 | 264 +/-17 | 198 +/-16 | 87 +/- 12  |
| 2.375      | 246 +/- 20 | 337 +/-23       | 80 +/- 10  |   | 2.375      | 167 +/- 14 | 318 +/-20        | 64 +/- 12  |   | 2.375      | 190 +/- 17 | 210 +/-17 | 183 +/-16 | 49 +/- 11  |
| 2.625      | 186 +/- 16 | 300 +/-21       | -          |   | 2.625      | 150 +/- 15 | 254 +/-17        | -          |   | 2.625      | 165 +/- 16 | 178 +/-14 | 145 +/-14 | -          |
| 2.75       | -          | -               | 133 +/- 15 |   | 2.75       | -          | -                | 125 +/- 14 |   | 2.75       | -          | -         | -         | 99 +/- 12  |
| 2.875      | 184 +/- 17 | 276 +/-21       | -          |   | 2.875      | 127 +/- 14 | 212 +/-17        | -          |   | 2.875      | 150 +/- 15 | 166 +/-14 | 115 +/-12 | -          |
| 3.125      | 159 +/- 14 | 220 +/-18       | -          |   | 3.125      | 113 +/- 11 | 178 +/-14        | -          |   | 3.125      | 125 +/- 13 | 140 +/-13 | 107 +/-12 | -          |
| 3.25       | -          | -               | 104 +/- 11 |   | 3.25       | -          | -                | 53 +/- 8   |   | 3.25       | -          | -         | -         | 66 +/- 9   |
| 3.375      | 116 +/- 15 | 209 +/-16       | -          |   | 3.375      | 91 +/- 11  | 135 +/-13        | -          |   | 3.375      | 82 +/- 10  | 101 +/-11 | 108 +/-12 | -          |
| 3.625      | 99 +/- 12  | 133 +/-13       | -          | 1 | 3.625      | 83 +/- 11  | 114 +/-12        | -          |   | 3.625      | 57 +/- 8   | 104 +/-11 | 47 +/-7   | -          |
| 3.75       | -          | -               | 60 +/- 8   |   | 3.75       | -          | -                | 44 +/- 8   |   | 3.75       | -          | -         | -         | 43 +/- 7   |
| 3.875      | 58 +/- 10  | 117 +/-12       | -          |   | 3.875      | 52 +/- 8   | 90 +/-10         | -          |   | 3.875      | 45 +/- 8   | 62 +/-8   | 37 +/-7   | -          |
| 4.25       | -          | 143 +/-14       | -          |   | 4.25       | -          | 134 +/-14        | -          |   | 4.25       | -          | 86 +/-10  | 63 +/-9   | -          |
| 4.5        | 142 +/- 13 | -               | 65 +/- 9   |   | 4.5        | 113 +/- 12 | -                | 41 +/- 7   |   | 4.5        | 114 +/- 12 | -         | -         | 34 +/- 7   |
| 4.75       | -          | 120 +/-12       |            | 1 | 4.75       | -          | 68 +/-10         | -          |   | 4.75       | -          | 71 +/-10  | 44 +/-8   | -          |
| 6          | 86 +/- 10  | 145 +/-13       | 23 +/- 6   | 1 | 6          | 47 +/- 8   | 121 +/-12        | 18 +/- 5   |   | 6          | 58 +/- 8   | 77 +/-10  | 57 +/-9   | 16 +/- 4   |
| Sum        | 4607       | 6263            | 1509       |   | Sum        | 3457       | 5256             | 1171       |   | Sum        | 3819       | 3998      | 3118      | 1138       |

| SOUTH      |            | centrality 0-20 |            | SOUTH     |            | centrality 20-40 | 1          |
|------------|------------|-----------------|------------|-----------|------------|------------------|------------|
| pt [GeV/c] | pAl        | pAu             | HeAu       | pt [GeV/d | l pAl      | pAu              | HeAu       |
| 0.125      | 61 +/- 14  | 87 +/- 12       | 23 +/- 5   | 0.125     | 61 +/- 9   | 62 +/-9          | 23 +/- 6   |
| 0.375      | 211 +/- 20 | 300 +/- 24      | 104 +/- 13 | 0.375     | 149 +/- 15 | 198 +/-16        | 81 +/- 11  |
| 0.625      | 318 +/- 28 | 360 +/- 24      | 118 +/- 14 | 0.625     | 225 +/- 20 | 227 +/-19        | 92 +/- 12  |
| 0.875      | 372 +/- 28 | 482 +/- 33      | 190 +/- 19 | 0.875     | 237 +/- 17 | 330 +/-18        | 120 +/- 14 |
| 1.125      | 397 +/- 29 | 617 +/- 27      | 215 +/- 19 | 1.125     | 221 +/- 16 | 413 +/-23        | 145 +/- 14 |
| 1.375      | 423 +/- 23 | 466 +/- 29      | 190 +/- 16 | 1.375     | 214 +/- 19 | 309 +/-24        | 116 +/- 13 |
| 1.625      | 360 +/- 26 | 516 +/- 32      | 188 +/- 16 | 1.625     | 208 +/- 21 | 321 +/-24        | 105 +/- 13 |
| 1.875      | 260 +/- 22 | 406 +/- 25      | 184 +/- 16 | 1.875     | 166 +/- 16 | 225 +/-20        | 99 +/- 13  |
| 2.125      | 181 +/- 18 | 374 +/- 31      | 113 +/- 14 | 2.125     | 169 +/- 14 | 213 +/-18        | 78 +/- 10  |
| 2.375      | 169 +/- 17 | 292 +/- 21      | 126 +/- 13 | 2.375     | 100 +/- 13 | 155 +/-16        | 68 +/- 10  |
| 2.625      | 151 +/- 16 | 254 +/- 20      | -          | 2.625     | 81 +/- 10  | 146 +/-17        | -          |
| 2.75       | -          | -               | 154 +/- 15 | 2.75      | -          | -                | 120 +/- 12 |
| 2.875      | 122 +/- 15 | 181 +/- 17      | -          | 2.875     | 78 +/- 9   | 126 +/-15        | -          |
| 3.125      | 126 +/- 14 | 157 +/- 16      | -          | 3.125     | 53 +/- 9   | 108 +/-12        | -          |
| 3.25       | -          | -               | 89 +/- 11  | 3.25      | -          | -                | 60 +/- 8   |
| 3.375      | 78 +/- 11  | 123 +/- 14      | -          | 3.375     | 40 +/- 7   | 100 +/-11        | -          |
| 3.625      | 50 +/- 8   | 117 +/- 13      | -          | 3.625     | 23 +/- 5   | 64 +/-10         | -          |
| 3.75       | -          | -               | 73 +/- 10  | 3.75      | -          | -                | 38 +/- 7   |
| 3.875      | 36 +/- 7   | 75 +/- 11       | -          | 3.875     | 26 +/- 6   | 44 +/-8          | -          |
| 4.25       | -          | 106 +/- 11      | -          | 4.25      | -          | 90 +/-10         | -          |
| 4.5        | 61 +/- 9   | -               | 57 +/- 9   | 4.5       | 57 +/- 8   | -                | 35 +/- 6   |
| 4.75       | -          | 69 +/- 9        | -          | 4.75      | -          | 48 +/-8          | -          |
| 6          | 31 +/- 7   | 72 +/- 9        | 14 +/- 4   | 6         | 25 +/- 6   | 50 +/-7          | 20 +/- 5   |
| Sum        | 3407       | 5054            | 1838       | Sum       | 2132       | 3228             | 1200       |