CERN, May 12th, 2020

Towards ITS3 sensor development

G. Aglieri Rinella and W. Snoeys

ITS3 - planning

- Several 65 nm flavors
 - high density logic
 - RF
 - imaging (ISC).
- ISC preferred : 2D stitching experience, special sensor features, lower defect densities, etc, but limited to 5 metal layers (4 thin + 1 thick), no MPWs available.

Proposal:

start in ISC with Multiple Layers per Reticle with standard metal stack

- Avoid not representative results, more and thicker metals later
- Multiple Layer per Reticle 1 x 1.5 cm²
 - cost in between MPW and engineering run
 - minimizes Tower's burden for gds/MLR assembly (using template)
- Several starting materials (can use same readout) among which:
 - one more conventional for Alpide-like,
 - (stacked or not) photodiode for increased radiation tolerance
- 2 MLRs instead of MPWs + engineering runs, first MLR ~ September to efficiently use the area
- Still need final proposal validation/endorsement by the foundry

 needs balance with support resources

Status at CERN

- Rudimentary design environment in place at CERN
- Working on:
 - Simple test structures (transistors, small pixel matrices...)
 - Need to define standard interfaces/test setups...
- Target MLR in the fall including also a demonstrator to use large available area efficiently
- After proposal validation provide access to other groups.

Transistor test structures (Geun Hee Hong and Wenjing Deng)

- First layout finished. Found relatively large gate leakage currents in 1.2 V devices for ISC, have now recently added a structure including 3.3 V devices.
- Compatible with standard probe card at CERN. Testing probably at CERN.
- ISC: 2 sets of probe pads, foot print ~ 1.8 by 2.5 mm² (2 x, 1.2 and 3.3 V)
- Also prepared test structure in RF (3 by 2.5 mm²).
 - Very different process with more transistor flavors => larger test structure for logic/rf.

Transistor test structures (Geun Hee Hong and Wenjing Deng)

														V
			1	S11/t = (10/8.1) A rrow		_		2						
-		gate oxide	18	pMOS SLVt 5.0x6.0	nMOS SLVt 5.0x6.0	19		18		VSS	19			1
	SLVt	STI	17	pMOS SLVt 0.20x6.0	nMOS SLVt 0.20x6.0	20		17	pSOURCE	nSOURCE	20			
		Min. Size	16	pMOS SLVt 0.20x0.10	nMOS SLVt 0.20x0.10	21		16	pGATE1_diff_bias	nGATE1_diff_bias	21			
		gate oxide	15	pMOS 5.0x6.0	nMOS 5.0x6.0	22		15	pGATE2_diff_bias	nGATE2_diff_bias	22			
	LVt	STI	14	pMOS 0.20x6.0	nMOS 0.20x6.0	23		14	pGATE3_diff_bias	nGATE3_diff_bias	23			
		Min. Size	13	pMOS 0.20x0.10	nMOS 0.20x0.10	24		13	pGATE4_diff_bias	nGATE4_diff_bias	24			
			12	gate1 P	gate1 N	25	Min. Size	12	pDRAIN1_0.20x0.10	nDRAIN1_0.20x0.10	25			
			11	pSOURCE	nSOURCE	26	Narrow/Long	11	pDRAIN1_0.20x10.0	nDRAIN1_0.20x10.0	26			
			10	VDD	VSS	27	Wide/Short	10	pDRAIN1_1.0x0.10	nDRAIN1_1.0x0.10	27			
			9	gate2 P	gate2 N	28	Min. Size	9	pDRAIN2_0.20x0.10	nDRAIN2_0.20x0.10	28			
		Diff. W	8	pMOS 0.40x0.10	nMOS 0.40x0.10	29	Narrow/Long	8	pDRAIN2_0.20x10.0	nDRAIN2_0.20x10.0	29			
			7	pMOS 0.60x0.10	nMOS 0.60x0.10	30	Wide/Short	7	pDRAIN2_1.0x0.10	nDRAIN2_1.0x0.10	30			
	I V†		6	pMOS 1.00x0.10	nMOS 1.00x0.10	31	Narrow/Long	6	pDRAIN3_0.20x10.0	nDRAIN3_0.20x10.0	31			
	LVI	Diff. L	5	pMOS 1.00x0.20	nMOS 1.00x0.20	32	Wide/Short	5	pDRAIN3_1.0x0.10	nDRAIN3_1.0x0.10	32			
			4	pMOS 1.00x0.50	nMOS 1.00x0.50	1	Narrow/Long	4	pDRAIN4_0.20x10.0	nDRAIN4_0.20x10.0	1		122	
			3	pMOS 1.00x1.00	nMOS 1.00x1.00	2	Wide/Short	3	pDRAIN4_1.0x0.10	nDRAIN4_1.0x0.10	2			

• 3.3 V device structure similar

- Analog readout (Francesco Piro, Wenjing Deng and Geun Hee Hong)
 - Limited to a smaller number of pixels
- Digital readout (Leonardo Cecconi)
 - More practical for larger sensitive areas with many pixels
 - Can be vehicle to prototype a possible architecture (among several)
 - Need comparator (ultimately need compact and low power, not immediately)

MLR submission ("September")

- Transistor test structures, likely to be tested at CERN
- Elementary analog pixel test structure
- Possibly digital pixel test structure/small demonstrator, requires comparator
- Ring oscillators
- Possibly SEU chip (need elementary digital flow)
- Opportunity for early IP and front end validation
 - Desirable : bandgap, DACs
 - Possibly PLL + built-in regulator

Further activities this year

- Draft full plan and start regular meetings with other groups sharing work
- Improve design environment, digital libraries, special DRC checks
- Architecture studies (some activity in 180 nm for the back up solution ?)
- Need to go through the submission process to understand turn-around time
- After positive feedback of first results: (may run into next year)
 - Put full digital flow in place (outsource ?)+ frame contract
 - More general access to the technology
- If negative revert to 180 nm as back up solution

- Proposal for ISC 65 nm waiting for foundry validation
- After proposal validation work on access for other groups.
- MLR is larger submission, some delay to use area more efficiently.
- Will re-contact groups and start regular meetings soon