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Outline

1. Part I. Multi-particle correlations
Perfect fluidity without thermalization

2. Part II: Probing the initial state with photons and dileptons




Classical Coherence
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1. Due to time dilation the probe sees free constituents
2. and more fluctuations are resolved leading to a growth in the
gluon density at higher energies (smaller x)




The CGC Framework

. Physical observables are computed as an average over fast
partons (large x) which behave as static random charges

(O)y = / [Dp] Wy [p] Olp)

. and shouldn’t depend on how we separate the fast and slow
degreees of freedom (i.e. must satisfy JIMWLK equation)

OWy |p]

oy = H[p|Wy[p]




The CGC Framework (cont.)

. The operator of interest can be computed perturbatively
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. however these coefficients can contain large logarithms of In (p_)
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which become as large as classical term for Y > 1/ag

. Note: these are similar to the large logarithms that
appear in DIS which are re-summed in BFKL




Factorization in the Glasma

1. These logarithms can be re-summed and absorbed into the
universal functionals 1/y with behavior governed by JIMWLK.
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Example: Double Inclusive Spectra
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Lxample: Double Inclusive Spectra

K.D., Gelis, Lappi, Venugopalan
arXiww:0911.2720, NPA
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More results and code made available by A. Dumitru:
http://physics.baruch.cuny.edu/node /82




Two classes of fluctuations
1. Zero Modes having p, =0

2. Non-Zero Modes with pn # 0

e These fluctuations grow exponentially after collision
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Secular Divergences

1. Secular terms can also be re-summed
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2. The above expression re-sums terms of order
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3. The physics is contained in the spectrum of fluctuations

_ In Progress with:
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Perfect fluidity without thermalization

1. Let us now look at a scalar theory as a toy model

In Progress with: Epelbaum, Gelis, Venugopalan

2. Similar mechanisms at work during preheating in
the early universe

See works of Kofman, Linde, Starobinsky; D.T. Son, Rubakov




Scalar theory as a toy model

1. Let’s look at a classical scalar theory as an IVP
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Toy Model (cont.)
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Quantum Decoherence

1. Now perform the ensemble average
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over a toy spectrum of fluctuations
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Quantum Decoherence
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Note: This won’t happen in a §b2 theory. The dependence of

the period on the I.C. is a signature of non-linearity.




Part 11

Probing the initial state with EM probes

arXiv: 0903.1764, NPA
arXiv: 0803.1262, NPA




Reminder on shear viscosity

. In a fluid with finite shear viscosity and shear gradients the first
correction to the stress energy tensor is

10 = st = i) = [ B £+ 57(0)
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. On the microscopic side this is contained in the viscous
correction to the distribution function
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Viscous corrections at work

Quark and gluons have different relaxation times and therefore
different lows through ¢ f
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Leading log order photon production

Compton
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1. At leading log order we have
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Leading log order photon production

1. The photon rate from those two previous diagrams is
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2. Note that fq(g¢y) is the thermal quark distribution function
evaluated at the photon momentum 4~ .
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QGP Photon Spectra
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QGP Photon “Temperature”
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Vo(Qr)

QGP Photon Elliptic Flow
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Conclusions

1. Part I: Quantum decoherence is a critical part of
understanding the space-time evolution of HICs.

e Long range correlations
e carly flow / thermalization
e topological fluctuations

2. Part II: Probing the initial state with EM probes

e Photon and dilepton Teg and elliptic flow are a sensitive probe to the

shear viscosity, and early time dynamics of the medium.




