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OUTLINE

• The PAMELA Si-W calorimeter electronics

• Developments for future space calorimeters

• FE electronics for the NCC: considerations
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The PAMELA Si-W Calorimeter
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• Extraction of the antiproton signal from the background of electrons and 
identification of the positrons from the proton background

• Rejection factor better than 10 4 with a selection efficiency > 90%
• Measurement of the electron’s and positron’s energy with a resolution 

better than 10%
• Three-dimensional reconstruction of the

spatial development of the showers

• Modular sampling Si-W calorimeter
with high granularity (W thickness 
2.6 mm, → 0.74 X0)

• Transverse segmentation: ≈ 2.4 mm
strip pitch

• Si detector: 8x8 cm2, 380 µm thick
• Sensitive area: 24 x 24 cm2

• Total Depth: 16.3 X0, 0.6 λ0, 22 layers
Si-X/W/Si-Y

• Total number of channels: 4224
• Self-trigger to study the electronic 

component up to 2 TeV→ geometric 
factor ≈ 600 cm2sr, 30 times larger 
than PAMELA



Calorimeter electronics: requirements
The calorimeter will operate in orbit → radiation environment:

– Total Ionizing Dose: 3 krad inside the PAMELA container

– Possible Single Event Effects: LATCH-UP and UPSET (digital logic)

Therefore:

→ commercial electronic devices tested up to 30 krad

→ fault tolerant design and use of redundancy

Data storage allocated for PAMELA: 10G byte per day

– expected average trigger rate of 12 Hz
– more than 40000 read-out channels

Digital processing to:

– Compress the event data

– Reduce the trigger rate discarding non interesting events

> 80G byte every day
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The CR1.4P: requirements & design specs
Low power cons.• Low power budget available (50 W for CALO!)

• Measure interactions of very high energy particles

• Measure non-interacting particles with high precision

• Large detector capacitance, CD ≈ 180 pF

> 1000 MIPs range

At least 8:1 on 1 MIP

Low noise slope
Circuit design specs:

- Supply +/- 5 V
- Number of channels/chip 16
- Maximum power consumption 100 mW/chip
- 1 MIP 4.9 fC = 30500 e-

- Linear dynamic range 1400 MIPs
- Maximum output signal 7 V
- Sensitivity 5 mV/MIP
- Maximum detector leakage current 100 nA
- Peaking time 1 µs
- Detector capacitance 180 pF
- ENCmax @ 180 pF 3000 e- rms
- Integrated calibration capacitance 2 pF
- Logic levels 0/+5 V TTL
- Channel-to-channel pedestal variation +/- 50 mV
- Chip-to-chip pedestal variation +/- 100 mV
- Readout speed 0.5 µs/channel
- Output load 20 kΩ//25 pF
- Counting rate 30 kHz



The CR1.4P: general architecture

• Alcatel/Mietec 2 um mixed A/D CMOS;
• Input calibration ciruit;
• “Folded cascode” CSA;
• Cf = 8 fF;
• PMOS charge reset;
• CR-RC shaper, 1 µs peaking time;
• T/H circuit + buffer;
• Output MUX;
• “X2” output stage with DC bias;
• Self-trigger circuit (not shown here)

Architecture of a single channel of the CR1.4P

R&D phase from 1996 to 1998 (3 different prototypes tested)
10 wafers (about 1300 chips) produced between 1998 and 2000
Total yield > 70%
264 chips equip the FM of the PAMELA Calorimeter
Adopted also by the PAMELA TRD
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CR1.4P

Max. deviation from
linear fit < 2.5 %
average linearity
better than 1 %

sensitivity 5.1 mV/MIP
Rf(CSA)=630 kΩ

Linearity and dynamic range

Linear dynamic range
1400 MIPs or 7 pC

Gianluigi Zampa Santa Fe, NM, USA            June 23, 2004



CR1.4P

Measured noise
2765 e- rms + 4.7 e-/pF

Noise
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Performance in operational conditions

MIP signal from cosmic muons, Gaussian + Landau fit, S/N ≈ 9/1
Data taken during pre-integration tests of the FM Calorimeter
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Cross-talk items
Cross-talk effects (occurring in both the detector and the electronics) of different origins become important
in case of very large charge deposits and should be accounted for.
3 different “cross-talk” effects:
1. Coherent negative in the detector (through the bias-ring), linearly with deposited energy, ~ - 0.5%
2. Coherent negative in the chip (through the bias circuitry of the shapers), linear with deposited energy, ~ - 0.5%
3. Positive on the two closest-neighbour strips (“classical” cross-talk) ~ 1%

Example (data from June 2002 CERN SPS test beam): 
Before correction After correction



CR1.4P self-trigger option

•Science motivation: measure very high energy electrons (from 300 GeV to ~ 2 TeV)
•These events are quite rare compared to the normal event rate of PAMELA

important to have a large geometric factor to collect a reasonable statistics during
the 3-year estimated mission lifetime

•Using the calorimeter “stand-alone” can extend the geometric factor of PAMELA
from 21 cm2sr to ≈ 600 cm2sr, therefore:

• The CR1.4P was provided also with a “self-triggering” option

Simplified block scheme of 
the self-trigger circuit in 
the CR1.4P
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Detector boards

AD977A Analog Devices ADC
• Resolution: 16 bit
• Conversion time: 5 µs
• Power consumption: typ. 60 mW
• Serial data interface

HOUSE KEEPING
CIRCUITS

• Latch-up detection circuitry and power supply 
bus isolation capability

• FPGA: redundant scheme to minimize SEU
(triple voting mechanism)

• Short-circuit protection of all common digital 
signals
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DAQ system

A54SX72A Actel FPGA
• Logic gates: 72000
• I/O pins: 171 (PQFP208)
• Utilization: 70%

ADSP2187L Analog Devices DSP
• Program memory: 16k Words (24 bit)
• Data memory: 16k Words (16 bit)
• Computational power: max. 52 MIPS
• Multi-function instructions
• Host interface to access internal memory
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Developments for future
space calorimeters

• Future astroparticle physics satellite-borne experiments will probe the 
cosmic rays spectrum at energies up to 1016 eV (“knee” region)

• Depending on the instrumentation that will be used, energy deposits 
between 105 MIP (NUCLEON) and 106 MIP (ACCESS) are expected in a 
readout channel

→CASIS R&D project: Si detectors and front-end ASICs for high-energy 
calorimetry in space

→ radiation tolerance
→ low power consumption → low voltage CMOS

→ large acceptance → large # of read-out chan.
→ A/D converter integrated in the FE-ASIC

KEY ISSUES:
• Space environment
• Satellite constraints
• Rare events (1 part./m2year)
• Dynamic range ≥ 10000 MIPs
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Innovative Front-End architecture
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ADVANTAGES:
• A high default gain maximizes SNR for 1-MIP signals
• The modulator is insensitive to gain switch transients
• The modulator efficiently filters the electronic noise (resolution set 

by the over-sampling ratio)
• Several possible filter implementations: ASIC, FPGA and DSP



New silicon detectors

p  strips+

n  strips+

hole signal

electron signal

preampli 1

preampli 2

Gain CSA1 = 100 CSA2
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FE electronics for the NCC:
considerations

FE electronics requirements

Is CR1.4P suitable?

Possible alternative solution
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FE electronics requirements

• Dynamics: 500 MIPs
• SNR: ~10 for 1-MIP signals
• Si detectors: 6x6 cm2, 300 µm thick, segmented in a 4x4

matrix of 1.5x1.5 cm2 pixels
• Pixel capacitance: ~60 pF
• Readout rate: 10 MHz
• Readout channels: individual pixels, passive summation?
• Digitization: every clock or after LVL1 accept ?
• LL1 trigger: which kind of information from NCC ?
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Is CR-1.4P suitable?
• Dynamics of 1400 MIPs is a bit too high, but gain is good for a 12 bit 

ADC with a range of 2.5V

• The outputs of the 16 channels are multiplexed

• Maximum rate of about 10 kHz (can be improved a bit at the cost of 
higher noise)

• Self-trigger system works only for large signals and requires a gating 
signal

• Pedestal dependence on temperature (1 MIP/°C) and on total input 
signal of the chip

NCC requires a new FE ASIC → a different architecture is 
strongly suggested
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Possible alternative solution
Architecture of the proposed new FE ASIC (32 channels ?):

• Charge Sensitive Amplifiers 
with dynamic range of 2500 
MIPs

• Correlated Double Sampling 
at RHIC clock, dynamic 
range of 500 MIPs

• Clocked comparator at the 
output for LL1 trigger 
system
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• Reuse as much as possible what already exists: AMU/ADC32
• Alternatively, real-time digitization with external ADCs and digital 

memory
• If not enough space for the electronics near the calorimeter, consider 

the integration of 12 bit pipeline ADCs (one per channel)
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Extra slides
Results obtained with the calorimeter



Second level trigger

• Aim: use the anticoincidence (AC) 
signal to reduce the trigger rate

• Problem: backscattering of particles 
in the calorimeter

→ false trigger reduction 70% at 95% of efficiency, estimated  trigger rate of ~5 Hz

Gianluigi Zampa Santa Fe, NM, USA            June 23, 2004



Calorimeter calibrations
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• Baseline variations

– detectors biased through a forward polarized p-n junction operating below 
threshold → high impedance toward the power supply → undesired injection in 
all strips through their junction capacitance

– CR-1.4P: common bias of all shapers with poor output impedance→ change in 
the bias voltage → undesired signal in all channels 

• Linear model:

SNR = 8.6 ± 0.3

mip = 108 keV

• Conversion gain Test beam
50 GeV/c protons
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Baseline variations: model results

(mip)

(mip)Linearity Parameters distributions
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Energy measurement

• Test beam σ2=0.055, simulations σ2=0.061
• Expected resolution of the fully equipped 

calorimeter:  ≤5% in this energy range

Data taken during test beam at 
CERN SPS, June 2002, with 
Calorimeter FM

• Test beam
Simulations

• Test beam
Simulations
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200 GeV/c particles

Particle identification

• Efficiency 95%
• Rejection factor 3·10 4

(8 protons out of 250000
misidentified as electrons)

Data taken during test beam at 
CERN SPS, June 2002, with 
Calorimeter FM

Gianluigi Zampa Santa Fe, NM, USA            June 23, 2004



Self-trigger system test

100 GeV/c e-

• Front-end trigger time response depends on signal amplitude → time coincidence to 
reduce delay spread (± 150 ns is the max. allowed jitter for a sampling error < 1%)

• Simulations to define system parameters:
– Active trigger layers: from 4th to 9th
– threshold = 150 mip → trigger rate = 10 mHz
– Coincidence window = 90 ns

• Self-trigger signals of the calorimeter sections logically OR-ed

particle
p 

[GeV/c]
measured
efficiency

simulated
efficiency

e- 100 0.172 ± 0.004 0.236 ± 0.007

e- 150 0.679 ± 0.008 0.986 ± 0.002

e- 180 0.888 ± 0.005 0.990 ± 0.002

e- 300 – 0.994 ± 0.007

p 100 (2 ± 1)·10-4 (6.3 ± 0.8)·10-3

p 150 (1.3 ± 0.2)·10-3 (25 ± 2)·10-3

• Delay@100GeV/c 530 ns, asymptotic value
430 ns → the signal sampling is accurate
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