In-medium QCD cascade: democratic branching and wave turbulence

Jet Quenching at RHIC VS LHC BNL April 17, 2013

Outline

- Phenomenological motivations
- In-medium gluon branching (BDMPSZ mechanism)
- Multiple branching, (de) coherence, in-medium cascade
- In-medium cascade, turbulent flow
- Relevance to di-jet asymmetry
- Conclusion

Work done in collaboration with F. Dominguez, E. Iancu and Y. Mehtar-Tani (arXiv:1209.4585, 1301.6102)

Phenomenological motivations

Dí-jet asymmetry

there is more to it than just 'jet quenching'...

Missing energy is associated with additional radiation of many soft quanta at large angles

Perhaps reflecting a genuine feature of the in-medium QCD cascade (JPB, E. Iancu and Y. Mehtar-Tani, arXiv: 1301.6102)

Subleading jet (p_T>30GeV/c)

In-medium parton branching BDMPSZ mechanism

(Baier, Dokshitzer, Mueller, Peigné, Schiff; Zakharov ~ 1996)

The BDMPSZ mechanism for in-medium branching

Gluon emission is linked to momentum broadening

$$\frac{1}{\tau_{\rm f}} \sim \frac{k_\perp^2}{2\omega} \qquad \qquad \Delta k_\perp^2 = \hat{q} \Delta t$$

Time scale for the branching process $au_{
m br}(\omega) \sim \sqrt{rac{2\omega}{\hat{a}}}$

Medium of finite extent

$$au_{
m br} \lesssim L \Rightarrow \omega \lesssim \omega_c \qquad \omega_c \sim \hat{q}L^2$$

$$\omega_c \sim \hat{q}L^2$$

Formation time and emission angle

Typical branching kT and angle

$$k_{\rm br}^2 = \hat{q}\tau_{\rm br}$$

$$\theta_{\rm br} \sim k_{\rm br}/\omega \sim (\hat{q}/\omega^3)^{1/4}$$

Hard gluon: small angle, long time

$$au_{
m br} \lesssim L$$

$$\omega \lesssim \omega_{c}$$

$$au_{\rm br} \lesssim L \qquad \omega \lesssim \omega_c \qquad \theta_{\rm br} \gtrsim \theta_c$$

Soft gluon: large angle, short time

$$au_{
m br} \ll L$$

$$\omega \ll \omega_c$$

$$\tau_{\rm br} \ll L$$
 $\omega \ll \omega_c$ $\theta_{\rm br} \gg \theta_c$

BDMPSZ spectrum

$$\omega \frac{\mathrm{d}N}{\mathrm{d}\omega} \simeq \frac{\alpha_s N_c}{\pi} \sqrt{\frac{\omega_c}{\omega}} \equiv \bar{\alpha} \sqrt{\frac{\omega_c}{\omega}} = \bar{\alpha} \frac{L}{\tau_{\mathrm{br}}(\omega)}$$

Hard emissions

- rare events, with probability $\sim \mathcal{O}(lpha_s)$
- dominate energy loss: $E_{
 m hard} \sim lpha_s \omega_c$
- small angle, not important for di-jet asymmetry

Soft emissions

- frequent, with probability $\sim \mathcal{O}(1)$
- weaker energy loss: $E_{
 m soft} \sim lpha_s^2 \omega_c$
- but arbitrary large angles: control di-jet asymmetry

large angles emissions are dominated by soft multiple branchings

Multiple branchings (de)-coherence in-medium cascade

Multiple emissions

A priori complicated by interferences

In vacuum, these interferences lead to angular ordering
In medium color coherence is rapidly lost via rescattering

Mehtar-Tani, Salgado, Tywoniuk (1009.2965; 1102.4317) Iancu, Casalderey-Solana (1106.3864)

In medium, interference effects are subleading Independent emissions are enhanced by a factor L/τ_f

JPB, F. Dominguez, E. Iancu, Y. Mehtar-Tani, arXiv: 1209.4585

Resumming the leading terms

When $ar{lpha}L/ au_{br}\sim 1$ all powers of $ar{lpha}L/ au_{br}\sim 1$ need to be resummed.

Since independent emissions dominate, the leading order resummation is equivalent to a probabilistic cascade, with nearly local branchings

Blob: BDMPSZ spectrum

Line: momentum broadening

JPB, Dominguez, Iancu and Mehtar-Tani (arXiv:1209.4585)

Note: already implemented in Monte Carlo codes

MARTINI (Jeon, Gale, Schenke) Q_Pythia (Armesto, Salgado et al) Stachel, Wiedemann, Zapp

Evolution equation for the gluon spectrum

(after integration over kT)

$$D(x,\tau) = x\frac{dN}{dx} \qquad x = \frac{\omega}{E}$$

Probabilistic equation ('gain-loss')

$$\frac{\partial D(x,\tau)}{\partial \tau} = \int dz \, \mathcal{K}(z) \left[\sqrt{\frac{z}{x}} D\left(\frac{x}{z},\tau\right) - \frac{z}{\sqrt{x}} D\left(x,\tau\right) \right]$$

$$\mathcal{K}(z) = \frac{\bar{\alpha}}{2} \frac{f(z)}{[z(1-z)]^{3/2}}, \qquad f(z) = [1-z(1-z)]^{5/2}$$

Formally analogous to DGLAP. But very different kernel... and physics.

In-medium QCD cascade Turbulent flow at small x

Short times

$$\frac{\partial D(x,\tau)}{\partial \tau} = \int dz \, \mathcal{K}(z) \left[\sqrt{\frac{z}{x}} D\left(\frac{x}{z},\tau\right) - \frac{z}{\sqrt{x}} D(x,\tau) \right]$$

At short time, single emission by the leading particle $(D_0(\tau=0,x)=\delta(x-1))$ D is the BDMSZ spectrum

How do multiple branchings affect this spectrum?

Naively, we could expect the spectrum to be depleted at large \times and to increase rapidly at small \times , so as to keep the total energy constant

$$\int_0^1 \mathrm{d}x \, D(\tau, x) = 1$$

But this is not what happens!

One finds (exact result)
$$D(x,t) \simeq \frac{t}{\sqrt{x}} e^{-\pi t^2}$$
 for $x \ll 1$

Fine (local) cancellations between gain and loss terms

BDMPS spectrum emerges as a fixed point, scaling, spectrum

Characteristic features of wave turbulence (Kolmogoroz, Zakharov)

The source problem

Relevance to dí-jet asymmetry

Evolution of the inclusive spectrum

J.-P. B., E. Iancu, Y. Mehtar-Tani, arXiv: 1301.6102

Energy flow at large angle

 $E_{
m in}$ energy in the jet with x>xo

 E_{out} energy in the spectrum with x<xo

 $E_{
m out} + E_{
m flow}$ energy out of the jet cone

Conclusions

In-medium cascade is very different from the in-vacum cascade (no angular ordering, turbulent flow)

Provides a simple and natural mechanism for transfer of jet energy towards very small angles