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- Phenomenological motivations

- In-medium gluon branching (BDMPSZ mechanism)

- Multiple branching, (de)coherence, in-medium cascade
- In-medium cascade, turbulent flow

- Relevance to di-jet asymmetry

- Conclusion

Work done in collaboration with F. Dominguez, E. Iancu and Y. Mehtar-Tani
(arXiv:1209.4585, 1301.6102)






Di—j et asymmetry

there is more to it than just ‘jet
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Missing energy is associated with additional
radiation of many soft quanta at large angles
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Perhaps reflecting a genuine feature of the in-medium

QCD cascade (JPB, E. Iancu and Y. Mehtar-Tani,
arXiv: 1301.6102)

quenching’...
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(Baier, Dokshitzer, Mueller, Peigné, Schiff; Zakharov ~ 1996)




The BDMPSZ, mechanlsm
for tn-meedium bra wchiwg
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Gluon emission is linked to
momentum broadening
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Time scale for the branching process T, (w) ~ 7

Medium of finite extent Tor S L= w S we we ~ gL*



Formation time and emission angle

Typical branching KT and angle
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Hbr ™ kbr/w ~ (qA/wS) 1/4

Hard gluon: small angle, long time

Tor S L W S We Ovr = O,
Soft gluon: large angle, short time

Tor <K L W << W, Oy > 0.



BDMPSZ spectrum.
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Hard emissions

- rare events, with probability ~ O(«,)
- dominate energy loss: FEhag ~ s,
- small angle, not important for di-jet asymmetry

Soft emissions

- frequent, with probability ~ 0(1)
- weaker energy loss: FEgup ~ oéwc

- but arbitrary large angles: control di-jet asymmetry

large angles emissions are dominated by soft multiple branchings






MuL’chLe EVWALSSLONS

A priori complicated by interferences
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In vacuum, these interferences lead to angular ordering

In medium color coherence is rapidly lost via rescattering

Mehtar-Tani, Salgado, Tywoniuk (1009.2965; 1102.4317)
Iancu, Casalderey-Solana (1106.3864)

In medium, interference effects are subleading
Independent emissions are enhanced by a factor L/ Tf

JPB, F. Dominguez, E. Iancu, Y. Mehtar-Tani, arXiv: 1209.4585



Resumming the leading terms

When &L/Tp. ~ 1 all powers of aL /71y, ~ 1 need to be resummed.

Since independent emissions dominate, the leading order resummation is equivalent to a
probabilistic cascade, with nearly local branchings
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Blob: BDMPSZ spectrum
Line: momentum broadening

JPB, Dominguez, Iancu and Mehtar-Tani (arXiv:1209.4585)

Note: already implemented in Monte Carlo codes

MARTINI (Jeon, Gale, Schenke)
Q_Pythia (Armesto, Salgado et al)
Stachel, Wiedemann, Zapp



Evolution equation for the gluon spectrum
(after integration over kT)

D(x, 1) de x -
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Probabilistic equation (‘gain-loss’)
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Formally analogous to DGLAP. But very different kernel... and physics.

=== A QCD cascade of a new type






Short times

~

oD (x,T) 2 /T 2
:/dle(z)[ —D(:,T) = \/ED(LIT,T)]

or T Z

At short time, single emission by the leading particle (D)(r =0,2) = §(z — 1))

D is the BDMSZ spectrum

t=0.02 (spect)
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How do multiple branchings affect this spectrum ?



Naively, we could expect the spectrum to be depleted at large x and
to increase rapidly at small x, so as to keep the total energy
constant

1
/ de D(t,z) =1
0

t=0.02 (spect)

ts > 1o > 11 > 1y
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But this is not what happens !

One finds (exact result) D(x,t) ~ bt for r < 1
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t=0.02 (spect)
t=0.1 (spect)
t=0.5 (spect)
t=1 (spect)

Fine (local) cancellations between gain and loss terms

BDMPS spectrum emerges as a fixed point, scaling, spectrum

Characteristic features of wave turbulence (Kolmogoroz, Zakharov)



The source probLem

At this (fixed) point
ALL the energy flows

through the whole at x=1, at a
constant rate
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Energy is injected

system
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grows, keeping the
shape of the
spectrum at small x






evolution 0'(: the tnelustve spectrum
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Estimate ¢ = 1GeV2/fm @ =40Gev &% ~ 0.1 Efow =~ 15 GeV

L=4fm
J.-P. B., E. Iancu, Y. Mehtar-Tani, arXiv: 1301.6102
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Energy flow at large angle

E; energy in the jet with x>xo

E .t energy in the spectrum with x<xo

Eout + Eﬂow energy out of the jet cone
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In-medium cascade is very different from
the in-vacum cascade (no angular ordering,
turbulent flow)

Provides a simple and natural mechanism for
transfer of jet energy towards very small angles




