Jet Quenching at RHIC vs LHC in Light of Recent dAu vs pPb Controls

RIKEN BNL Research Center Workshop April 15-17, 2013 at Brookhaven National Laboratory

Particle Correlations at RHIC: Present & Future

Fuqiang Wang Purdue University

Two types of correlations

FLOW

JET QUENCHING

Initial-state anisotropy + fluctuations Hydrodynamic evolution Final-state event-wise correlations Bulk medium properties Initial-state hard processes Jet-medium interactions Final-state modified particle correlations Probe ΔE mechanisms, medium properties

Flow and nonflow

Flow due to hydrodynamic pressure Anisotropy due to pathlength-dep. energy loss

Nonflow correlations

High p_T suppression & re-emergence

- Clear evidence of jet-quenching, and it's a final-state effect
- Finite probability of non-interacting jets at high p_{T} .

Low-intermediate p_T broadening

v₂ subtracted but not higher harmonics

0.3

0 0.5 2 2.5

1.5

 $\Delta \phi$ (rad)

0.5

2 2.5

1.5

∆ (rad)

All v_n's are possible

- Event-by-event fluctuations can generate initial-state triangular anisotropy
- Observable consequence in the final-state due to hydro evolution

v₃ measurements at RHIC

PHENIX, PRL107 (2011)

STAR, arXiv:1301.2187

• There might be tension between STAR/PHENIX

v_3 decreases with $\Delta\eta$

- v_3 decreases with $\Delta \eta$
- Consistent with untriggered correlations

v_3 depends $\Delta\eta$

• $\Delta\eta$ -dependent flow fluctuations? Harmonic planes may decorrelate over $\Delta\eta$

> Bozek et al. PRC83 (2011) Petersen et al. PRC84 (2011) Xiao et al. PRC87 (2013)

Δη-gap method may not be suitable

• Nonflow?

Flow/nonflow vs. η

- Method does not assume flow shape vs. $\boldsymbol{\eta}$
- Flow seems independent of η .
- (Nonflow/flow)² ~ 4%, (Nonflow/flow) ~ 20%,
- (Fluctuation/flow)² ~ 13%, Fluctuation/flow ~ 36%

Why is `flow' factorization so good? Because it is bootstrapped!

$$V_n(p_T^a, p_T^b) \times V_n(p_T^{ref}, p_T^{ref}) \approx V_n(p_T^a, p_T^{ref}) \times V_n(p_T^b, p_T^{ref})$$

Kikola et al. PRC86 (2012) 014901

Independent jet fragmentation \rightarrow Jet correlation may approximately factorize!

$$\left\langle \cos n(\phi_i - \phi_j) \right\rangle = \left\langle \cos n[(\phi_i - \psi_{jet}) - (\phi_j - \psi_{jet})] \right\rangle = \left\langle \cos n(\phi_i - \psi_{jet}) \right\rangle \left\langle \cos n(\phi_j - \psi_{jet}) \right\rangle$$

Anisotropic flow + non-flow: $V_{2\Delta}(p_T^a, p_T^b) = v_2(p_T^a)v_2(p_T^b) + \delta_2(p_T^a)\delta_2(p_T^b)$

$$\frac{V_{n\Delta}(p_{T}^{b}, p_{T}^{a})}{v_{n}'(p_{T}^{b})v_{n}(p_{T}^{c})} - 1 = \frac{v_{n}(p_{T}^{b})v_{n}(p_{T}^{c}) + \delta_{n}(p_{T}^{c}) + \delta_{n}(p_{T}^{c})\delta_{n}(p_{T}^{c})}{\frac{v_{n}(p_{T}^{a})v_{n}(p_{T}^{c}) + \delta_{n}(p_{T}^{a})\delta_{n}(p_{T}^{c})}{\sqrt{v_{n}^{2}(p_{T}^{c}) + \delta_{n}^{2}(p_{T}^{c})}} \frac{v_{n}(p_{T}^{b})v_{n}(p_{T}^{c}) + \delta_{n}(p_{T}^{b})\delta_{n}(p_{T}^{c})}{\sqrt{v_{n}^{2}(p_{T}^{c}) + \delta_{n}^{2}(p_{T}^{c})}} - 1 \\ \approx \left(\frac{\delta_{n}(p_{T}^{a})}{v_{n}(p_{T}^{a})} - \frac{\delta_{n}(p_{T}^{c})}{v_{n}(p_{T}^{c})}\right) \left(\frac{\delta_{n}(p_{T}^{b})}{v_{n}(p_{T}^{b})} - \frac{\delta_{n}(p_{T}^{c})}{v_{n}(p_{T}^{c})}\right) \quad (14)$$

- $\delta_n(p_T) / v_n(p_T) \sim 20\% \rightarrow \text{deviation} \sim 10^{-2} 10^{-3}$
- $\delta_n(p_T) \propto v_n(p_T) \rightarrow \text{precise factorization}$

Is it important to remove nonflow?

Important because it affects extracted QGP medium property, such as η/s .

Hydro-data comparison (e.g. Uli Heinz): $v/\epsilon \rightarrow \eta/s \sim (1-2) * 1/4\pi$ 20% error on ϵ (Glauber vs CGC) \rightarrow 100% uncertainty on η/s .

The question is how to reduce uncertainty in v_2/ϵ :

- 1. ϵ from theoretical part
- 2. v₂ from experimental part

Song, Bass, Heinz, etal. PRL 106, 192301 (2011)

"The extraction of η/s from a comparison with hydrodynamics thus requires careful treatment of both fluctuation and nonflow effects"

v_n background subtraction

- It's absolutely important to remove all sizeable v_n's in jet-correlations
- What v_n to subtract? v_n with minimal jet (nonflow) contributions
- But v_n have to be measured by final-state particle correlations

Word of caution: With nonvanishing odd harmonics, nothing really prevents people from fitting everything to v_n . Fine in itself, but dangerous if people subsequently take it as entirely hydro flow. The real question is what's in v_n ?

- Apply $\Delta\eta$ -gap: may not work because of potential $\Delta\eta$ -dep. flow fluctuations
- Viable way is to use as low p_T reference particles as possible. Disadvantage is flow is small at low p_T .

Dihadron correl. with vn subtractions

Todoroki (PHENIX), QM12, arXiv:1304.2852

Relative to the Event Plane

- Ridge is largely reduced.
- Evolution of structure seems to remain from in-plan to out-of-plane.
- Possible biases in EP reconstruction due to jet-correlations?

RBRC workshop on Jet Quenching in light of pA, April 15-17, 2013

v₃ effect on 3-particle correl.

- v2 and v4 subtracted.
- Does v3 remove all of the off-diag.
 peak strength? Need further study.
- Deflected jets contributions (to diag. peaks) must be present.
- Need to be followed up.

pA and dA ridge

• LHC+RHIC more stringent test on theoretical models.

Where is hydro bkgd to triggers?

Prospective future measurements

- Hydro v_n explains majority of ridge and double-peak correlations in heavy-ions. Does hydro v_n explain all of the correlation signals?
- v_n measurements with minimal nonflow: go to low p_T reference particles, $\Delta \eta$ -gap?
- Precision measurements of jet-correlations with v_n subtraction
- Dihadron correlations w.r.t. EP with EP far removed in $\boldsymbol{\eta}.$
- More clever way to separate flow/nonflow?
- *γ*-jet with no flow background
- Heavy flavor induced correlations
- Can we learn something fundamental from small systems?
- How high dA multiplicity can we reach at RHIC?

