Small-x physics and pA control measurements

Adrian Dumitru RIKEN BNL and Baruch College, CUNY

rcBK evolution:

basic "degrees of freedom": dipole scattering amplitude in fund. rep. (2-point fct)

$$\mathcal{N}_F(r, Y; b, A) \equiv \frac{1}{N_c} \operatorname{tr} \langle 1 - V^{\dagger}(y) V(z) \rangle_Y$$
$$\mathbf{r} = \mathbf{y} - \mathbf{z}$$

BK equation (incl. non-linear terms \rightarrow saturation of scattering amplitude!) $\frac{\partial \mathcal{N}(r,Y)}{\partial Y} = \int d^2 r_1 \ K(r,r_1,r_2) \left[\mathcal{N}(r_1,Y) + \mathcal{N}(r_2,Y) - \mathcal{N}(r,Y) - \mathcal{N}(r_1,Y) \mathcal{N}(r_2,Y) \right]$ $\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$

running-coupling kernel (Balitsky prescription)

$$K(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2}) = \frac{N_c \,\alpha_s(r^2)}{2\pi^2} \left[\frac{1}{r_1^2} \left(\frac{\alpha_s(r_1^2)}{\alpha_s(r_2^2)} - 1 \right) + \frac{r^2}{r_1^2 r_2^2} + \frac{1}{r_2^2} \left(\frac{\alpha_s(r_2^2)}{\alpha_s(r_1^2)} - 1 \right) \right]$$
$$\alpha_s(r^2) = \frac{4\pi}{\beta \log \left(4\frac{C^2}{r^2\Lambda^2} + \mu \right)}$$

 $\mathcal{N}_A = 2 \mathcal{N}_F - \mathcal{N}_F^2$

dipole scattering amplitude in adj. rep.

uGD at x = 3x10⁻⁴ (e.g. pt=2GeV, y=0, √s=7TeV)

what is the initial condition for rcBK evolution ?

- don't really know, small-x doesn't tell
- needs to be set at "sufficiently" small x_0 so that rcBK can take it from there; in practice, $x_0=0.01$?
- for large A, MV model may provide a decent ini.
 cond. :

$$\mathcal{N}_F(r, Y=0; b) = 1 - \exp\left[-\frac{r^2 Q_{s0}^2(b)}{4} \ln\left(\frac{1}{\Lambda r} + e\right)\right]$$

• alternative I.C. (AAMQS 2011), also denoted by MV^{γ} or Set 2 (γ >1 !):

$$\mathcal{N}_F(r, Y=0; b) = 1 - \exp\left[-\frac{\left[r^2 Q_{s0}^2(b)\right]^{\gamma}}{4} \ln\left(\frac{1}{\Lambda r} + e\right)\right]$$

AAMQS: EPJ C71 (2011)

J. Albacete et al ("AAMQS"): arXiv:1012.4408

	fit	$\frac{\chi^2}{d.o.f}$	Q_{s0}^2	σ_0	γ	C	m_l^2
	GBW						
a	$\alpha_{fr} = 0.7$	1.226	0.241	32.357	0.971	2.46	fixed
a'	$\alpha_{fr} = 0.7 \ (\Lambda_{m_{\tau}})$	1.235	0.240	32.569	0.959	2.507	fixed
b	$\alpha_{fr} = 0.7$	1.264	0.2633	30.325	0.968	2.246	1.74E-2
с	$\alpha_{fr} = 1$	1.279	0.254	31.906	0.981	2.378	fixed
c'	$\alpha_{fr} = 1 \ (\Lambda_{m_\tau})$	1.244	0.2329	33.608	0.9612	2.451	fixed
d	$\alpha_{fr} = 1$	1.248	0.239	33.761	0.980	2.656	2.212E-2
	MV						
e	$\alpha_{fr} = 0.7$	1.171	0.165	32.895	1.135	2.52	fixed
f	$\alpha_{fr} = 0.7$	1.161	0.164	32.324	1.123	2.48	1.823E-2
g	$\alpha_{fr} = 1$	1.140	0.1557	33.696	1.113	2.56	fixed
h	$\alpha_{fr} = 1$	1.117	0.1597	33.105	1.118	2.47	1.845E-2
h'	$\alpha_{fr} = 1 \ (\Lambda_{m_{\tau}})$	1.104	0.168	30.265	1.119	1.715	1.463E-2

Table 1: Parameters from fits with only light quarks to data with $x \leq 10^{-2}$ and for all available values of $Q^2 \leq 50 \text{ GeV}^2$ for different initial conditions, fixed values of the coupling in the infrared $\alpha_{fr} = 0.7$ and 1 and light quark masses either taken fixed $m_l = 0.14 \text{ GeV}$ or left as a free parameter. Fits a', c' and h' correspond to taking the τ mass as reference scale for the running of the coupling. Units: Q_{s0}^2 and m_l^2 are in GeV² and σ_0 in mb.

- in what follows, this I.C. is used even for a nucleon, with $MV:Q_{s0,N}^2 = 0.2 \text{ GeV}^2$ $MV^{\gamma}: Q_{s0,N}^2 = 0.168 \text{ GeV}^2$
- for nucleus, at transv. position b: $Q^{2}_{s0}(b) = (\# \text{ nucleons at } b) \times Q^{2}_{s0,N}$

side view

fluctuations of valence partons in _ plane

7

1. Initial conditions for the evolution (x=0.01) $N(\mathbf{R}) = \sum_{i=1}^{A} \Theta\left(\sqrt{\frac{\sigma_0}{\pi}} - |\mathbf{R} - \mathbf{r_i}|\right) \longrightarrow Q_{s0}^2(\mathbf{R}) = N(\mathbf{R}) Q_{s0, \text{nucl}}^2$ $\varphi(x_0 = 0.01, k_t, R)$ 2. Solve local running coupling BK evolution at each transverse point or KLN model $\varphi(x, k_t, R)$ 3 Calculate gluon production at each transverse point according to kt-factorization

INPUT: $\varphi(\mathbf{x} = 0.01, \mathbf{k_t})$ FOR A SINGLE NUCLEON:

$$N_{\text{part,A}}(\vec{b}) = \sum_{i=1\cdots A} \Theta \left(P(\vec{b} - \vec{r_i}) - \nu_i \right) .$$

$$P(b) = 1 - \exp[-\sigma_g T_{pp}(b)], \qquad T_{pp}(b) = \int d^2 s T_p(s) T_p(s - b)$$

$$T_p(r) = \frac{1}{2\pi B} \exp[-r^2/(2B)] \qquad \sigma_{NN}(\sqrt{s}) = \int d^2 b \left(1 - \exp[-\sigma_g T_{pp}(b)]\right)$$

thickness fluctuations:

(average of 1 / 9 nucleon target compared to 5-nucl. target)

k_{\perp} -factorization, multiplicity in A+B --> g+X

unintegrated gluon distribution:

$$\varphi(k,Y;b,A) = \frac{C_F k^2}{\alpha_s(k)} \int \frac{d^2 \mathbf{r}}{(2\pi)^3} e^{-i\mathbf{k}\cdot\mathbf{r}} \mathcal{N}_A(r,Y;b,A)$$

multiplicity:

$$\frac{dN^{A+B\to g}}{dy\,d^2p_t\,d^2b} = K\,\frac{2}{C_F}\frac{1}{p_t^2}\int^{p_t}\frac{d^2k_t}{4}\,\alpha_s(Q)\,\varphi\left(\frac{|p_t+k_t|}{2},x_1\right)\,\varphi\left(\frac{|p_t-k_t|}{2},x_2\right)$$

Notes:

- finite as $p_t \rightarrow 0$ if UGD does not blow up
- $x_{1,2} = (p_t/\sqrt{s}) \exp(\pm y)$; $Y_{1,2} = \log(x_0/x_{1,2})$ where $x_0=0.01$ is assumed onset of rcBK evol.
- K = 1.5 2, appears reasonable

high-pt hadron production in pp @ LHC requires steeper I.C.

- no g → h multiplication factor κ here! (normalization set by Fragm. Func.)
- rcBK in dilute regime
- LHC constrains initial condition

z

pt distributions in pp \rightarrow ch at TEVATRON / LHC energies

Collinear pQCD fact. Sassot, Zurita, Stratmann PRD 82 (2010)

$$\mathcal{N}_F(r, Y=0; b) = 1 - \exp\left[-\frac{\left[r^2 Q_{s0}^2(b)\right]^{\gamma}}{4} \ln\left(\frac{1}{\Lambda r} + e\right)\right]$$

for nuclei:

- do we use same γ as for a proton ?
- do we assume $Q_{s0}^2 \sim T_A$ or $Q_{s0}^2 \sim T_A^{1/\gamma}$

→ w/o a better idea of where the AAMQS parameter comes from, we need to factor this into uncertainties...

A^{1/3} dependence of initial conditions for BK/JIMWLK beyond MV action

$$S = \int d^{2}x_{\perp} \left\{ \frac{1}{2\mu^{2}} \rho^{a} \rho^{a} - \frac{1}{\kappa_{3}} d^{abc} \rho^{a} \rho^{b} \rho^{c} + \left[\frac{1}{\kappa_{4}} \left(\delta^{ab} \delta^{cd} + \delta^{ac} \delta^{bd} + \delta^{ad} \delta^{bc} \right) + \frac{1}{\kappa_{4}'} \left(d^{abe} d^{cde} + d^{ace} d^{bde} + d^{ade} d^{bce} \right) \right] \rho^{a} \rho^{b} \rho^{c} \rho^{d} \right\}$$

+ soft YM fields + coupling of soft ↔ hard

•
$$\mu^2 \sim g^2 A^{1/3}$$
; $\kappa_3 \sim g^3 A^{2/3}$; $\kappa_4 \sim g^4 A$

Elena Petreska et al: PRD 2011 E. Petreska + A.D., NPA 2012

$$1 - \mathcal{N}(r, x_0) = \frac{1}{4} r^2 Q_{s0}^2 \log \frac{1}{r\Lambda} - \frac{1}{6\pi^3} \frac{g^8}{\kappa_4} \left(\int dx^- \mu^4(x^-) \right)^2 r^2 \log^3 \frac{1}{r\Lambda}$$

(in log $(1/r\Lambda) \gg 1$ limit)

Let's start with AA : centrality and energy dependence of multiplicities; (confirms KLN idea)

• assumes $N_{hadr} = \kappa \cdot N_{glue}$ with $\kappa \approx 5$

Back to AA : centrality and energy dependence of E_{\perp}

- (again, no g → h multiplication factor κ here)
 1d ideal hydro: E^f_⊥/Eⁱ_⊥ ≈ T_f/T_i ≈ 1/2
- interesting: $(dE_{\perp}/d\eta) / (A \sqrt{s}) \approx 0.5\%$ at LHC₂₇₆₀, centrl Pb+Pb !

forward rapidity :

- more suppression due to small-x evolution
- R_{pA} goes down by some 0.1 0.2

More detailed view of the "medium" in AA ?

Analyze classical field configurations at midrapidity: $\eta=0$, 2D

what is structure of $B_{\underline{z}}$ field ?

magnetic flux loop in x-y plane:

$$M(R) = \mathcal{P} \exp\left(ig \oint dx^{i} A^{i}\right)$$
$$W_{M}(R) = \frac{1}{N_{c}} \langle \operatorname{tr} M(R) \rangle$$
$$W_{M}^{Z(2)}(R) = \langle \operatorname{sgn} \operatorname{tr} M(R) \rangle$$

Magnetic field domains (B_z^3 at $\tau=0$)

SU(2) solution :

- area law for loops with area $A \ge 1.5 2$
- $\sigma_{\rm M} \sim 0.12 \ {\rm Q_s}^2$; thermal SU(N): $\sigma_M \sim g_{\rm 3D}^2 \sim (g^2 T)^2$
- small loops \notin Z(2) but roughly ok for large ones!
- structure of $B_z \sim$ uncorrelated vortices ?!
- $R_{vtx} \sim 1/Q_s$ from onset of area law

A.D., Y. Nara, E. Petreska: arXiv:1302.2064

Propagation of hard particles in background of magnetic Z(N) vortices

 $\int_0^\infty ds \int \mathcal{D}x^\mu \exp\left(i\int^s d\tau \, m\dot{x}^2\right) \, \exp(-\sigma_M A) \, = \, \frac{i}{p^2 + i\sigma_M \frac{m}{p_T}}$

У

classical trajectory ?

only if paths within one
 de Broglie length (1/p_T) have
 same Aharonov-Bohm phase

• destructive interference leads to Anderson localization

Summary

- p+Pb @ LHC control shows no "initial state jet quench"; (wasn't expected by more recent/realistic CGC predictions) suppression was predicted and seen at semi-hard pt ~ a few GeV
- forward rapidity data from LHC very important
- the "medium" appears much more interesting than featureless homogenous soup: density fluctuations, long. fields, vortices, ...