Photon and Neutral Pion Production from p+p to Au+Au Collisions at $\sqrt{s_{NN}}=200$ GeV

鳥井 久行、理化学研究所 2004年12月1日 セミナー@広大 _{目次}

23ページ

9ページ

9ページ

4ページ

2ページ

1

- 1. 研究動機8ページ
- 2. 検出器技術
- 3. 実験と解析
- 4. p+pでの結果と議論
- 5. Au+Auでの結果と議論
 6. 結論

Chapter 1 研究動機

RHICの特徴

- ・ 陽子陽子衝突としては、世界最大エネルギー
 - 世界初の偏極陽子衝突コライダー
 - スピン物理:陽子スピンに対するグルーオンの寄与を測定 するために、pQCDによる解釈が不可欠。そのための基礎 としてまずinclusive cross sectionを測定しpQCDで説明でき るかどうかを確認する必要がある。
- ・陽子陽子衝突は、多くのgluonジェットを含む。
 - gluonジェットの理解するのに有利である。
 - Non-perturbative な効果

π⁰生成

hadron 2

 $\sigma(p_i, p_j, p_k, \alpha_s(\mu_R), O^2/\mu_R, O^2/\mu_F)$

$$\sigma_{1+2}^{3} = \sum_{i,j,k} \int dx_{i} dx_{j} dx_{k} \times f_{1}^{k}(x_{k},\mu) \cdot f_{2}^{j}(x_{j},\mu)$$
parton distribution function(PDF)

 $\times \sigma_{i,j}^{k} \left(p_{i}, p_{j}, p_{k}, \alpha_{s}(\mu_{R}), Q^{2} / \mu_{F}, Q^{2} / \mu_{F} \right)$

 $\times D_k^3(z_k,\mu_F)$

fragmentation function(FF)

 μ_R =renormalization scale, μ_F =factorization scale

- PDF/FFは主に deep inelastic scattering(DIS)/e++e-消滅反応で測定。
 - Q-scaling violationは、pQCDの成果
- いくつかの理論グループが、実験PDF/FFデータを x^a(1-x)^b 式でフィット。
 - PDF : GRV, CTEQ, MRST グループ
 - FF : BKK, KKP, Kretzer グループ
 - グループ間の違いは、使用するデータやフィット範囲の違い。

これらのPDF/FFを使った next-to-leading order(NLO) pQCD 計算との比較を行う

PDF/FFは主に deep inelastic scattering(DIS)/e++e-消滅反応で測定。

これらのPDF/FFを使った next-to-leading order(NLO) pQCD 計算との比較を行う

クオークの発見

1969年 at SLAC
20GeV電子を使った深

非弾性散乱実験。

- 実験の当初の目的は、レ ゾナンスハドロン生成の エネルギー依存性を見る ためだったとか。
- 偶然、弾性散乱と比較して非弾性散乱の割合が 非常に大きいことを発見。
- 点電荷、つまりパートンの発見につながる。

1990年、ノーベル賞受賞

Friedman, Kendall, Taylor

Bjorken スケーリング

実験当初は、非弾性散乱の増大が何を意味するのか分からなかった。 $\frac{d\sigma}{dq^2 d\upsilon} = C \times \left[W_2 \cos^2(0.5\theta) + 2W_1 \sin^2(0.5\theta) \right]$

Bjorken先生が、形状因子がエネルギー移行量に依らないことを指摘。

7

今セミナーの目的

- e+p 衝突 深非弾性散乱
 - 形状因子が運動量移行に依存しない
 - → 点電荷の存在 (Bjorken先生は賢い)

- p+p 衝突
 - 深非弾性散乱に比べてクオークに対する運動量移行は測定できない。 その代わりに、衝突エネルギーを使って散乱断面積を「形状」に関する 項と「相互作用」関する部分に分ける。
 - 「形状」が衝突エネルギーに依存しない。

p+p衝突においてパートンの存在を感じていただきたい。

σ(p.p.p.a.(μ.), Q2/μ. Q2/μ.

研究動機:金金衝突

- QCD 理論
 - クオーク間に働く強い相互作用を説明す る理論
 - クオークはハドロン中に閉じ込められて いることがわかっている。
- では、どうすれば閉じ込められたクオークを開放することができるだろう?
 - 高エネルギー衝突

→漸近的自由性

- 高い温度

- 高密度

- Quark Gluon Plasmaへの相転移
- ・ なぜQGPが面白いのか?
 - Big Bang直後(10⁻¹⁰sec後)の宇宙初期
 の状態であると考えられている。
 - 原子核、素粒子、宇宙物理の基本的問題であるだけでなく、人類の自然認識の根幹に関わる問題に答えるものである。

QGP 探索

- QGPを探索するための方法
 →"Jet Quenching"
- "Jet Quenching"とは?
 - 核子核子の初期衝突により散乱され たクオークがQGP中を通過する際に グルーオン制動輻射によりエネルギー 減衰(Quenching)を受ける。
 - このエネルギー減衰は、クォークからの生成物であるハドロンのエネルギー分布の低エネルギー側への推移として観測出来るはずである。
- →QCD理論により(Quenchingがない 場合の)予想が立てやすい。
- √s_{NN}=200GeVまでのp+p, Au+Au衝 突をRHIC-PHENIX 実験で行ない、 Jet Quenchingを測定し、QGPの存 在を明らかにしたい。

RHIC

RHIC = Relativistic Heavy Ion Collider

Located at Brookhaven National Laboratory

PHENIX実験

Pioneering High Energy Nuclear Interaction eXperiment

• 全周3.8km 2リング

RAME _ AR AR

- 120bunch/ring
- 106ns crossing time
- 最大エネルギー
 - 250GeV for p(polarized)
 - 100GeV/nucleon for Au
- Luminosity
 - Au-Au : $2 \times 10^{26} \text{ cm}^{-2} \text{ s}^{-2}$
 - $p-p: 2 \ge 10^{32} cm^{-2} s^{-2}$
- 6 ØCrossing point

- Zero Degree Calorimeter(ZDC)
- Multiplicity and Vertex Detector(MVD)

PHENIX実験

電磁カロリーメータ

PHENIX Detector

π⁰測定のための検出器 2種類の電磁カロリーメータ - PbSc型 Lead Scintillation Type PbGI型 • Lead Glass Type 5m **EMCal RICH Level1** 24768 チャンネル Trigger(ERT) High-p_Tのπ⁰測定に必要不可欠 West Beam View East

- (電子が)Critical Energy に達するまでシャワーを 起こす。
 - Critical Energy程度になると、Ionization energy loss等により0.5cm程度でとまる。

• PHENIX PbSc型サンプリングカロリーメータ

- ・ シンチレータプレート
 - 5cm x 5cm x 4mm(厚さ)
 - 端は、アルミで蒸着。一つの角をlaser calibration用に残す。
 - 発生した光を、Wave length shifter fiberで変換しつつ、PMT に転送する。
 - Fiber 中における光の減衰(=120cm)が無視できない。

PbSc型カロリーメータ

Sandwich type calorimeter Lead plates 55.2x55.2x1.5mmScintillator plates 110.4x110.4x4mmShish-kebab geometry wave shifter fiber readout 6x6 fibers $\rightarrow 1$ PMT = 1 tower 2 x 2 towers = 1 module 6 x 6 module = 1 super module 6 x 3 super module = 1 sector

PbSc
5.52 x 5.52
37.5
15552
~ 20%
0.7
90+45deg
0.011
0.011
18
~ 3cm

PbSc sector 2.0m x 4.0m

PHENIX PbSc型

性能評価のためのテスト実験

- 電磁カロリーメータの性能評価のためのテスト実験
 - 1996年 BNL-AGS electron 0.5-6GeV/c
 - 1998年 CERN-SPS electron 6-80GeV/c

CERN-SPSでのテスト実験を簡単に説明し、得られた性能評価についてまとめる。

- テスト実験@CERN
 - Aug 28 Sep 5, 1998
 - hadron, electron, muon 5GeV/c to 80GeV/c

At the CERN SPS H6 beam line from Aug.29 to Sep.5 1998

性能評価

Fine Segment - ○測定のために-

- 高い運動量を持つ 0
 からの2光子間の距離。
 - 衝突点から5m離れて、
 - 14cm @ 10GeV/c (0)
 - 7cm @ 20GeV/c
- PHENIXの1タワーのサ イズ
 - 5cm x 5cm
 - 20GeV/c までの2光子を
 分離することが可能。

ERT トリガー

- EMCal RICH level1 Trigger(ERT)
 - electron, di-electron, photon, high- $p_T \pi^{\pm}$ をトリガーする目的。
 - 本研究では、ERTのEMCal部分のみを使用
- ・ 電磁シャワーのエネルギーを得るために、タワー

 (5.5x5.5cm²[PbSc] 4x4cm²[PbGl])のエネルギーの合計をとる必要がある。
 - 2x2 towers non-overlapping sum (threshold=0.8GeV)
 - 4x4 towers overlapping sum (threshold=2 and 3GeV)
- 高い運動量を持つπ⁰, prompt- を効率よ<測定するため。
 - Enhances high-pT π^0 by a factor of 50

ERT トリガー

主に読み出し回路ならびにトリガー回路のテスト、 インストール、性能評価、等行ってきた。

Trigger board(32sumのORを取る)

Run2001-2002の直前にインストールした。ノイズ(主に回路の発振による)がおお <、約1/5の領域で使用不可。

Run2003までに問題の回路交換を行い、ほぼ100%領域で稼動できた。

を求める。

30

エネルギー校正:Laser

- UV laser (YAG laser) is used for calibration and monitoring system
 - The light intensity is monitored with PIN diodes at each intermediate splitter that are used for normalization.
 - Light is injected into each module through a "leaky fiber" to simulates an electromagnetic shower
- Laser monitoring system works for
 - Transportation from cosmic muon calibration into PHENIX configuration
 - Trace of time drift

エネルギー校正:荷電粒子

- RHIC-PHENIXにおいて、衝突点から
 来た荷電粒子を使う
 - 主に、荷電 粒子
 - 270MeV
- ・ 全チャンネルに対して補正項を求める。200

エネルギー校正:(陽)電子

- 電子または陽電子が入射
 - 光子によるシャワーよりも、より浅い位置(1X₀=約2cm分)で電磁シャワーを起こす。言い換えると、PMTから遠い位置。
 - →ファイバー中での減衰がより大きい。 約2%.
 - 運動量はトラッキングシステムにより 測定。エネルギーと運動量の比をとる と、98%の位置にあるべし。
 - 実際には、低い運動量では98%より小 さい。いくつかの原因がある、Dchと EMCal間でのエネルギーロスなど。
- 幅を使って、エネルギー分解能を 見積もる。

 $\sigma_{\rm E}/{\rm E}=9.4\%/{\rm \sqrt{E}\oplus4.7\%}$

- p_T smearing**効果**
 - 有限のエネルギー分解能により、測定さ $\sqrt{3}$ れた p_T は誤差をもつ。これにより測定され $\sqrt{3}$ た p_T 分布がずれる。
- →同時に、見かけ上のπ⁰質量は標準のもの ² より大きく見える
 - p_T測定に誤差があるために、あるp_T bin でπ⁰をreconstruct した際、本来両隣のp_T binに入るべきπ⁰が検出される。
 - $\pi^0 p_T$ 分布は大きなスロープを持つために 低い p_T からの染み出しの数が大きい。
 - 測定p_Tが高く測定されたものは、測定質 量も高く見える。
- 測定π⁰質量は、p_T smearingの効果が正し
 く見積もられたかどうかの良い試金石。
 - 同時に、絶対エネルギー校正が+-1%で 補正できていることを確認。
 - Run3からは、全タワーの補正項を求めるのに使用。

- ・トリガー
 - Minimum bias trigger
 - BBC(|η|=3~3.9)に荷電粒子が一つ以上(南北合計2つ)を要求する。
 - ERT trigger(high- p_T trigger) (p+p衝突のみ)

— 他、

Run	Year	Species	$s^{1/2}$ [GeV]	∫Ldt	N _{tot}	p-p Equivalent	Data Size
01	2000	Au+Au	130	1 μb ⁻¹	10 M	0.04 pb ⁻¹	3 TB
02	2001/2002	Au+Au	200	24 μb ⁻¹	170M	1.0 pb ⁻¹	10 TB
		p+p	200	0.15 pb ⁻¹	3.7G	0.15 pb ⁻¹	20 TB
03	2002/2003	d+Au	200	2.74 nb ⁻¹	5.5G	1.1 pb ⁻¹	46 TB
		p+p	200	0.35 pb ⁻¹	6.6G	0.35 pb ⁻¹	35 TB
04	2003/2004	Au+Au Au+Au	200 62	241 μb ⁻¹ 9 μb ⁻¹	1.5G 58M	10.0 pb ⁻¹ 0.36 pb ⁻¹	270 TB 10 TB ₃₆

解析 ~π⁰ 測定~

- Run2 p+p データを使用。
- Invariant massの再構成
 - M.B. trigger $p_T(1,1.5)$ GeV/c
 - high-p_T trigger
 pT(4,4.5)(6.5,7)(10,12)GeV/c
- バックグランドを見積もるために、
 いくつかの関数を使いフィットする
 - $p_T = 1-1.5 \text{GeV/c N/S} = 200\%$
 - $p_T > 5 GeV/c$ N/S = 10%
 - pT>8GeV/cでは正確に見積もることが出来ないため、pT<8GeV/cからの外挿で見積もった。
- high-p_T trigger
 - Rejection Factor = 50
 - Measured 1-15GeV/c π^0
 - 30個 π^0 at $p_T=10-12GeV/c$
 - 10個 π^0 at $p_T = 12-15 GeV/c$

~作目1-~

解析 ~trigger efficiency~

high-pT trigger 効率は、
 minimum bias(M.B.) trigger
 eventを使って見積もる。

$$\mathcal{E}_{\pi 0}^{(High)} = \frac{N_{\pi 0}^{(2 \times 2 \& MB)}}{N_{\pi 0}^{(MB)}}$$

- トリガー効率は、p_T>3GeV/c
 で一定値(~80%)
 - 有効なトリガー回路の面積比 と一致。
 - M.B. trigger data for 1-4GeV/c
 - 2x2 trigger for 4-15GeV/c

解析 ~ π^0 efficiency in M.B. trigger~

- minimum bias(M.B.) triggerは、|η|=3~3.9の 領域に荷電粒子が一つ以上(南北合計2つ) を要求する。
 - これは、中間ラピディティー領域における粒子 0.
 生成に影響(bias)を与える。
- π^0 efficiency in M.B. trigger
 - ERTトリガーのうち、4x4 overlapping sumは M.B.トリガーとcoincidenceしてない。
 - 4x4トリガーを使って得られた影響(bias)を受けていないπ⁰サンプルを使って直接測定。

もし、イベントに対するM.B. trigger
 efficiency(51%)と同じならば、影響(bias)を受けていないことになる。

結果は75% Pythia simulationと良い一致

M.B.triggerは、high multiplicityのイベントを選んでいる。

解析 ~prompt-γ 測定~

- Event Selection
 - データはRHIC-run3 p+p データ (2003/Apr May)
 - 陽子ビームは longitudinally polarized at PHENIX. 偏極平均での測定。
 - 今回解析したデータは、ERTトリガー(Eγ>1.5GeV/c)にて取得。
 - 266pb⁻¹相当。
- Analysis procedure
 - 光子の選択
 - EM shower is photon-like
 - No charge hit on chambers in front of EMCal.
 - Isolation cut .

- π⁰からくる(上の選択を通り抜けた)光子の寄与はデータ自身から見積もる。

- 次ページ参照。
- ただし、検出器にて検出できなかったπ⁰からくる寄与ならびに他のハドロン (ω、η他)からくる寄与は
 - 過去の実験からの推定
 - 我々PHENIXでの測定(π⁰, η)
 - モンテカルロ計算
- Cross section calculation

解析 ~prompt-γ 測定~

- π⁰からくる光子の寄与はデータ 自身から見積もるのに、効率が よいように、検出器の端の方を 使わない。
 - 端から10タワー分(55cm)。
 - 5GeV/cの 0のうち、片方の光子 が領域内に入ってきた場合、もう 片方の光子のうち90%は全領域を 使って検出できる。
 - 検出できない分はMonteCarloで見 積もる。

方向

What is the efficiency by this cut for signal 1)&2) \rightarrow Next slide

Isolation Cutの効率

- なにが原因で効率/非効率を生み出すのか?
 - イベント構造によるもの
 - fragmentation photon は近くにジェットを伴うため効率は低いと予想される。
 - PHENIX検出器のアクセプタンスは完全ではない。
 - Underlying eventによるもの。
- Isolation cut による検出効率をMonte Carlo計算により見積もる。
 - モデル依存の計算である。
 - PYTHIA simulationによる見積もり。
 - Signal(direct photon) : >90% for pT>5GeV/c
 - Signal(fragmentation photon)に関しては研究を進めている最中である。
 T.Horaguchi and K.Nakano are working for these items.
- この発表ではisolation cutによる効率の補正なしで、isolation methodで得られた結果をsubtraction method。
 - この比較により、direct/fragmentation photonの成分を分けることができないだろうか、ということを念頭に。

S/N Ratio with Isolation Cut

- S/N ratio
 - S = 直接光子
 - N = 検出できなかったπ⁰か
 らくる寄与
- Isolation cutを掛けること により、S/N ratioが改善。
 - Subtraction method(岡田さ んトーク)と比較して約5倍。
 - 将来予定している直接光
 子を用いた陽子中グルー
 オン偏極量の測定に有効。
- 測定レンジ

 $- p_T = 5-17 GeV/c$

AuAu 衝突における 測定効率

- 金金衝突では、占有率(occupancy)
 が最大15%
 - 一つのシャワーが占めるタワーの数が 2,3個。
 - 隣のシャワーとの重なりにより、
 - 測定したエネルギーが間違っている
 - 他のシャワーに吸収される。
- シャワーの重なりの効果を、
 Embedding 法で求める。
 - 得られたデータの中に、Geantでシミュレートした 0や1光子のシャワーを混ぜる。
 - 混ぜる前と後での、 0や光子の量を 測定して、前後の差から検出効率を見 積もる。

Chapter 4 p+pの結果と議論

結果 p+p→ ⁰

- 結果は、
 - $p_{\rm T} = 1 13 {\rm GeV/c}$
 - クロスセクションにして、10⁻⁸~
 1mb/GeV²/c³ を測定

- 誤差
 - **ル**ミノシティの誤差9.6%
 - **系統誤差**7 ~ 15%
 - 主な寄与は絶対エネルギー 補正によるもの。
 - p_T>8GeV/c では、統計誤差
 が系統誤差に比べて大きい。
 - p_T=13.3GeV/cで統計誤差40%

Normalization systematic error 9.6% is not included here.

NLO-pQCD計算との比較

- Next-to-leading order(NLO)
 pQCD計算のパラメータ
 - Parton distribution function(PDF): CTEQ6M
 - Fragmentation function(FF): KKP
 - Matrix calculation by Aversa, et. al.
 - Renormalization and factorization scales are set to be equal and set to

 $1/2p_{\rm T}, p_{\rm T}, 2p_{\rm T}$

 W.Vogelsangとのprivate communicationによる計算結果と 一致している。

得られたデータは、3つのスケールを用 いた計算結果の範囲で一致している。

破砕関数の比較

- データと他のFFを用いた
 NLO-pQCD計算との比較。
 - FFとして、Kretzer, BKK, KKP を使用
 - BKKとKKPを用いた計算はデ・
 タと一致
 - Kretzerを用いた計算は pT<8GeV/cにおいてデータより 低く見積もっている。
 - この大きな違いは、gluonからの破砕関数にある。
 - Gluonとquarkジェットの寄与 は、pi0pT=8GeV/c辺りでクE スする。

グルーオンからの破砕関数

本研究によりgluonからの破砕関数、特にz>0.5 の領域 に対し情報を与えることが出来た。

•将来の課題

-NNLO

–Initial k_T

-Multi-jetイベントにおけるJet-jet final interaction

•Space and time evolution of the color field

hep-ex/0404026

NLO-pQCD計算との比較

Subtraction methodで得られた Ed³σ/dp³ (pbGeV PHENIX Preliminary Bands represents systematic error. データとの比較を行う。 10 NLO pQCD (by W.Vogelsang) CTEQ6M PDF NLO-pQCD calculation μ=1/2p_T, p_T, 2p_T - Private communication with W.Vogelsang 10 - CTEQ6M PDF. - 二つの寄与(direct photon と fragmentation photon) の和。 10 - 3**つのスケール**、1/2,1,2 pT • Renormalization scale *k* factorization scale を同じにとる 今回のデータは、pQCD計算 のスケールの違いの範囲でよ く一致している。 18 12

Systematic errors are not shown

р_т(GeV/*с*)

x_Tスケーリング p+p→

陽子陽子衝突では最高エネルギー

- CERN

- ISR (1971~) p+p $\sqrt{s}=10-60$ GeV
- SPS(1977~) p-beam p≤450GeV
- SppS(1981~) p+ $\bar{p} \sqrt{s} \le 640 \text{GeV}$
- FermiLab
 - Syncrotron(1972~) p-beam p≤400GeV
 - Tevatron(1981~) p-beam $p \le 0.9$ TeV
- p_T分布
 - High p_T では、 \sqrt{s} が大きくなるにつれて、 p_T分布の形の傾きは緩やか。
 - Low p_T では、傾きは \sqrt{s} によらずほぼー 定に収束している。

X_T スケーリング- 0-

QCD理論によると、以下の仮定 - PDFFF**0**Q²**7** pbGe/ Coupling constant(α_s)がQ²に非依存。 Ns)"Ed³₀/dp° ______ $\boldsymbol{\sigma} = \left(\sqrt{s}\right)^{-n} \times F(\boldsymbol{x}_T)$ n=**定数。**x_T=2p_T/√s 定数nに対する予想 PHENIX Vs=200GeV • Leading order n=4 ♦ UA2 vs=540GeV • Next-to-leading order: $n=4+\alpha$ ▼ CCR √s=62.4GeV 10 △ CCRS √s=62.4GeV • 過去の実験から n=6.3 (by R108 collaboration) ▲ R108(CCOR) √s=62.4GeV - x_T分布は√sに依存しない OR702√s=62GeV ■ R806√s=62.8GeV →x_Tスケーリング □ R807(AFS) √s=63GeV ● Eggert et.al. √s=62.9GeV - ここでは、今回得られたデータと過去の データ \sqrt{s} >60GeVと比較して、 x_T スケーリ ングがn=6.3で成り立つかどうか見る。 10⁻² 10⁻¹ Хт x_Tスケーリングがn=6.3で成り立つ→パートン描像

Chapter 5 Au+Auの結果と議論

Nuclear Modification Factor R_{AA} • Hard processes **Nuclear overlap function** - 収量は N_{coll}にスケール $T_{AB} = \int d^2 \mathbf{r} T_A(\mathbf{r}) T_B(\mathbf{b} - \mathbf{r})$ • incoherent superposition **Nuclear thickness function** • Nuclear Modification $T_A(b) = \int dz \rho_A(b, z)$ Factor(R_{AA})を定義する。 from Glauber model $egin{aligned} & \left(1\!\left/ N_{AB}^{\mathrm{evt}} ight) \mathrm{d}^2 \mathrm{N}_{AB} / \mathrm{dydp}_{\mathrm{T}} \ & \left\langle \mathrm{T}_{AB} ight angle \, \mathrm{d}^2 \sigma_{\mathrm{pp}} / \mathrm{dydp}_{\mathrm{T}} \end{aligned}$ R no effect 1.2 R = 11.0 0.8 "hard" R < 1 0.6 0.4 "soft" 0.2 原子核の重なりによる変化 0.0 5 3

Tranverse Momentum (GeV/c)

6

~π⁰ 測定~

- 今回得られたデータを比較のために、金金衝突中における平均核子衝突回数(number of collision)でスケール。
 - Glauberモデルによる予想。
- 金金かすり衝突では一致。
 - 金金かすり衝突では、核子核子衝
 突の単なる重ね合わせで表すこと
 が出来る。
 - Glauberモデルの正当性を示唆
- 金金正面衝突では、陽子陽子 衝突と比較して、1/3-1/4の減衰 が見られた。
 - QGPを仮定したJet quenchingモデ ルで説明できる。

結果 ~prompt- 測定~

- ・ AuAu衝突での全光子分布
 - pp衝突と違って多重度が大きいために、光子ごとに 0から きたのかどうか判断するのが難しい。
 - すでに測定された 0のスペクトラを使って、 0崩壊から出てくる光子の数との比較を行っていく。

- p+p衝突における結果
 - 0測定
 - NLO-pQCD計算との比較
 - データは計算結果と一致。スケールを変化させたときの範囲。
 - Kretzer fragmentation functionを使ったNLO-pQCD計算はデータを過小評価している。
 - » gluon からの fragmentation functionに対し、特にz>0.5の領域で情報を与えることが出来た。
 - Prompt-
 - p_T = 5-17GeV/c を測定。陽子陽子衝突としては最大エネルギー。
 - Isolation methodによる結果はsubtraction methodと比較して減少していない。
 - Fragmentation photon が isolation cutにより落とされていない。
 - Prompt photon生成のほとんどが、direct photon生成によるものである。
 - pQCD計算とスケール選択の範囲で一致。
 - This fact is very essential for the future analysis for spin physics
 - x_Tスケーリング則がn=5付近で成立。
 - パートン描像を示唆。
 - 陽子反陽子衝突との違いは、小さいx_T領域で小さいのではないかと推定。

・金金衝突との比較

- Nuclear Modification Factor
 - Glauber modelにより計算した、平均衝突回数(N_{coll})を使用。
 - 陽子陽子衝突の単純な(incoherentな)重ね合わせで表されるならば、1 になるべき係数。
 - かすり衝突を陽子陽子衝突と比較することにより、Glauber modelの確認にもなる。
- かすり衝突
 - ⁰測定
 - 陽子陽子衝突の重ね合わせで記述できる。
- 正面衝突
 - ⁰測定
 - 陽子陽子衝突と比べて1/4~1/5の減少が見られた。
 - prompt- 測定
 - 陽子陽子衝突と比較して、変化なし。
- QGPを仮定したJet Qunchingモデルで説明がつく。