Recent results on heavy quarkonia

production in p+p and heavy ion
collisions at RHIC

Hugo Pereira Da Costa, CEA Saclay
DIS 2008, April 9 2008



Introduction




The quark gluon plasma
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Heavy quarkonia as a QGP probe

Heavy quarkonia are good candidates to probe the QGP in heavy ion
collisions because:

* they have large masses and are radius

(dominantly) produced at the early
stage of the collision, via hard-
scattering of gluons.

3.68 GeV

3.93GeV 0.72fm
3.1GeV  0.50 fm
9.5GeV 0.28fm

* they are strongly bound (small radius)
and weakly coupled to light mesons.




BNL and RHIC

length: 3.83 km

Capable of colliding
any type of nuclei

Energy:
500 GeV for pp

200 GeV for AA
(per N-N collision)

Two large experiments are still operating today: PHENIX and STAR



The PHENIX experiment
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The STAR experiment
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Observables

 Cross-section vs p+, rapidity (in pp collisions, as a reference)

 Nuclear modification factor R,, vs p+, rapidity, collision centrality

yield in AA (or dA)

Raa =

N, Yield in pp

N, = humber of nucleon-nucleon collisions equivalent
to one AA collision at a given centrality

For hard processes and if everything in AA behaves like in pp, Ry,=1



 p+p collisions: reference for heavy ions
 d+Au collisions: cold nuclear matter effects

» Cu+Cu and Au+Au: hot nuclear matter effects
« Other quarkonia states

« Other observables: elliptic flow



1.

p+p collisions
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J/¥Y production cross-section vs rapidity
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J/¥Y production cross-section vs energy
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J/¥Y production cross-section vs p;
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2. d+Au collisions:

cold nuclear matter effects
break-up cross-section
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Cold nuclear matter effects

Modification of the J/¥ production with respect to pp in normal nuclear
matter (that is: without the formation of a QGP)

* Modifications of the incoming parton distribution functions
shadowing, anti-shadowing
saturation (at low-x)

 Elastic scattering of the J/¥ precursors (Cronin effect)
Affects the J/Y p; spectrum but not the p; integrated cross-section

* Inelastic scattering of the J/¥ precursors and nuclear absorption
These decrease the total J/¥ production cross-section.
Modeled using a break-up cross-section, and fitted to the data.
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J/¥Y Ry, Vs rapidity in d+Au collisions

arxiv:0711.3917
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The rapidity dependency is
accounted for by the shadowing
model (here EKS).

The overall magnitude is
accounted for by a break-up
cross-section, fitted to the data.
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Once the shadowing model and breakup cross-section are known

you can extrapolate CNM to AA collisions. .



3. Cu+Cu and Au+Au collisions:

Hot nuclear matter effects
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Hot nuclear matter effects

* Debye screening in colored matter

Mechanism originally proposed by Matsui & Satz,
Also validated on the lattice, although with
higher dissociation temperatures.

state || J/1(19)

W(IP) | (28) | T(18) | (1P} | T(25) | na(2P) | Y(39)

Td .-'f TL‘

2.10

116 | L12 | >40 L76 | 160 | L19 | LI7

* Dissociation by interaction with (partonic) co-movers

 Recombination/coalescence of uncorrelated charm quark pairs

" ::o.)

10 to 20 c,cbar pairs per event in

® most central Au+Au collisions.

O @ Recombination goes like N_ 2
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J/¥Y R, Vs centrality (N . ) in Au+Au and Cu+Cu
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J/¥Y R, Vs centrality (N

part

) in Au+Au and Cu+Cu

---- shadowing
== 4 dissociation

More suppression at forward
rapidity is unexpected.

Possible explanations:

* more recombination at

= + recombination

PHENIX PRELIM (|y|<0.35)

shadowing

+ absorption

+ dissociation

+ recombination

PHENIX PRELIM (ly|e[1.2,2.2]) 1

m|d rap|d|ty e PHENIX 2008 (y|<0.35) 02 PHENIX 2008 (ly|<[1.2,2.2])

e more CNM effeCtS —20 a0 60 80 700 _ % 20 a0 e0 80 100
(notably saturation) at - T
forward rapidity come CAUAU LS e

i s =200 Gev |
As an example: 1 P\
Capella, Tywoniuk et al. 177 i
Fitting Cu+Cu, Au+Au, EI . 1
"‘:"_'_?T:_.':_:'r—_

0.2

mid and forward rapidity

0.2

il Lid (| il ' L 1, o
00 50 100 150 200 250 300 350 400 0

art

50

- Ll L L L l Ll l | I Ll
100 150 200 250 300 350 400
part

20



J/¥Y Rpp VS Py

Modification of the J/¥ p; distribution should also help constrain the
mechanisms at play.
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4. Other heavy quarkonia: ¥’, (., Y
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» direct measurements of W',y _, B in p+p collisions constrain feed-
down contributions to J/¥

« are first step towards similar measurements in dA and AA

collisions, needed to disentangle effects on direct J/¥ and
resonances.

« Upsilon measurements give intermediate energy reference towards
future LHC measurements.
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J/¥Y from B
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First measurement of Y in A-A collisions.
Still working on getting total cross-section (in pp) and R,, (in Au+Au)
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5. JIV¥ elliptic flow
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Elliptic flow (principle)

The elliptic flow, v,, characterize
the azimuthal anisotropy of

particle emission with respect to
the collision reaction plane.

Observed v, for non-central
collisions is interpreted as a
consequence of an anisotropic
pressure gradient in the overlapping
region of the colliding nuclei.

This requires an early thermalization of the medium.
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Elliptic flow for light hadrons and heavy fIavors

Elliptic flow (v,) was measured
for light hadrons. Observed
scaling properties are related to
properties of the formed
medium and denote pre-
hadronic degrees of freedom.

Vv, was also measured for
heavy flavored hadrons
(D). Alarge v, is also
observed. >

J/¥ produced by recombination °

of uncorrelated pairs should
also carry a significant v,,
unlike direct J/V.
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first measurement of J/¥ v, at mid-rapidity

o 0.3

Statistics is poor and the

measurement is rather a 0.2f

proof-of-principle.

More statistics is still to be 0.1
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Conclusion and perspectives
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in p+p collisions

solid reference for dA and AA measurements.
However the J/¥ production mechanism is still not well understood.

Better understanding would require:

» more statistics (notably 2006 data)

* better control on feed-down contributions (work in progress)
« other observables (J/¥ polarization)

In p+p, J/¥ can also help the measurement on polarized pdfs (wait for
more statistics and 500 GeV proton beams).

in d+Au collisions

More statistic is needed to constrain the cold nuclear matter effects and
extrapolate to AA collisions. (work in progress using 2008 data)
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In Cu+Cu, Au+Au collisions

An anomalous suppression is observed even after conservative cold nuclear
effects are accounted for.

Raa Vs N, can be more or less reproduced using a cocktail of (largely
unconstrained) mechanisms:

* cold nuclear matter effects
« co-mover suppression and/or color-screening
* regeneration by coalescence

A better understanding requires notably:
* better control on the cold nuclear matter effects (from d+Au collisions)

* better constrain on the open charm production
(wait for PHENIX/STAR upgrades)

* more precise measurement of J/¥ p; spectrum (2007 Au+Au dataset)

» other observables (such as J/'¥ v,) (2007 and future datasets)

« other resonances (¥, Y. and Y) 34
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J/'¥Y production mechanism

At RHIC, production is dominated by

gluon fusion. A third (non-perturbative)

: | gluon is needed to color-neutralize the
- | JI.

> {ce), |{cog), |(co),

Various approaches to handle the color-neutralization:
 Color Singlet Model

« NRQCD Color Octet Model
 Color Evaporation Model
« KT factorization
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J/¥ signal in p+p collisions @ PHENIX
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J/V¥ signal in d+Au collisions @ phenix (from 2008)

About 30x more statistics than published data.
Analysis in progress.
Will improve a lot constraints on cold nuclear matter effects.
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J/¥ signal in p+p and Cu+Cu collision @ STAR
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Proton spin structure via heavy flavor

Proton spin structure is probed using proton begam% -
longitudinally polarized proton beams. > or & oy

Beam polarization is flipped from gluon +——

bunch to bunch. gluon ] heavy flavor

- or & 6666666@
Measure J/V¥ yields in each proton beam% ;
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J/¥ Ry, Vs centrality in d+Au collisions

Alternatively one can fit the centrality dependency of R, in each rapidity
range with different break-up cross-sections.

arxiv:0711.3917
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The underlying shadowing model is used to extrapolate from dA to AA
collisions, but not to constrain the differences between the three rapidity
ranges.
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Modification of the p; distribution with centrality

Study of the p; spectrum (notably <p;?> vs centrality) should give more hints

of the mechanism at play.

Cronin effect should increase
the <p;?>wrt N, but does
not affect J/Vs produced by
recombination.

The measurement is difficult
because of the poor
constraints at high p-.
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